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Abstract

We introduce a new positional game called ‘Toucher-Isolator’, which is a quan-
titative version of a Maker-Breaker type game. The playing board is the set of
edges of a given graph G, and the two players, Toucher and Isolator, claim edges
alternately. The aim of Toucher is to ‘touch’ as many vertices as possible (i.e. to
maximise the number of vertices that are incident to at least one of her chosen
edges), and the aim of Isolator is to minimise the number of vertices that are so
touched.

We analyse the number of untouched vertices u(G) at the end of the game when
both Toucher and Isolator play optimally, obtaining results both for general graphs
and for particularly interesting classes of graphs, such as cycles, paths, trees, and
k-regular graphs. We also provide tight examples.
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1 Introduction

1.1 Background and motivation

One of the most fundamental and enjoyable mathematical activities is to play and analyse
games, ranging from simple examples, such as snakes and ladders or noughts and crosses,
to much more complex games like chess and bridge.

Many of the most natural and interesting games to play involve pure skill, perfect
information, and a sequential order of play. These are known formally as ‘combinatorial’
games, see e.g. [5], and popular examples include Connect Four, Hex, noughts and crosses,
draughts, chess, and go.

Often, a combinatorial game might consist of two players alternately ‘claiming’ ele-
ments of the playing board (e.g. noughts and crosses, but not chess) with the intention of
forming specific winning sets, and such games are called ‘positional’ combinatorial games
(for a comprehensive study, see [4] or [11]). In particular, much recent research has in-
volved positional games in which the board is the set of edges of a graph, and where the
aim is to claim edges in order to form subgraphs with particular properties.

A pioneering paper in this area was that of Chvátal and Erdős [6], in which the primary
target was to form a spanning tree. Subsequent work has then also involved other standard
graph structures and properties, such as cliques [2, 9], perfect matchings [16, 13], Hamilton
cycles [13, 15], planarity [12], and given minimum degree [10]. Part of the appeal of these
games is that there are several different versions. Sometimes, in the so-called strong
games, both players aim to be the first to form a winning set (c.f. three-in-a-row in a
game of noughts and crosses). In others, only Player 1 tries to obtain such a set, and
Player 2 simply seeks to prevent her from doing so.

This latter class of games are known as ‘Maker-Breaker’ positional games. A notable
result here is the Erdős-Selfridge Theorem [8], which establishes a simple but general
condition for the existence of a winning strategy for Breaker in a wide class of such
problems. A quantitative generalisation of this format then involves games in which
Player 1 aims to form as many winnning sets as possible, and Player 2 tries to prevent
this (i.e. Player 2 seeks to minimise the number of winning sets formed by Player 1).

In this paper, we introduce a new quantitative version of a Maker-Breaker style po-
sitional game, which we call the ‘Toucher-Isolator’ game. Here, the playing board is the
set of edges of a given graph, the two players claim edges alternately, the aim of Player
1 (Toucher) is to ‘touch’ as many vertices as possible (i.e. to maximise the number of
vertices that are incident to at least one of her edges), and the aim of Player 2 (Isolator)
is to minimise the number of vertices that are touched by Toucher (i.e. to claim all edges
incident to a vertex, and do so for as many vertices as possible).

This problem is thus simple to formulate and seems very natural, with connections
to other interesting games, such as claiming spanning subgraphs, matchings, etc. In
particular, we note that it is related to the well-studied Maker-Breaker vertex isolation
game (introduced by Chvátal and Erdős [6]), where Maker’s goal is to claim all edges
incident to a vertex, and it is hence also related to the positive min-degree game (see [1,
11, 14]), where Maker’s goal is to claim at least one edge of every vertex.
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Our Toucher-Isolator game can be thought of as a quantitative version of these games,
where Toucher now wants to claim at least one edge on as many vertices as possible,
while Isolator aims to isolate as many vertices as possible. However, the game has never
previously been investigated, and so there is a vast amount of unexplored territory here,
with many exciting questions. What are the best strategies for Toucher and Isolator?
How do the results differ depending on the type of graph chosen? Which graphs provide
the most interesting examples?

