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Abstract

In [Graphs Combin. 24 (2008) 469–483], the third author and the fifth author
conjectured that if G is a k-connected graph such that σk+1(G) > |V (G)|+ κ(G) +
(k−2)(α(G)−1), then G contains a Hamilton cycle, where σk+1(G), κ(G) and α(G)
are the minimum degree sum of k+1 independent vertices, the connectivity and the
independence number of G, respectively. In this paper, we settle this conjecture.
The degree sum condition is best possible.

Mathematics Subject Classifications: 05C38, 05C45

1 Introduction

1.1 Degree sum condition for graphs with high connectivity to be hamilto-
nian

In this paper, we consider only finite undirected graphs without loops or multiple edges.
For standard graph-theoretic terminology not explained, we refer the reader to [5].

A Hamilton cycle of a graph is a cycle containing all the vertices of the graph. A
graph having a Hamilton cycle is called a hamiltonian graph. The hamiltonian problem
has long been fundamental in graph theory. Many researchers have investigated sufficient
conditions for a graph to be hamiltonian. In this paper, we deal with a degree-sum-type
condition, which is one of the main stream of this study.

We introduce four invariants, including degree sum, which play important roles for
the existence of a Hamilton cycle. Let G be a graph. The number of vertices of G is
called its order, denoted by n(G). A set X of vertices in G is called an independent
set in G if no two vertices of X are adjacent in G. The independence number of G
is the maximum cardinality of an independent set in G, denoted by α(G). For two
distinct vertices x, y ∈ V (G), the local connectivity κG(x, y) is defined to be the maximum
number of internally-disjoint paths connecting x and y in G. A graph G is k-connected
if κG(x, y) > k for any two distinct vertices x, y ∈ V (G). The connectivity κ(G) of G is
the maximum value of k for which G is k-connected. We denote by NG(x) and dG(x) the
neighborhood and the degree of a vertex x in G, respectively. If α(G) > k, let

σk(G) := min
{∑
x∈X

dG(x) : X is an independent set in G with |X| = k
}

;

otherwise let σk(G) := +∞. If the graph G is clear from the context, we simply write n,
α, κ and σk instead of n(G), α(G), κ(G) and σk(G), respectively.

∗Supported by JSPS KAKENHI Grant Number 17K05347.
†Supported by JSPS KAKENHI Grant Number 18K13449.
‡Supported by JST ERATO Kawarabayashi Large Graph Project, Grant Number JPMJER1201,

Japan, and JSPS KAKENHI Grant Number 18K03391.
§Supported by JSPS KAKENHI Grant Number 16K05262.
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One of the main streams of the study of the hamiltonian problem is, as mentioned
above, to consider degree-sum-type sufficient conditions for graphs to have a Hamilton
cycle. We list some of them below.

Theorem 1. Let G be a graph of order at least three. If G satisfies one of the following,
then G is hamiltonian.

(i) (Dirac [7]) The minimum degree of G is at least n
2
.

(ii) (Ore [10]) σ2 > n.

(iii) (Chvátal and Erdős [6]) α 6 κ.

(iv) (Bondy [4]) G is k-connected and σk+1 >
(k+1)(n−1)

2
.

(v) (Bauer, Broersma, Veldman and Li [2]) G is 2-connected and σ3 > n+ κ.

To be exact, Theorem 1 (iii) is not a degree-sum-type condition, but it is closely
related. Bondy [3] showed that Theorem 1 (iii) implies (ii). From Theorem 1 (iii), it
is natural to consider a σk+1 condition for a k-connected graph. Bondy [4] gave a σk+1

condition of Theorem 1 (iv).

In this paper, we give a much weaker σk+1 condition than that of Theorem 1 (iv).

Theorem 2. Let k be a positive integer and let G be a k-connected graph. If

σk+1 > n+ κ+ (k − 2)(α− 1),

then G is hamiltonian.

Theorem 2 was conjectured by Ozeki and Yamashita [12]. The case k = 2 of Theorem
2 coincides with Theorem 1 (v). The cases k = 1 and k = 3 were shown by Fraisse and
Jung [8], and by Ozeki and Yamashita [12], respectively.

1.2 Sharpness of Theorem 2

In this subsection, we show that the σk+1 condition in Theorem 2 is best possible in some
senses.

We first discuss the lower bound of the σk+1 condition. For an integer l > 2 and l
vertex-disjoint graphs H1, . . . , Hl, we define the graph H1 ∨ · · · ∨ Hl from the union of
H1, . . . , Hl by joining every vertex of Hi to every vertex of Hi+1 for 1 6 i 6 l − 1. Fix a
positive integer k. Let κ, m and n be integers with k 6 κ < m and 2m+ 1 6 n 6 3m−κ.
Let G1 = Kn−2m∨Kκ∨Km∨Km−κ (see Figure 1), where Kp denotes the complete graph
of order p and Kp denotes the complement of Kp. Then α(G1) = m+ 1, κ(G1) = κ and

σk+1(G1) = (n− 2m− 1 + κ) + km = n(G1) + κ(G1) + (k − 2)(α(G1)− 1)− 1.
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Figure 1: The case n = 13,m = 5, κ = 2 of the graph G1.

Since deleting all the vertices in Kκ and those in Km−κ breaks G1 into m+1 components,
we see that G1 has no Hamilton cycle. Therefore, the σk+1 condition in Theorem 2 is best
possible.

We next discuss the relation between the coefficient of κ and that of α−1. By Theorem
1 (iii), we may assume that α > κ+ 1. This implies that

n+ κ+ (k − 2)(α− 1) > n+ (1 + ε)κ+ (k − 2− ε)(α− 1)

for arbitrarily ε > 0. Then one may expect that the σk+1 condition in Theorem 2 can be
replaced with “n+ (1 + ε)κ+ (k− 2− ε)(α− 1)” for some ε > 0. However, the graph G1

as defined above shows that it is not true: For any ε > 0, there exist two integers m and
κ such that ε(m− κ) > 1. If we construct the above graph G1 from such integers m and
κ, then we have

σk+1(G1) = n+ (1 + ε)κ+ (k − 2− ε)m− 1 + ε(m− κ)

> n(G1) + (1 + ε)κ(G1) + (k − 2− ε)
(
α(G1)− 1

)
,

but G1 is not hamiltonian. This means that the coefficient 1 of κ and the coefficient k−2
of α− 1 are, in a sense, best possible.

1.3 Comparing Theorem 2 to other results

In this subsection, we compare Theorem 2 to Theorem 1 (iv) and to Theorem 3 (see
below).

We first show that the σk+1 condition of Theorem 2 is weaker than that of Theorem
1 (iv). Let G be a k-connected graph satisfying the σk+1 condition of Theorem 1 (iv).
Assume that α > (n + 1)/2. Let X be an independent set of order at least (n + 1)/2.
Then |V (G) \ X| 6 (n − 1)/2 and |V (G) \ X| > k since V (G) \ X is a cut set. Hence
(n + 1)/2 > k + 1, and we can take a subset Y of X with |Y | = k + 1. Then NG(y) ⊆
V (G) \ X for y ∈ Y , and hence

∑
y∈Y dG(y) 6 (k + 1)|V (G) \ X| 6 (k + 1)(n − 1)/2.

This contradicts the σk+1 condition of Theorem 1 (iv). Therefore n/2 > α. Moreover, by
Theorem 1 (iii), we may assume that α > κ+1. Therefore, the following inequality holds:

σk+1 >
(k + 1)(n− 1)

2

> n− 1 +
(k − 1)(2α− 1)

2
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> n− 1 + (k − 1)(α− 1)

> n+ κ+ (k − 2)(α− 1)− 1.