1.2 Results

Given a graph G = (V (G), E(G)), we use u(G) to denote the number of untouched vertices
at the end of the game when both Toucher and Isolator play optimally. We obtain both
upper and lower bounds on u(G), some of which are applicable to all graphs and some
of which are specific to particular classes of graphs (e.g. cycles or trees). For every one
of these, we also demonstrate that the bounds are tight by providing examples of graphs
which satisfy them exactly (in most cases, we in fact give a family of tight examples to
show that there are infinitely many values of n = |V (G)| for which equality holds). We
shall now present all of these results, the proofs of which will be given later.

Clearly, one of the key parameters in our game will be the degrees of the vertices
(although, as we shall observe later, the degree sequence alone does not fully determine
the value of u(G)). In our bounds for general G, perhaps the most significant is the upper
bound of Theorem 1. Here, we find that it suffices just to consider the vertices with degree
at most three (we again re-iterate that all our bounds are tight).

Theorem 1. For any graph G, we have

d0 +
1

2
d1 − 1 6 u(G) 6 d0 +

3

4
d1 +

1

2
d2 +

1

4
d3,

where di denotes the number of vertices with degree exactly i.

A notable consequence of this result is that there will be no untouched vertices for any
graph with minimum degree at least four. We shall later see (in Theorem 7) that this is
not always true for graphs with minimum degree three.

For certain degree sequences, the bounds given in Theorem 1 can be improved by our
next result.

Theorem 2. For any graph G, we have∑
v∈V (G)

2−d(v) − |E(G)|+ 7

8
6 u(G) 6

∑
v∈V (G)

2−d(v),

where d(v) denotes the degree of vertex v.
Equivalently, we have∑

i>0

2−idi −
|E(G)|+ 7

8
6 u(G) 6

∑
i>0

2−idi,

where di again denotes the number of vertices with degree exactly i.
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Note also that |E(G)| will be small if the degrees are small, and so Theorem 2 then
provides a fairly narrow interval for the value of u(G) (observe that Theorem 1 already
provides a narrow interval if the degrees are large).

Moving on from these general bounds, a natural particular graph to consider is the
cycle Cn on n vertices. It is fascinating to play the game on such a graph and to try
to determine the optimal strategies and the proportion of untouched vertices. We again
obtain tight upper and lower bounds, both for Cn and for the closely related game on Pn

(the path on n vertices).

Theorem 3. For all n, we have

3

16
(n− 3) 6 u(Cn) 6

n

4
.

Theorem 4. For all n, we have

3

16
(n− 2) 6 u(Pn) 6

n+ 1

4
.

We also extend the game to general 2-regular graphs (i.e. unions of disjoint cycles).
Our main achievement here is to obtain a tight lower bound of u(G) > n−3

6
, which (by a

comparison with the lower bound of Theorem 3) also demonstrates that u(G) is not solely
determined by the degree sequence.

Theorem 5. For any 2-regular graph G with n vertices, we have

n− 3

6
6 u(G) 6

n

4
.

An interesting and natural extension of the game on paths is obtained by considering
general trees, although this additional freedom in the structure can make the problem
significantly more challenging. Here, we derive the following tight bounds.

Theorem 6. For any tree T with n > 2 vertices, we have

n+ 2

8
6 u(T ) 6

n− 1

2
.

As mentioned, it follows from Theorem 1 that there will be no untouched vertices in
k-regular graphs if k > 4, and it is natural to consider what happens in the 3-regular case.
We observe that there are 3-regular graphs for which u(G) = 0, and one might expect that
this could be true for all such graphs. However, we in fact manage to construct a class of
examples for which a constant proportion of vertices remain out of Toucher’s reach.

Theorem 7. For all even n > 4, there exists a 3-regular graph G with n vertices satisfying

u(G) >
⌊ n

24

⌋
.
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1.3 Techniques and outline of the paper

One of our key techniques is to analyse an appropriate ‘Danger’ function, building on an
idea first introduced by Erdős and Selfridge [8] to prove a general criterion for Breaker’s
win, the celebrated Erdős-Selfridge Criterion. The same approach was later adapted by
Beck [3] for Maker, resulting in the so-called Weak Win Criterion. In the quantitative
context of our Toucher-Isolator game, it is still useful to define the Danger function in a
similar manner.

Definition 8. We shall say that a vertex has Danger 0 if any of its edges have been taken
by Toucher, and Danger 2−k if all but k of its edges have been taken by Isolator and the
remaining k edges have not yet been taken by anyone (note that this includes the case
when k = 0, and so a vertex has Danger 1 if all of its edges have been taken by Isolator).