Thus, the σk+1 condition of Theorem 1 (iv) implies that of Theorem 2.

We next compare Theorem 2 to the following result of Ota.

Theorem 3 (Ota [11]). Let G be a 2-connected graph. If σl+1 > n + l(l − 1) for all
integers l with l > κ, then G is hamiltonian.

We mention about the reason to compare Theorem 2 to Theorem 3. Li [9] proved the
following theorem as a corollary of Theorem 3.

Theorem 4 (Li [9]). Let k be a positive integer and let G be a k-connected graph. If
σk+1 > n+ (k − 1)(α− 1), then G is hamiltonian.

Note that Theorem 2 is, assuming Theorem 1 (iii), an improvement of Theorem 4.
Therefore we should show that Theorem 2 cannot be implied by Theorem 3.

Let κ, r, k,m be integers such that 4 6 r, 3 6 k 6 κ− 2 and m = (k + 1)(r − 2) + 4.
Let G2 = K1 ∨Kκ ∨Kκ+m−r ∨ (Km ∨Kr). Then n(G2) = 2κ + 2m + 1, κ(G2) = κ and
α(G2) = κ+m. Since

κ+ k(κ+m)− (k + 1)(κ+m− r + 1) = (k + 1)(r − 1)−m = k − 3 > 0,

it follows that

σk+1(G2) = min
{
κ+ k(κ+m), (k + 1)(κ+m− r + 1)

}
= κ+ k(κ+m)− (k − 3)

= (2κ+ 2m+ 1) + κ+ (k − 2)(κ+m− 1)

= n(G2) + κ(G2) + (k − 2)(α(G2)− 1).

Hence the assumption of Theorem 2 holds. On the other hand, for l = α(G2) − 1 =
κ+m− 1, we have

n(G2) + l(l − 1)− σl+1(G2) = (2κ+ 2m+ 1) + (κ+m− 1)(κ+m− 2)

−
{
κ(κ+m− r + 1) +m(κ+m)

}
= κ(r − 2)−m+ 3

= (κ− k − 1)(r − 2)− 1 > 0.

Hence the assumption of Theorem 3 does not hold. These yield that for the graph G2,
we can apply Theorem 2, but cannot apply Theorem 3.
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2 Notation and lemmas

Let G be a graph and H be a subgraph of G, and let x ∈ V (G) and X ⊆ V (G). We
denote by NG(X) the set of vertices in V (G) \ X which are adjacent to some vertex in
X. We define NH(x) := NG(x) ∩ V (H) and dH(x) := |NH(x)|. Furthermore, we define
NH(X) := NG(X) ∩ V (H). We denote by G[X] the subgraph of G induced by X, and
let G − X := G[V (G) \ X]. If there is no fear of confusion, we often identify H with
its vertex set V (H). For example, we often write G − H, G[H] and X ∩ H instead of
G − V (H), G[V (H)] and X ∩ V (H). A path P is called an H-path if both end vertices
of P are contained in H and all internal vertices are not contained in H. Note that each
edge of H is an H-path. The union of two vertex-disjoint graphs H1 and H2 is denoted
by H1 ∪H2.

Throughout this paper, we consider that each of cycles and paths has a fixed ori-
entation. Let C be a cycle (or a path) in a graph G. For x, y ∈ V (C), we denote by
C[x, y] the path from x to y along the orientation of C. The reverse sequence of C[x, y]

is denoted by
←−
C [y, x]. We denote C[x, y] − {x, y}, C[x, y] − {x} and C[x, y] − {y} by

C(x, y), C(x, y] and C[x, y), respectively. We denote a path P from a vertex u to a vertex
v by P [u, v]. For two vertex-disjoint paths P [u, v] and Q[x, y], if v = x or vx ∈ E(G),
then P [u, v]Q[x, y] is the path from u to y along P and Q. For x ∈ V (C), we denote the
successor and the predecessor of x on C by x+ and x−, respectively. (For the end vertices
u, v of P [u, v], u− and v+ do not exist.) For X ⊆ V (C), we define X+ := {x+ : x ∈ X}
and X− := {x− : x ∈ X}.

In this paper, we extend the concept of insertible, introduced by Ainouche [1], which
has been used for the proofs of the results on cycles. Let G be a graph, and H be a
subgraph of G. Let X(H) := {x ∈ V (G−H) : xu, xv ∈ E(G) for some uv ∈ E(H)}, and
for x ∈ V (G − H), let I(x;H) := {uv ∈ E(H) : xu, xv ∈ E(G)}. Let Y (H) := {y ∈
V (G−H) : dH(y) > α(G)}.

Lemma 5. Let D be a cycle of a graph G. Let Q1, Q2, . . . , Qk be vertex-disjoint paths in
G−D, where Qi is a path from ai to bi, 1 6 i 6 k, and let Q :=

⋃k
i=1Qi. If the following

(I) and (II) hold, then G[D ∪Q] is hamiltonian.

(I) u ∈ X(D) ∪ Y (Qi(u, bi] ∪D) for u ∈ V (Qi), 1 6 i 6 k.

(II) I(x;D) ∩ I(y;D) = ∅ for x ∈ V (Qi) and y ∈ V (Qj), 1 6 i < j 6 k.

Proof. We can easily see that G[D ∪ Q] contains a cycle D∗ such that V (D) ∪ (X(D) ∩
Q) ⊆ V (D∗). In fact, we can insert all vertices of X(D) ∩ Q1 into D by choosing the
following u1, v1 ∈ V (Q1) and w1w

+
1 ∈ E(D) inductively. Take the first vertex u1 in

X(D) ∩Q1 along the orientation of Q1, and let v1 be the last vertex in X(D) ∩Q1 such
that I(u1;D) ∩ I(v1;D) 6= ∅. Then we can insert all vertices of Q1[u1, v1] into D. To be
exact, taking w1w

+
1 ∈ I(u1;D)∩I(v1;D), D1

1 := w1Q1[u1, v1]D[w+
1 , w1] is such a cycle. By

the choice of u1 and v1, w1w
+
1 /∈ I(x;D) for all x ∈ V (Q1−Q1[u1, v1]), and all vertices in

X(D)∩V (Q1−Q1[u1, v1]) are contained in the path Q1−Q1[a1, v1]. Moreover, note that
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E(D)\{w1w
+
1 } ⊆ E(D1

1). Hence by repeating this argument, we can obtain a cycle D∗1 of
G[D∪Q1] such that V (D)∪(X(D)∩Q1) ⊆ V (D∗1) and E(D)\

⋃
x∈V (Q1)

I(x;D) ⊆ E(D∗1).

Then by (II), I(x;D) ⊆ E(D∗1) for all x ∈ V (Q) \ V (Q1). Therefore G[D ∪Q] contains a
cycle D∗ such that V (D) ∪ (X(D) ∩Q) ⊆ V (D∗).

We choose a cycle C of G[D∪Q] containing all vertices in V (D)∪ (X(D)∩Q) so that
|C| is as large as possible. Now, we change the “base” cycle from D to C, and use the
symbol (·)+ for the orientation of C. Suppose that V (Qi − C) 6= ∅ for some i, 1 6 i 6 k.
We may assume that i = 1. Let w be the last vertex in V (Q1 − C) along Q1. Since C
contains all vertices in X(D)∩Q1, it follows from (I) that w ∈ Y (Q1(w, b1]∪D), that is,
|NG(w)∩(Q1(w, b1]∪D)| > α(G). By the choice of w, we obtain V (Q1(w, b1]∪D) ⊆ V (C).
Therefore |NC(w)+ ∪{w}| > |NG(w)∩ (Q1(w, b1]∪D)|+ 1 > α(G) + 1. This implies that
NC(w)+∪{w} is not an independent set in G. Hence wz+ ∈ E(G) for some z ∈ NC(w) or
z+1 z

+
2 ∈ E(G) for some distinct z1, z2 ∈ NC(w). In the former case, let C ′ = wC[z+, z]w,

and in the latter case, let C ′ := w
←−
C [z1, z

+
2 ]C[z+1 , z2]w. Then C ′ is a cycle of G[D∪Q] such

that V (C)∪ {w} = V (C ′), which contradicts the choice of C. Thus V (Q) is contained in
C, and hence C is a Hamilton cycle of G[D ∪Q].

In the rest of this section, we fix the following notation. Let C be a longest cycle in a
graph G, and H0 be a component of G−C. For u ∈ NC(H0), let u′ ∈ NC(H0) \ {u} be a
vertex such that C(u, u′) ∩NC(H0) = ∅, that is, u′ is the successor of u in NC(H0) along
the orientation of C.

For u ∈ NC(H0), a vertex v ∈ C(u, u′) is insertible if v ∈ X(C[u′, u]) ∪ Y (C(v, u]). A
vertex in C(u, u′) is said to be non-insertible if it is not insertible.

Lemma 6. There exists a non-insertible vertex in C(u, u′) for u ∈ NC(H0).

Proof. Let u ∈ NC(H0), and suppose that every vertex in C(u, u′) is insertible. Let P be
a C-path joining u and u′ with V (P ) ∩ V (H0) 6= ∅. Let D := C[u′, u]P [u, u′] and Q :=
C(u, u′). Let v ∈ V (Q). Since v is insertible, it follows that v ∈ X(C[u′, u])∪ Y (C(v, u]).
Since C[u′, u] is a subpath of D, we have v ∈ X(D)∪ Y (Q(v, u′)∪D). Hence, by Lemma
5, G[D ∪Q] is hamiltonian, which contradicts the maximality of C.

Figure 2: Lemma 7.
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Lemma 7. Let u1, u2 ∈ NC(H0) with u1 6= u2, and let xi be the first non-insertible vertex
along C(ui, u

′
i) for i = 1, 2. Then the following hold (see Figure 2).

(i) There exists no C-path joining v1 ∈ C(u1, x1] and v2 ∈ C(u2, x2]. In particular,
x1x2 6∈ E(G).

(ii) If there exists a C-path joining v1 ∈ C(u1, x1] and w ∈ C(v1, u2], then there exists
no C-path joining v2 ∈ C(u2, x2] and w−.

(iii) If there exist a C-path joining v1 ∈ C(u1, x1] and w1 ∈ C(v1, u2) and a C-path
joining v2 ∈ C(u2, x2] and w2 ∈ C[w1, u2), then there exists no C-path joining w−1
and w+

2 .

(iv) If for each i = 1, 2, there exists a C-path joining vi ∈ C(ui, xi] and wi ∈ C(vi, u3−i],
then there exists no C-path joining w−1 and w−2 .

Proof. Let P0 be a C-path which connects u1 and u2, and V (P0) ∩ V (H0) 6= ∅. We first
show (i) and (ii). Suppose that one of the following holds for some v1 ∈ C(u1, x1] and
some v2 ∈ C(u2, x2]: (a) There exists a C-path P1 joining v1 and v2. (b) There exist
disjoint C-paths P2 joining vl and w, and P3 joining v3−l and w− for some l = 1, 2 and
some w ∈ C(vl, u3−l]. We choose such vertices v1 and v2 so that |C[u1, v1]|+ |C[u2, v2]| is
as small as possible. Without loss of generality, we may assume that l = 1 if (b) holds.
Since NC(H0) ∩ {v1, v2} = ∅, (V (P1) ∪ V (P2) ∪ V (P3)) ∩ V (P0) = ∅. Therefore, we can
define a cycle

D :=

{
P1[v1, v2]C[v2, u1]P0[u1, u2]

←−
C [u2, v1] if (a) holds,

P2[v1, w]C[w, u2]
←−
P0[u2, u1]

←−
C [u1, v2]P3[v2, w

−]
←−
C [w−, v1] if (b) holds.

For i = 1, 2, let Qi := C(ui, vi) (possibly V (Qi) = ∅). By the choice of xi and Lemma
6, we have NC(H0) ∩Qi = ∅, and hence the following statement (1) holds. By the choice
of v1 and v2, we can obtain the following statements (2)–(5).

(1) NG(x) ∩ P0(u1, u2) = ∅ for x ∈ V (Q1 ∪Q2).

(2) NG(x) ∩ (P1(v1, v2) ∪ P2(v1, w) ∪ P3(v2, w
−)) = ∅ for x ∈ V (Q1 ∪Q2).

(3) xy /∈ E(G) for x ∈ V (Q1) and y ∈ V (Q2).

(4) I(x;C) ∩ I(y;C) = ∅ for x ∈ V (Q1) and y ∈ V (Q2).

(5) If (b) holds, then w−w 6∈ I(x;C) for x ∈ V (Q1 ∪Q2).

Let u ∈ V (Qi) for some i = 1, 2. Note that each vertex of Qi is insertible, that is, u ∈
X(C[u′i, ui])∪Y (C(u, ui]). We show that u ∈ X(D)∪Y (Qi(u, vi)∪D). If u ∈ X(C[u′i, ui])
and V (Q3−i) 6= ∅, then the statements (3) and (5) yield that u ∈ X(D). If u ∈ X(C[u′i, ui])
and V (Q3−i) = ∅, then the choice of v1 and v2 and the statement (5) yield that u ∈ X(D).
Suppose that u ∈ Y (C(u, ui]). By (3), NG(u) ∩ C(u, ui] ⊆ NG(u) ∩ (Qi(u, vi) ∪D). This
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implies that u ∈ Y (Qi(u, vi)∪D). By (1), (2) and (4), I(x;D)∩I(y;D) = ∅ for x ∈ V (Q1)
and y ∈ V (Q2). Thus, by Lemma 5, G[D ∪ Q1 ∪ Q2] is hamiltonian, which contradicts
the maximality of C.

By using a similar argument as above, we can also show (iii) and (iv). We only denote
the outline of the proof of (iii). Suppose that for some v1 ∈ C(u1, x1] and v2 ∈ C(u2, x2],
there exist disjoint C-paths P1[v1, w1], P2[v2, w2] and P3[w

−
1 , w

+
2 ] with w1 ∈ C(v1, u2) and

w2 ∈ C[w1, u2). We choose such v1 and v2 so that |C[u1, v1]| + |C[u2, v2]| is as small
as possible. Let Qi := C(ui, vi) for i = 1, 2. Then by Lemma 7 (i), xy /∈ E(G) for
x ∈ V (Q1) and y ∈ V (Q2). By the choice of v1 and v2 and Lemma 7 (ii), w1w

−
1 , w2w

+
2 /∈

I(x;C[v1, u1]) ∪ I(y;C[v2, u2]) for x ∈ V (Q1) and y ∈ V (Q2). By Lemma 7 (i) and (ii),
I(x;C[v1, u2] ∪ C[v2, u1]) ∩ I(y;C[v1, u2] ∪ C[v2, u1]) = ∅ for x ∈ V (Q1) and y ∈ V (Q2).
Hence by applying Lemma 5 as

D := P1[v1, w1]C[w1, w2]
←−
P2[w2, v2]C[v2, u1]P0[u1, u2]

←−
C [u2, w

+
2 ]
←−
P3[w

+
2 , w

−
1 ]
←−
C [w−1 , v1],

Q1 and Q2, we see that there exits a longer cycle than C, a contradiction.