Note that the Danger function can be interpreted as the probability that a vertex will
be untouched if all of its remaining edges are assigned to Toucher and Isolator indepen-
dently and uniformly at random.

An equivalent definition is also obtained if we update the graph G throughout the
game by removing the edges claimed by Isolator, keep track of the vertices U(G) ⊆ V (G)
untouched by Toucher, and define the total Danger to be

∑
v∈U(G) 2−d(v).

The following observation will be key.

Observation 9. The total Danger at the start of the game is
∑

v 2−d(v), and the total
Danger at the end of the game is precisely the number of untouched vertices.

Hence, bounds for u(G) can sometimes be obtained by investigating how the total
Danger changes with each move. Here, a further observation is crucial.

Observation 10. Whenever Toucher takes an edge, the total Danger will decrease by
exactly the sum of the Dangers of the two vertices incident to this edge (since both of
these Dangers will fall to zero).

Similarly, whenever Isolator takes an edge, the total Danger will increase by exactly the
sum of the Dangers of the two vertices incident to this edge (since both of these Dangers
will double).

Another standard method that will be used throughout is ‘partition of the board’.
Here, we divide the graph up into various segments, we focus on one particular player,
and we try to optimise that player’s strategy subject to the constraint that he/she must
always take an edge from the same segment that his/her opponent has just played in
(this then provides bounds for the overall optimum strategy, where there are no such
constraints). The main advantage of this idea is that it enables us to split the whole
graph into simpler pieces that can be analysed more easily. However, we must choose the
division of the graph in a rather careful manner in order to achieve substantial results.

The remainder of the paper is structured as follows: in Section 2, we prove the general
bounds applicable to all graphs, as stated in Theorem 1 and Theorem 2; in Section 3, we
focus on the case when the graph is a cycle, proving Theorem 3 (the proof of Theorem 4
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on paths is very similar, and so is left to the appendix); in Section 4, we generalise this
to any 2-regular graph, obtaining Theorem 5; in Section 5, we investigate trees, proving
Theorem 6; in Section 6, we derive results for 3-regular graphs, including Theorem 7; and
in Section 7, we discuss some interesting remaining questions.

2 General bounds

As mentioned, in this section we shall now derive general bounds applicable to any graph
G, proving Theorem 1 and Theorem 2. In each case, we shall also observe that there are
straightforward tight examples for infinitely many values of |V (G)|.

We shall start with the proof of the upper bound of Theorem 1, followed by tight
examples, and then give the proof of the corresponding lower bound, again followed by
tight examples. We shall then use the same pattern for the proof of Theorem 2 (and also
for future sections).

We begin with perhaps the most interesting proof of this section, which uses a variant
of the partition of the board strategy involving the pairing of edges.

Proof of upper bound of Theorem 1. We will provide Toucher with a pairing strategy to
touch enough vertices for the statement to hold. To do this, we will define a collection
of disjoint pairs of edges, and Toucher’s strategy will be to wait (and play arbitrarily)
until Isolator claims an edge within a pair, and then immediately respond by claiming
the other edge (unless she happens to have already claimed it with one of her previous
arbitrary moves, in which case she can again play arbitrarily). This way, Toucher will
certainly claim at least one edge in every pair.

We start by adding an auxiliary vertex and connecting it to all odd degree vertices of
G. This will create an even graph, and so each of its components has an Eulerian tour.
For each of these Eulerian tours, we then arbitrarily choose one of two orientations. Once
the auxiliary vertex is removed, we are thus left with an orientation of G.

Let Vi be the set of vertices with degree i, and let V
(j)
i be the set of vertices with

degree i and j incoming edges. We shall use d
(j)
i to denote

∣∣∣V (j)
i

∣∣∣, and we note that

|Vi| = di. Also, observe that for even i we have Vi = V
( i
2)

i , while for odd i we have

Vi = V
( i+1

2 )
i ∪ V ( i−1

2 )
i .

For each vertex that has at least two incoming edges, we may choose two such edges
arbitrarily and pair them. Note that we can do this for all vertices in V

(2)
3 ∪ (∪i>4Vi).

Next, for all the vertices in V
(1)
1 ∪ V2 ∪ V (1)

3 (observe that these each have exactly
one incoming edge), let us collect all incoming edges and pair them up arbitrarily. If∣∣∣V (1)

1 ∪ V2 ∪ V (1)
3

∣∣∣ is odd, then there will be one unpaired edge here, which Toucher should

claim with her very first move of the game (before Isolator has made any moves).
Note that by treating only the incoming edges at every vertex, we ensure that all our

edge pairs are pairwise disjoint.
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Let us now consider the number of vertices that Toucher will touch following this
pairing strategy. She certainly touches all vertices in V

(2)
3 ∪ (∪i>4Vi) and half (rounded

up) of the vertices in V
(1)
1 ∪ V2 ∪ V (1)

3 , so counting those that remain then gives

u(G) 6 d0 + d
(0)
1 +

d
(1)
1

2
+
d2
2

+
d
(1)
3

2
. (1)

Finally, note that if we were to use the same orientation of G, but pair the outgoing
edges instead of the incoming edges, then exactly the same analysis gives

u(G) 6 d0 + d
(1)
1 +

d
(0)
1

2
+
d2
2

+
d
(0)
3

2
. (2)

Summing (1) and (2) (and dividing by two) then completes the proof.

For this bound, it is trivial to note the following tight examples.

Proposition 11. Any graph with minimum degree at least four will provide a tight ex-
ample to the upper bound in Theorem 1.

Before we move on to the proof of Theorem 2, let us briefly give the proof of the lower
bound of Theorem 1, and then also provide corresponding tight examples.

Proof of lower bound of Theorem 1. Let X denote the set of edges whose endpoints both
have degree 1, and let Y denote the set of edges with exactly one endpoint of degree 1.
Note that d1 = |Y |+ 2|X|.

By giving priority to the edges in X, followed by the edges in Y , Isolator will be

guaranteed to take at least
⌊
|X|+|Y |

2

⌋
of these edges in total, including at least

⌊
|X|
2

⌋
of

the edges in X.
Hence,

u(G) > d0 +

⌊
|X|+ |Y |

2

⌋
+

⌊
|X|
2

⌋
> d0 +

|X|+ |Y |
2

− 1

2
+
|X|
2
− 1

2

= d0 +
d1
2
− 1.

Proposition 12. Any graph consisting of an odd number of K2 components will provide
a tight example to the lower bound in Theorem 1.

We may now proceed with the proof of Theorem 2, again starting with the upper
bound. This is obtained via an analysis of the Danger function.

Proof of upper bound of Theorem 2. Our proof is an extension of that of the acclaimed
Erdős-Selfridge Theorem [8], which establishes conditions under which a player can obtain
a ‘winning set’ of edges. In the context of our game, we can consider Isolator as having
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obtained such a winning set if he has claimed all of the edges incident to a vertex (thus
isolating it).

However, for our purposes, it is crucial that we now also find a way to keep track of
the number of these winning sets. Here, the Danger function will play a vital role, with
the key observation being that the total Danger at the end of the game is precisely the
number of untouched vertices (see Observation 9).

Let us begin by recalling (from Observation 10) that whenever Toucher takes an edge,
the Dangers of the two incident vertices will both fall to zero, and that the total Danger
will hence decrease by their sum. By contrast, whenever Isolator takes an edge, the total
Danger will increase by exactly the sum of the Dangers of the two incident vertices.

Hence, let us consider the strategy where Toucher always chooses the edge which
maximises the sum of the Dangers of the two vertices incident to it. By this maximality
condition (and Observation 10), it then follows that in each pair of moves (one from
Toucher and then one from Isolator), the total Danger can never increase.

Note furthermore that if |E(G)| is odd, then the game will end with one final (unpaired)
move by Toucher, which also cannot increase the total Danger.

Thus, recalling from Observation 9 that the total Danger at the start of the game is∑
v 2−d(v), and again remembering that the total Danger at the end of the game is exactly

the number of untouched vertices, we hence obtain the desired bound.

Again, it is simple to identify tight examples.

Proposition 13. Any graph consisting of an even number of K2 components will provide
a tight example to the upper bound in Theorem 2.

Remark 14. Note that the upper bound of Theorem 2 will be better than the upper bound
of Theorem 1 if ∑

i>4

23−idi < 2d1 + 2d2 + d3.