3 Proof of Theorem 2

Proof of Theorem 2. The cases k = 1, k = 2 and k = 3 were shown by Fraisse and Jung
[8], by Bauer et al. [2] and by Ozeki and Yamashita [12], respectively. Therefore, we
may assume that k > 4. Let G be a graph satisfying the assumption of Theorem 2. By
Theorem 1 (iii), we may assume α(G) > κ(G) + 1. Let C be a longest cycle in G. If
C is a Hamilton cycle of G, then there is nothing to prove. Hence we may assume that
G− V (C) 6= ∅. Set H := G− V (C) and x0 ∈ V (H). Choose a longest cycle C and x0 so
that

dC(x0) is as large as possible.

Let H0 be the component of H such that x0 ∈ V (H0). Set

U := NC(H0) := {u1, u2, . . . , um}.

Note that m > κ(G) > k. Let u′i be the vertex in NC(H0) \ {ui} such that C(ui, u
′
i) ∩

NC(H0) = ∅ for each i ∈ [m], where [m] means {1, 2, . . . ,m}. By Lemma 6, there exists
a non-insertible vertex in C(ui, u

′
i). Let xi ∈ C(ui, u

′
i) be the first non-insertible vertex

along the orientation of C for each i ∈ [m], and set

X := {x1, x2, . . . , xm}.

By Lemma 7 (i) and since NH0(xi) = ∅ for i ∈ [m], we obtain the following.

Claim 8. X ∪ {x0} is an independent set, and hence |X| 6 α(G)− 1.

Define
D0 := ∅ and Di := C(ui, xi) for each i ∈ [m],
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and D :=
⋃
i∈[m]Di. By Claim 8 and the definition of U and X, we obtain

dC(x0) 6 |U | = |X| 6 α(G)− 1. (1)

Since D0 = ∅ and xi is non-insertible, we can see that

dC(xi) 6 |Di|+ α(G)− 1 for 0 6 i 6 m. (2)

By the definition of xi, NH0(xi) = ∅ for i ∈ [m]. By Lemma 7 (i), NH(xi) ∩ NH(xj) = ∅
for i, j ∈ [m] with i 6= j. Thus we obtain∑

06i6m

dH(xi) 6 |H| − 1. (3)

In this paragraph, let i and j be distinct two integers in [m], and set Ci := C[xi, uj]
and Cj := C[xj, ui]. By Lemma 7 (ii), we have NCi

(xi)
− ∩ NCi

(xj) = ∅ and NCj
(xj)

− ∩
NCj

(xi) = ∅. By Lemma 7 (i), NCi
(xi)

−∪NCi
(xj) ⊆ Ci \D, NCj

(xj)
−∪NCj

(xi) ⊆ Cj \D
and NDi

(xj) = NDj
(xi) = ∅. Thus, we obtain

dC(xi) + dC(xj) 6 |C| −
∑

h∈[m]\{i,j}

|Dh| for i, j ∈ [m] with i 6= j. (4)

We will frequently use these upper bounds (1)–(4) on degree (sum) of vertices in
X ∪ {x0}.

By replacing the labels x2 and x3 if necessary, we may assume that x1, x2 and x3 appear
in this order along the orientation of C. From this paragraph to the paragraph below
Claim 9, the indices are taken modulo 3. From now on, for each i ∈ [3], set

Ci := C[xi, ui+1]

and
Wi := {w ∈ V (Ci) : w+ ∈ NCi

(xi) and w− ∈ NCi
(xi+1)}

and W := W1 ∪W2 ∪W3 (see Figure 3 (i)). Note that W ∩ (U ∪ {x1, x2, x3}) = ∅, by the
definition of Ci and Wi and by Lemma 7 (i). Furthermore, for i ∈ [3], set

Li :=
{
xj ∈ X \ {xi+1} : NCi

(xi+1)
+ ∩Dj 6= ∅

}
and L := L1 ∪ L2 ∪ L3 (see Figure 3 (ii)). By the definition and Lemma 7 (i),

W ∩ L = ∅. (5)

In the following proof, we will set suitable three vertices as x1, x2, x3 if necessary. Note
that W and L will be defined by them in each case. Moreover, note that the following
claims which hold for x1, x2, x3, in fact, hold for any xi, xj, xk with respect to corresponding
W and L.

By Lemma 7, we can improve Claim 8 as follows:
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Figure 3: The definition of W and L.

Claim 9. X ∪W ∪ {x0} is an independent set.

We now check the upper bound of dC(x1) + dC(x2) + dC(x3). By Lemma 7(ii),
(NCi

(xi)
−∪NCi

(xi+1)
+)∩NCi

(xi+2) = ∅ for each i ∈ [3]. Clearly, NCi
(xi)

−∩NCi
(xi+1)

+ =
Wi and NCi

(xi)
− ∪ NCi

(xi+1)
+ ∪ NCi

(xi+2) ⊆ Ci ∪ {u+i+1}. By Lemma 7(i), (NCi
(xi)

− ∪
NCi

(xi+2)) ∩Dj = ∅ for each i ∈ [3] and j ∈ [m]. Note that∣∣NCi
(xi+1)

+ ∩
( ⋃
j∈[m]\{i+1}

Dj

)∣∣ = |Li|

for i ∈ [3]. Note also that L ∩ {x1, x2, x3} = ∅ and W ∩ L = ∅ by (5). Therefore, for
i ∈ [3], the following inequality holds:

dCi
(x1) + dCi

(x2) + dCi
(x3)

= |NCi
(xi)

− ∪NCi
(xi+1)

+ ∪NCi
(xi+2)|

+ |(NCi
(xi)

− ∪NCi
(xi+1)

+) ∩NCi
(xi+2)|+ |NCi

(xi)
− ∩NCi

(xi+1)
+|

6 |Ci|+ |Wi|+ 1−
∑
j∈[m]

|Ci ∩Dj|+ |Li|.

By Lemma 7 (i), we have NC(xi) ∩Dj = ∅ for i, j ∈ [m], i 6= j, and hence

dDi
(x1) + dDi

(x2) + dDi
(x3) 6 |Di|

for i ∈ [3]. Let I be a subset of {0, 1, . . . ,m} \ {1, 2, 3} and let LI := L ∩ {xi : i ∈ I}
(We will set a suitable subset I for each case.). Note that |L ∩ {xi}| − |Di| 6 0 for each
i ∈ [m] \ [3]. Thus, we deduce

dC(x1) + dC(x2) + dC(x3) 6
3∑
i=1

(|Ci|+ |Wi|+ |Li|+ 1−
∑
j∈[m]

|Ci ∩Dj|+ |Di|)

= |C|+ |W |+ |L| −
∑

i∈[m]\[3]

|Di|+ 3

6 |C|+ |W |+ |LI | −
∑
i∈I

|Di|+ 3. (6)
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Claim 10. |W ∪ L| > κ(G)− 2 > 2.

Proof. Let I be a (k − 2)-subset of {0, 1, . . . ,m} \ {1, 2, 3}, where a k-subset is a subset
of order k. Suppose that |W |+ |LI | 6 κ(G)− 3. By Claim 8, {xi : i ∈ I} ∪ {x1, x2, x3} is
independent. By (6), we obtain

dC(x1) + dC(x2) + dC(x3) 6 |C|+ κ(G)−
∑
i∈I

|Di|.

Therefore, this inequality and (2) and (3) yield that

3∑
i=1

dG(xi) +
∑
i∈I

dG(xi) 6 n+ κ(G) + (k − 2)(α(G)− 1)− 1,

a contradiction. Therefore, by (5) and since κ(G) > k > 4, we obtain |W ∪ L| =
|W |+ |L| > |W |+ |LI | > κ(G)− 2 > 2.