Remark 15. In some cases, it is possible to combine the Danger function technique used
to prove the upper bound of Theorem 2 with the pairing approach used to prove the
upper bound of Theorem 1. In particular, if our graph G contains an induced subgraph
H with δ(H) > 4, then Toucher could employ a pairing strategy on E(H) to make sure
that all vertices in V (H) are touched, while still having full liberty when playing on
the edges of E(G) \ E(H), with the aim of maximising the number of touched vertices.
This would automatically improve the upper bound of Theorem 2 from

∑
v∈V (G) 2−d(v)

to
∑

v∈V (G)\V (H) 2−d(v). Note furthermore that such a graph H must exist as soon as

|E(G)| > 3|V (G)| (see [7]).
A similar approach to improving the upper bound is to repeatedly look for individual

vertices that can be taken care of by a pair of edges. In particular, if there is a vertex v
with neighbours u1 and u2 such that d(v) < d(u1) − 1 and d(v) < d(u2), then we could
pair the edges vu1 and vu2 (thus taking care of touching v), and then use the Danger
function technique on the edge set E(G) \ {vu1, vu2}. Thus, the total Danger at the
start of the game (and hence our upper bound for u(G) in Theorem 2) would decrease by
2−d(v) −

(
2−d(u1) + 2−d(u2)

)
.
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Our final bound of this section is obtained by a proof which again uses an adaptation
of the Danger function approach of Erdős and Selfridge [8] and Beck [3]. Our arguments
here will mirror those for the upper bound, looking at the total Danger from the point of
view of Isolator instead of Toucher.

Proof of lower bound of Theorem 2. Note, by Observation 10, that the total Danger will
decrease by at most 1 with Toucher’s first move, since the two vertices incident to the
chosen edge can only have had Danger at most 1

2
each.

Suppose that Isolator then chooses the edge that maximises the sum of the Dangers
of the two vertices incident to it. Let us suppose that this sum is r, say, and hence that
Isolator’s move causes the total Danger to increase by r.

If Toucher’s response is to take an edge that is disjoint to Isolator’s choice, then the
total Danger will decrease back by at most r, by the maximality condition.

If Toucher’s edge instead shares a common vertex with Isolator’s edge, then the total
Danger will still only decrease by at most r + 1

4
, since the Danger of this common vertex

can only have increased by at most 1
4

(from 1
4

to 1
2
) as a result of Isolator’s move.

Hence, in this pair of moves, one from Isolator and then one from Toucher, the total
Danger can only have decreased by at most 1

4
altogether.

We can consider the |E(G)| moves of the game as Toucher’s first move (which we have

seen decreases the total Danger by at most 1), followed by
⌊
|E(G)|−1

2

⌋
subsequent pairs

of moves (which we have seen each decrease the total Danger by at most 1
4

if Isolator
always uses the given strategy), followed possibly (if |E(G)| is even) by one final move
from Isolator (which cannot decrease the total Danger).

Thus, if Isolator uses the given strategy, then the total Danger at the end of the game
(and hence the number of untouched vertices, by Observation 9) will be at least∑

v∈V (G)

2−d(v) − 1− 1

4

⌊
|E(G)| − 1

2

⌋
.

Proposition 16. Any graph consisting of P3 components plus exactly one P2 component
will provide a tight example to the lower bound in Theorem 2.

Proof. Let x denote the number of P3 components in such a graph, and note that we then
have |E(G)| = 2x+ 1, d1 = 2x+ 2, d2 = x, and di = 0 for i > 2.

Hence, ∑
v∈V (G)

2−d(v) − |E(G)|+ 7

8
=

1

2
(2x+ 2) +

1

4
x− (2x+ 1) + 7

8
= x.

Toucher can ensure that the number of untouched vertices is only x by taking the
only edge in the P2 component in her first move, and then always immediately taking the
remaining edge from any P3 component on which Isolator plays.
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Remark 17. Note that the lower bound of Theorem 2 will be better than the lower bound
of Theorem 1 if

|E(G)| < 1 +
∑
i>2

23−idi.

As 2|E(G)| =
∑

i>1 idi, this will occur if d2 is sufficiently large (e.g. consider a path
or a cycle, in which case the lower bound of Theorem 1 is ineffective).

Remark 18. Although the bounds given in this section involve only the degrees of the
vertices, we shall see examples later (in Remark 30 and Section 6) which show that u(G)
is not determined by the degree sequence alone. It would be interesting to know of any
particular properties or parameters of the graph that can tighten the interval in which
u(G) must be located.