Claim 11. |X| > κ(G) + 1.

Proof. Let s and t be distinct two integers in [m]. By (4), we have

dC(xs) + dC(xt) 6 |C| −
∑

i∈[m]\{s,t}

|Di|.

Let I be a (k+ 1)-subset of {0, 1, . . . ,m} such that {0, s, t} ⊆ I. By Claim 8, {xi : i ∈ I}
is an independent set. By (2), we deduce∑

i∈I\{0,s,t}

dC(xi) 6
∑

i∈I\{0,s,t}

|Di|+ (k − 2)(α(G)− 1).

By (3), we obtain
∑

i∈I dH(xi) 6 |H|−1. Thus, it follows from the above three inequalities
that ∑

i∈I

dG(xi) 6 n+ (k − 2)(α(G)− 1)− 1 + dC(x0).

Since σk+1(G) > n+ κ(G) + (k − 2)(α(G)− 1), we have |X| > dC(x0) > κ(G) + 1.

Let S be a cut set with |S| = κ(G). By Claim 11, there exists an integer l ∈ [m] such
that C[ul, u

′
l)∩ S = ∅. Hence all vertices in C[ul, u

′
l) are contained in some component of

G− S. Let
V1 be the component of G− S such that C[ul, u

′
l) ⊆ V1

and
V2 := G− (S ∪ V1).

By Lemma 7 (i), we obtain

dC(xl) 6 |C ∩ (V1 ∪ S)| −
∣∣∣ ⋃
i∈[m]\{l}

Di ∩ (V1 ∪ S)
∣∣∣− |X ∩ (V1 ∪ S)|. (7)
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Claim 12. D ∪X ∪W ∪H ⊆ V1 ∪ S. In particular, x0 ∈ V1 ∪ S.

Proof. We first show that D∪X∪W ⊆ V1∪S. Suppose not. Then, for some h ∈ [m]\{l},
there exists a vertex v ∈

(
Dh ∪ {xh} ∪ (W ∩C(xh, u

′
h))
)
∩ V2. Choose v so that v = xh if

possible. Note that if v 6∈ Dh then xh 6∈ NG(v) by Lemma 7 (ii); if v ∈ Dh and xh ∈ NG(v)
then xh ∈ S by the choice of v. Since v ∈ V2, it follows from Lemma 7 (i) and (ii) that

dC(v) 6 |C ∩ (V2 ∪ S)| −
∣∣∣ ⋃
i∈[m]\{h}

Di ∩ (V2 ∪ S)
∣∣∣− |X ∩ (V2 ∪ S)|+ |{xh} ∩ S|.

Let I be a k-subset of {0, 1, . . . ,m}\{h} such that {0, l} ⊆ I. By Claim 8 and Lemma
7 (i) and (ii), {xi : i ∈ I} ∪ {v} is independent. By the above inequality and (1) and (7),
we obtain

dC(xl) + dC(v) 6 |C ∩ (V1 ∪ V2 ∪ S)|+ |C ∩ S| −
∣∣∣ ⋃
i∈[m]\{l,h}

Di ∩ (V1 ∪ V2 ∪ S)
∣∣∣

− |X ∩ (V1 ∪ V2 ∪ S)| − |X ∩ S|+ |{xh} ∩ S|

6 |C|+ |C ∩ S| −
∑

i∈[m]\{l,h}

|Di| − |X|

6 |C|+ κ(G)−
∑

i∈I\{0,l}

|Di| − dC(x0).

On the other hand, (2) yields that∑
i∈I\{0,l}

dC(xi) 6
∑

i∈I\{0,l}

|Di|+ (k − 2)(α(G)− 1).

By the above two inequalities, we deduce∑
i∈I

dC(xi) + dC(v) 6 |C|+ κ(G) + (k − 2)(α(G)− 1).

Recall that {xi : i ∈ I} ∪ {v} is independent, in particular, x0 6∈
⋃
i∈I NH(xi) ∪ NH(v).

Since NH(xi) ∩ NH(xj) = ∅ for i, j ∈ I with i 6= j and
(⋃

i∈I NH(xi)
)
∩ NH(v) = ∅ by

Lemma 7 (i) and (ii), it follows that
∑

i∈I dH(xi) + dH(v) 6 |H| − 1. Combining this
inequality with the above inequality, we get

∑
i∈I dG(xi) + dG(v) 6 n + κ(G) + (k −

2)(α(G)− 1)− 1, a contradiction.

We next show that H − H0 ⊆ V1 ∪ S. Suppose not. Then, there exists a vertex y ∈
(H−H0)∩V2. Let Hy be the component of H with y ∈ V (Hy). If NC(Hy)∩(Dh∪{xh}) 6= ∅
for some h ∈ [m] \ {l}, then let M := {0, 1, . . . ,m} \ {h} and by Lemma 7 (i),

dC(y) 6 |C ∩ (V2 ∪ S)| −
∣∣∣ ⋃
i∈[m]\{h}

Di ∩ (V2 ∪ S)
∣∣∣− |X ∩ (V2 ∪ S)|+ |{xh} ∩ S|;
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if NC(Hy) ∩ (Di ∪ {xi}) = ∅ for all i ∈ [m] \ {l}, then let M := {0, 1, . . . ,m} and by this
assumption,

dC(y) 6 |C ∩ (V2 ∪ S)| −
∣∣∣ ⋃
i∈[m]

Di ∩ (V2 ∪ S)
∣∣∣− |X ∩ (V2 ∪ S)|.

Let I be a k-subset of M such that {0, l} ⊆ I. By the same argument as above, we
obtain ∑

i∈I

dC(xi) + dC(y) 6 |C|+ |C ∩ S|+ (k − 2)(α(G)− 1).

If NC(Hy)∩(Dh∪{xh}) 6= ∅ for some h ∈ [m]\{l}, then Lemma 7 (i) and (ii) yield that(⋃
i∈I\{l}NH(xi)

)
∩ V (Hy) = ∅; otherwise, since H0 6= Hy and NC(Hy) ∩ (Di ∪ {xi}) = ∅

for all i ∈ [m] \ {l}, the same conclusion holds. In particular, y 6∈
⋃
i∈I\{l}NG(xi). Since

xl ∈ V1 and y ∈ V2, we have xly 6∈ E(G) and NH(xl) ∩ NH(y) ⊆ H ∩ S. Therefore, we
obtain {xi : i ∈ I} ∪ {y} is independent, and∑

i∈I

dH(xi) + dH(y) 6 |H|+ |H ∩ S| − |{x0, y}| = |H|+ |H ∩ S| − 2.

Combining the above two inequalities,
∑

i∈I dG(xi) + dG(y) 6 n+ κ(G) + (k− 2)(α(G)−
1)− 2, a contradiction.

We finally show thatH0 ⊆ V1∪S. Suppose not, that is, there exists a vertex y0 ∈ H0∩V2.
Then

dG(y0) 6 |U ∩ (V2 ∪ S)|+ |H0| − 1.

Since ul ∈ V1, we have H0 ∩ S 6= ∅. Note that by the above argument, X ⊆ V1 ∪ S.
Therefore, by Claim 11, |X ∩ V1| = |X| − |X ∩ S| > κ(G) + 1 − (|S| − |H0 ∩ S|) >
κ(G) + 1− (κ(G)− 1) = 2. Hence there exists a vertex xs ∈ (X ∩ V1) \ {xl}. Let I be a
k-subset of [m] such that {l, s} ⊆ I. Then {xi : i ∈ I}∪{y0} is an independent set of order
k+ 1. By Lemma 7 (i), we have NC(xl)

− ∩ (U \ {ul}) = ∅ and NC(xs)
− ∩ (U \ {us}) = ∅.

Since {xl, xs} ⊆ V1, it follows that (NC(xl) ∪NC(xs)) ∩ (U ∩ V2) = ∅. Therefore, we can
improve (4) as follows:

dC(xl) + dC(xs) 6 |C| −
∑

i∈I\{l,s}

|Di| − |U ∩ V2|.

By (2), ∑
i∈I\{l,s}

dC(xi) 6
∑

i∈I\{l,s}

|Di|+ (k − 2)(α(G)− 1).

By the definition of xi, we clearly have NH0(xi) = ∅ for i ∈ I. Hence we improve (3) as
follows: ∑

i∈I

dH(xi) 6 |H| − |H0|.

Hence, by the above four inequalities, we deduce
∑

i∈I dG(xi) + dG(y0) 6 n+ κ(G) + (k−
2)(α(G)− 1)− 1, a contradiction.
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By Claim 12,

there exists an integer r such that C(xr, u
′
r] ∩ V2 6= ∅,

say
v2 ∈ C(xr, u

′
r] ∩ V2.

Choose r and v2 so that v2 6= u′r if possible. Note that

dG(v2) 6 |V2 ∪ S| − 1. (8)

By Lemma 7 and Claim 12, we can improve (3) as follows:∑
06i6m

dH(xi) +
∑
w∈W

dH(w) 6 |H| − |{x0}| = |H ∩ (V1 ∪ S)| − 1. (9)

By Claim 12 and (1), we can improve (7) as follows:

dC(xl) 6 |C ∩ (V1 ∪ S)| −
∑

i∈[m]\{l}

|Di| − |X|

6 |C ∩ (V1 ∪ S)| −
∑

i∈[m]\{l}

|Di| − dC(x0). (10)

Claim 13. dC(x0) = |U | = |X| = α(G)− 1. In particular, NC(x0) = U .

Proof. We first show that dC(w) 6 dC(x0) for each w ∈ W . Let w ∈ W . Without loss
of generality, we may assume that w ∈ W1. Then by applying Lemma 5 as Q1 := D1,
Q2 := D2 and

D := x1C[w+, u2]P [u2, u1]
←−
C [u1, x2]

←−
C [w−, x1],

where P [u2, u1] is a C-path passing through a vertex of H0, we can obtain a cycle C ′ such
that V (C) \ {w} ⊆ V (C ′) and V (C ′) ∩ V (H0) 6= ∅ (note that (I) and (II) of Lemma 5
hold, by Lemma 7 (i) and (ii)). Note that |C ′| = |C| by the maximality of |C|. Note also
that dC′(w) > dC(w). By the choice of C and x0, we have dC′(w) 6 dC(x0), and hence
dC(w) 6 dC(x0).

We next show that dC(x0) = |U | = |X| = α(G) − 1. By (1), it suffices to prove that
dC(x0) > α(G)− 1. Suppose that dC(x0) 6 α(G)− 2. In this proof, we assume xl = x1.

We divide the proof into two cases.

Case 1. |W | > κ(G) + k − 4.

By the assumption of Case 1 and by Claim 12, we obtain

|(W ∪ {x0, x1, x2, x3}) ∩ V1| = |W ∪ {x0, x1, x2, x3}| − |(W ∪ {x0, x1, x2, x3}) ∩ S|
> (κ(G) + k − 4 + 4)− κ(G) = k.
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Let W ′ be a k-subset of (W ∪ {x0, x1, x2, x3}) ∩ V1 such that x1 ∈ W ′. Since W ′ ⊆ V1
and v2 ∈ V2, and by Claim 9, W ′ ∪ {v2} is independent. Since dC(w) 6 dC(x0) for each
w ∈ W , it follows from (10) that

dC(x1) 6 |C ∩ (V1 ∪ S)| −
∑
i∈{2,3}

|Di| − dC(w0),

where w0 ∈ W ′ \ {x1, x2, x3} (note that |W ′| = k > 4). By (1) and (2),∑
x∈W ′\{x1,w0}

dC(x) =
∑

x∈W ′∩{x2,x3}

dC(x) +
∑

w∈W ′\{w0,x1,x2,x3}

dC(w)

6
∑
i∈{2,3}

|Di|+ (k − 2)(α(G)− 1).

By the above two inequalities, we obtain∑
w∈W ′

dC(w) 6 |C ∩ (V1 ∪ S)|+ (k − 2)(α(G)− 1).

Therefore, since
∑

w∈W ′ dH(w) 6 |H ∩ (V1 ∪ S)| − 1 by (9), it follows that∑
w∈W ′

dG(w) 6 |V1 ∪ S|+ (k − 2)(α(G)− 1)− 1.

Summing this inequality and (8) yields that
∑

w∈W ′ dG(w) + dG(v2) 6 n + κ(G) + (k −
2)(α(G)− 1)− 2, a contradiction.

Case 2. |W | 6 κ(G) + k − 5.

By Claim 10, we can take a (k − 3)-subset Z of W ∪ L so that |W ∩ Z| is as large
as possible. Let W ∗ := Z ∩ W , L∗ := Z ∩ L and I∗ := {i : xi ∈ L∗}. By Claim 9,
Z ∪ {x0, x1, x2, x3} is independent. By (6), we have

dC(x1) + dC(x2) + dC(x3) 6 |C|+ |W |+ |L∗| −
∑
i∈I∗
|Di|+ 3.

On the other hand, since dC(w) 6 dC(x0) for w ∈ W and dC(x0) 6 α(G) − 2, it follows
from (2) that∑

w∈W ∗∪{x0}

dC(w) +
∑
i∈I∗

dC(xi) 6 (|W ∗|+ 1)(α(G)− 2) +
∑
i∈I∗
|Di|+ |L∗|(α(G)− 1)

= (k − 2)(α(G)− 1)− |W ∗| − 1 +
∑
i∈I∗
|Di|.

Thus, we deduce∑
v∈Z∪{x0,x1,x2,x3}

dC(v) 6 |C|+ |W |+ |L∗| − |W ∗|+ (k − 2)(α(G)− 1) + 2.
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If W ⊆ Z, then W = W ∗ and |L∗| 6 |Z| = k − 3, and hence∑
v∈Z∪{x0,x1,x2,x3}

dC(v) 6 |C|+ |L∗|+ (k − 2)(α(G)− 1) + 2

6 |C|+ (k − 3) + (k − 2)(α(G)− 1) + 2

6 |C|+ κ(G) + (k − 2)(α(G)− 1)− 1;

otherwise, L∗ = ∅ and |W ∗| = |Z| = k − 3, and so by the assumption of Case 2,∑
v∈Z∪{x0,x1,x2,x3}

dC(v) 6 |C|+ |W | − |W ∗|+ (k − 2)(α(G)− 1) + 2

6 |C|+ κ(G) + k − 5− (k − 3) + (k − 2)(α(G)− 1) + 2

= |C|+ κ(G) + (k − 2)(α(G)− 1).

Therefore, by (9), we have
∑

v∈Z∪{x0,x1,x2,x3} dG(v) 6 n+ κ(G) + (k− 2)(α(G)− 1)− 1, a
contradiction.

Claim 14. W ⊆ X.

Proof. If W \X 6= ∅, then by Claim 9, we have |X| 6 α(G)− 2, which contradicts Claim
13.

Note that W− ⊆ U by Claim 14 and Lemma 7 (i) (see Figure 4).

Figure 4: W− ⊆ U .

Claim 15. If us ∈ NC(xt) for some s, t ∈ [m], then NC(xs) ∩ C[ut, us] ⊆ U .

Proof. Suppose that there exists a vertex z ∈ NC(xs) ∩ C[ut, us] such that z 6∈ U (see
Figure 5 (i)). Since z 6∈ U , it follows from Lemma 7 (i) that z+ 6∈ X. By Claim 13,
X ∪ {x0, z+} is not an independent set. Hence z+ ∈ NC(xh) for some xh ∈ X ∪ {x0}.
Since xs is a non-insertible vertex, it follows that xh 6= xs. Let zs be the vertex in C(us, xs]
such that z ∈ NG(zs) and z 6∈ NG(v) for all v ∈ C(us, zs). By Lemma 7 (ii), we obtain
xh 6∈ C[u′s, z]. Therefore, xh ∈ C(z, us] ∪ {x0}. If xh ∈ C(z, us], then we let zh be the
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vertex in C(uh, xh] such that z+ ∈ NG(zh) and z+ 6∈ NG(v) for all v ∈ C(uh, zh). We
define the cycle C∗ as follows (see Figure 5 (ii) and (iii)):

C∗ =

{
zs
←−
C [z, xt]

←−
C [us, zh]C[z+, uh]x0

←−
C [ut, zs] if xh ∈ C(z, us],

zs
←−
C [z, xt]

←−
C [us, z

+]xh
←−
C [ut, zs] if xh = x0.

Then, by a similar argument in the proof of Lemma 7, we can obtain a longer cycle than
C by inserting all vertices of V (C \ C∗) into C∗. This contradicts that C is longest.

Figure 5: (i) A vertex z ∈ NC(xs) ∩ C[ut, us] such that z 6∈ U , (ii) the cycle C∗ in the
case xh ∈ C(z, us] and (iii) the case xh = x0.

Notice that for each vertex xi ∈ W∪L, there exists j ∈ [m]\{i} such that ui ∈ NC(xj),
and hence Claim 15 implies that NC(xi) ∩ C[uj, ui] ⊆ U .

We divide the rest of the proof into two cases.

Case 1. v2 6∈ U .

Let Y := NG(v2) ∩X, and let γ := |X| − κ(G)− 1. Note that xl 6∈ Y since xl ∈ V1.

Claim 16. |Y | > γ + 3.

Proof. Suppose that |Y | 6 γ + 2. By the assumption of Case 1 and Claim 13, we have
x0v2 6∈ E(G). Since |X ∪ {x0}| > k + γ + 2 and |Y | 6 γ + 2, there exists a set I of k
integers such that {x0, xl} ⊆ {xi : i ∈ I} ⊆ (X ∪ {x0}) \ Y . Then {xi : i ∈ I} ∪ {v2} is
independent. Therefore, it follows from (2) and (10) that∑

i∈I

dC(xi) 6 |C ∩ (V1 ∪ S)|+ (k − 2)(α(G)− 1).

Hence, by this inequality and (8) and (9), we obtain∑
i∈I

dG(xi) + dG(v2) 6 n+ κ(G) + (k − 2)(α(G)− 1)− 2,

a contradiction.

the electronic journal of combinatorics 26(4) (2019), #P4.53 18



In the rest of Case 1, we assume that l = 1. If u′r 6= u1, then let r = 2 and u3 = u′2;
otherwise, let r = 3 and let u2 be the vertex with u′2 = u3. By Claim 14, we obtain
Y ∪W ∪ L ⊆ X \ {x1}. Therefore, by Claims 10 and 16 and by the definition of γ, we
obtain

|Y ∩ (W ∪ L)| = |Y |+ |W ∪ L| − |Y ∪ (W ∪ L)|
> γ + 3 + κ(G)− 2− |X \ {x1}|
= γ + 3 + κ(G)− 2− ((κ(G) + γ + 1)− 1) = 1.

Hence there exists a vertex xh ∈ Y ∩ (W ∪ L), that is, v2 ∈ NC(xh) \ U . Note that if
xh ∈ L then by the definition of L, uh ∈ NC({x1, x2, x3}); if xh ∈ W then by the definition
of W and Claim 14, x−h = uh ∈ NC({x1, x2, x3}) (see Figure 4 and the paragraph below
Claim 15). Since C(x2, x3) ∩X = ∅ and C(x3, x1) ∩X = ∅ if r = 3, either uh ∈ NC(x1)
and uh ∈ C(x3, u1) or uh ∈ NC(x2) and uh ∈ C(x1, u2) holds (especially, if r = 3 then the
latter case holds).

If r = 2 and uh ∈ NC(x1), then v2 ∈ C[u1, uh] (see Figure 6 (i)). If r = 2 and
uh ∈ NC(x2), then v2 ∈ C[u2, uh] (see Figure 6 (ii)). If r = 3, then uh ∈ NC(x2) and
v2 ∈ C[u2, uh] (see Figure 6 (iii)). In each case, we obtain a contradiction to Claim 15.

Figure 6: (i) The case r = 2 and uh ∈ NC(x1), (ii) the case r = 2 and uh ∈ NC(x2), and
(iii) the case r = 3.

Case 2. v2 ∈ U .

We first show that NC(xi)∩ (U \ {ui}) 6= ∅ for each xi ∈ X. For xi ∈ X, let x′i and x′′i
be the successors of xi and x′i in X along the orientation of C, respectively. Let x1 = xi,
x2 = x′i and x3 = x′′i . Then by Claim 10, it follows that W ∪ L 6= ∅. By the definition of
x′i and x′′i , and Claim 14, we have W1 = W2 = ∅ (note that W ∩ {x1, x2, x3} = ∅). By the
definitions of x′i, x

′′
i , L1 and L2, we also have L1 = L2 = ∅. Thus W3 ∪L3 6= ∅. By Lemma

7 (i) and since W ∪ L ⊆ X, this implies that NC(xi) ∩ (U \ {ui}) 6= ∅.
We rename xi ∈ X for i > 1 as follows (see Figure 7 (i)): Rename an arbitrary vertex

of X as x1 (but we will re-choose x1 later). For i > 1, we rename xi+1 ∈ X so that
ui+1 ∈ NC(xi)∩ (U \{ui}) and |C[ui+1, xi)| is as small as possible. Let h be the minimum
integer such that xh+1 ∈ C(xh, x1]. Note that this choice implies h > 2. We rename h
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vertices in X as {x1, x2, . . . , xh} as above (Note that the order is in opposite direction of
C.), and m− h vertices in X \ {x1, x2, . . . , xh} as {xh+1, xh+2, . . . , xm} arbitrarily. Set

A1 := Ah+1 := C[x1, xh) and Ai := C[xi, xi−1) for 2 6 i 6 h

(see Figure 7 (ii)).

Figure 7: The definition: (i) x1, x2, . . . , xh, (ii) Ai, and (iii) Bi.

We divide the proof of Case 2 according to whether h 6 k or h > k + 1.

Subcase 2.1. h 6 k.

By the definition of {x1, . . . , xh}, we have

NAi+1
(xi) ∩ U ⊆ {ui} for 1 6 i 6 h. (11)

By Claim 15 and (11), we obtain

NC\Ai
(xi) ⊆

(
U \ (Ai ∪ Ai+1)

)
∪Di ∪ {ui} for 2 6 i 6 h. (12)

By Lemma 7 (i) and (ii), NAi
(xi)

− ∩ NAi
(x1) = ∅ for 2 6 i 6 h. By Lemma 7 (i),

we have NAi
(xi)

− ∪ NAi
(x1) ⊆ Ai \D for 3 6 i 6 h. Thus, it follows from (12) that for

3 6 i 6 h

dC(xi) 6
(
|U | − |(Ai ∪ Ai+1

)
∩ U |+ |Di|+ 1) +

(
|Ai| − |Ai ∩D| − dAi

(x1)
)
.

By Lemma 7 (i) and (11), we have NA2(x2)
− ∪ NA2(x1) ⊆

(
A2 \ (U ∪ D)

)
∪ D1 ∪ {u1}.

Thus, by (12), we have

dC(x2) 6
(
|U | − |(A2 ∪ A3) ∩ U |+ |D2|+ 1

)
+
(
|A2| − |A2 ∩ U | − |A2 ∩D|+ |D1|+ 1− dA2(x1)

)
.

Since |A1 ∩X| = |A1 ∩ U |, it follows from Lemma 7 (i) that

dA1(x1) 6 |A1| − |A1 ∩D| − |A1 ∩X| = |A1| − |A1 ∩D| − |A1 ∩ U |.
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By Claim 13, dC(x0) = |U | = α(G)− 1. Thus, since h 6 k, we obtain∑
06i6h

dC(xi) 6
∑
16i6h

|Ai|+ h|U | − 2
∑
16i6h

|Ai ∩ U |+ h+
∑
16i6h

|Di| −
∑
16i6h

|Ai ∩D|

= |C|+ (h− 2)|U |+ h+
∑
16i6h

|Di| − |D|

6 |C|+ k + (h− 2)(α(G)− 1) +
∑
16i6h

|Di| − |D|.

Let I be a (k + 1)-subset of {0, 1, . . . ,m} such that {0, 1, . . . , h} ⊆ I. By Claim 8,
{xi : i ∈ I} is independent. By the above inequality and (2), we have∑

i∈I

dC(xi) 6 |C|+ k + (k − 2)(α(G)− 1).

Hence, by (3), we obtain
∑

i∈I dG(xi) 6 |G|+κ(G)+(k−2)(α(G)−1)−1, a contradiction.

Subcase 2.2. h > k + 1.

We first set
U1 := {ui ∈ U : xi ∈ X ∩ V1}.

Choose x1 so that A2 ∩ U1 = ∅ if possible.
By the assumption of Case 2 and the choice of r and v2 (see the paragraph below the

proof of Claim 12), we have V2∩
⋃m
i=1C(xi, u

′
i) = ∅. Hence, it follows from Claims 12 and

13 that V2 ⊆ NC(x0). Since x0 ∈ V1 ∪ S by Claim 12, this implies that x0 ∈ S.

Claim 17. |X ∩ V1| 6 k − 1.

Proof. Suppose that |X ∩ V1| > k. Let I be a k-subset of [m] such that I ⊆ {i : xi ∈
X ∩ V1}. Then {xi : i ∈ I} ∪ {v2} is independent. Let s and t be distinct integers in I.
Since {xs, xt} ⊆ V1 and D ⊆ V1 ∪ S, the similar argument as that of (4) implies that

dC(xs) + dC(xt) 6 |C ∩ (V1 ∪ S)| −
∑

i∈I\{s,t}

|Di|.

By (2) and (9), we have
∑

i∈I\{s,t} dC(xi) 6
∑

i∈I\{s,t} |Di| + (k − 2)(α(G) − 1) and∑
i∈I dH(xi) 6 |H∩(V1∪S)|−1, respectively. On the other hand, we obtain dG(v2) 6 |V2∪

S|−1. By these four inequalities,
∑

i∈I dG(xi)+dG(v2) 6 n+κ(G)+(k−2)(α(G)−1)−2,
a contradiction. Therefore |X ∩ V1| 6 k − 1.

By Claim 17, we have |U1| 6 k − 1. Therefore, by the assumption of Subcase 2.2 and
the choice of x1, we obtain A2∩U1 = ∅, and hence we can take a k-subset I of {2, 3, . . . , h}
such that {i : Ai+1 ∩ U1 6= ∅} ⊆ I. Let

XI := {xi : i ∈ I}.
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By Claim 8, XI ∪ {x0} is independent. Set

B1 := Bh+1 := C(u1, uh) and Bi := C(ui, ui−1) for 2 6 i 6 h

(see Figure 7 (iii)). Then, since |C[ui, u
′
i)| > 2 for i ∈ [m] \ I, the following inequality

holds:

|C| >
∑
i∈I

|Bi ∪ {ui}|+ 2
(
|U | −

∑
i∈I

|(Bi ∪ {ui}) ∩ U |
)

=
∑
i∈I

|Bi|+ 2
(
|U | −

∑
i∈I

|Bi ∩ U |
)
− k. (13)

By the definition of {x1, . . . , xh}, we have NBi+1
(xi)∩U = ∅ for 1 6 i 6 h. If xi ∈ XI ∩S,

then it follows from Lemma 7 (i) and Claim 15 that

dC(xi) 6
(
|U | − |Bi ∩ U | − |Bi+1 ∩ U |

)
+
(
|Bi| − |{xi}| − |(Bi ∩ U)+|

)
= |U |+ |Bi| − 2|Bi ∩ U | − |Bi+1 ∩ U | − 1.

If xi ∈ XI ∩ V1, then by Lemma 7 (i) and Claim 15,

dC(xi) 6
(
|U | − |Bi ∩ U | − |Bi+1 ∩ U | − |(U ∩ V2) \ (Bi ∪Bi+1)|

)
+
(
|Bi| − |{xi}| − |(Bi ∩ U)+| − |(U ∩ V2) ∩Bi|

)
= |U |+ |Bi| − 2|Bi ∩ U | − |Bi+1 ∩ U | − 1− |(U ∩ V2) \Bi+1|.

Since U ∩ V2 6= ∅, we obtain |(U ∩ V2) \Bi+1| > 1 for all i ∈ I except for at most one, and
hence ∑

i∈I :xi∈XI∩V1

|(U ∩ V2) \Bi+1| > |XI ∩ V1| − 1.

By the choice of I, we have

|U1| =
∑
i∈I

|Ai+1 ∩ U1| =
∑
i∈I

|Bi+1 ∩ U1|+ |XI ∩ V1| 6
∑
i∈I

|Bi+1 ∩ U |+ |XI ∩ V1|.

On the other hand, since x0 ∈ S, it follows from Claim 12 that

|U1| = |X ∩ V1| = |X \ S| > |X| − (κ(G)− 1),

and hance ∑
i∈I

|Bi+1 ∩ U |+ |XI ∩ V1| > |U1| > |X| − (κ(G)− 1). (14)

Moreover, by Claim 13, dC(x0) = |U | = |X| = α(G)− 1. Thus, we deduce∑
i∈I∪{0}

dC(xi) 6 (k + 1)|U |+
∑
i∈I

|Bi| − 2
∑
i∈I

|Bi ∩ U |
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−
∑
i∈I

|Bi+1 ∩ U | − k − (|XI ∩ V1| − 1)

=
(∑
i∈I

|Bi|+ 2
(
|U | −

∑
i∈I

|Bi ∩ U |
)
− k
)

+ (k − 1)|U |

−
(∑
i∈I

|Bi+1 ∩ U |+ |XI ∩ V1|
)

+ 1,

and hence, by (13) and (14),∑
i∈I∪{0}

dC(xi) 6 |C|+ (k − 1)|U | − (|X| − κ(G) + 1) + 1

= |C|+ κ(G) + (k − 2)(α(G)− 1).

Hence, by (3), we obtain
∑

i∈I∪{0} dG(xi) 6 |G|+ κ(G) + (k− 2)(α(G)− 1)− 1, a contra-
diction.
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