3 Cycles

In this section, we consider the specific case when our graph is a cycle. We shall start by
applying Theorem 2 to immediately obtain the upper bound in Theorem 3, and then the
majority of this section will be devoted to deriving the lower bound.

Proof of upper bound of Theorem 3. This follows from Theorem 2.

Proposition 19. The graph C4 provides a tight example to the upper bound in Theorem 3.

Proof. After Toucher’s first move, Isolator can take the opposite edge (and then either of
the two remaining edges with his second move).

We may now start to work towards the lower bound in Theorem 3. Note that Theo-
rem 2 immediately provides a lower bound of around n

8
, but we shall aim to do significantly

better. The key result here is Lemma 20, which will enable Isolator to guarantee three
untouched vertices from every sixteen edges.

Lemma 20. Isolator can guarantee that the number of untouched internal vertices in P17

will be at least three.

Proof. The proof will consist of dividing up the sixteen edges of P17 into various segments.
Consequently, it will be useful to first establish two statements concerning segments of
length three and five, respectively.

Claim 21. If it is Isolator’s move and there is a segment consisting of three consecutive
free edges, then he can isolate an internal vertex from this segment.

Proof. Let the edges of this segment be denoted by ea, eb, ec. Isolator claims the edge eb.
In the following move, Toucher cannot claim both ea and ec, so one of them is free for
Isolator to claim in his following move. Hence, he can isolate one internal vertex.

Claim 22. If it is Isolator’s move and there is a segment consisting of five consecutive
free edges ea, eb, ec, ed, ef , then he can guarantee that at least one of the following will
occur:
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(a) after Isolator and Toucher have each had two moves, one internal vertex from this
segment will now be isolated and neither of Toucher’s moves will have taken place
outside this segment;

(b) after Isolator and Toucher have each had three moves, two internal vertices from
this segment will now be isolated and exactly one of Toucher’s moves will have taken
place outside this segment;

(c) after Isolator and Toucher have each had three moves, two internal vertices from
this segment will now be isolated, exactly two of Toucher’s moves will have taken
place outside this segment, and neither ea nor ef will have been claimed by Toucher;

(d) after Isolator has had four moves and Toucher has had three moves, three internal
vertices from this segment will now be isolated.

Proof. Let Isolator claim the central edge ec with his first move. After this, let Isolator
then use the strategy of trying to extend this edge into a string of consecutive edges
(working solely within this segment), by always choosing an edge immediately adjacent
to his current string until this is no longer possible.

At this point, it must then be the case that the ‘left-most’ edge of Isolator’s string
is either ea or is adjacent to an edge of Toucher, and similarly the ‘right-most’ edge of
Isolator’s string is either ef or is adjacent to an edge of Toucher. Note also that the string
must certainly contain at least two edges.

If Isolator’s string contains exactly two edges, then these must either be eb and ec or
ec and ed, and it must be that Toucher has claimed the edges to either side of this string
with her two moves. Hence, we have (a).

If Isolator’s string contains exactly three edges, then observe that Toucher must have
claimed at least one of the other two edges in this segment. If (at the end of Toucher’s
third move) Toucher has in fact claimed both of these other two edges, then we have (b).
If (at the end of Toucher’s third move) Toucher has only claimed one of these other two
edges, then it can only be that this edge is eb (and the string is ec, ed, ef ) or ed (and the
string is ea, eb, ec), so we have (c).

Finally, if Isolator’s string contains at least four edges, then we have (d).

We now prove the lemma. We shall denote the sixteen edges of P17 by {e1, e2, . . . , e16},
and wlog we may suppose that Toucher claims one of the edges in {e1, e2, . . . , e8} with
her first move. We differentiate between the following cases.

Case 1: Toucher claimed one of the edges {e1, e2, e3}.
Isolator splits the free edges {e4, e5, . . . , e16} into three sequences of consecutive edges

S1 = {e4, e5, . . . , e8}, S2 = {e9, e10, . . . , e13}, and S3 = {e14, e15, e16}. Isolator plays first
in S1.

If Claim 22 (a) is true for S1, then Isolator isolates one internal vertex in S1, and the
edges in S2 and S3 are all still free. So Isolator then plays in S2. By Claim 22, either he
can isolate two more internal vertices there and is done, or he isolates one internal vertex
in S2 and all edges in S3 are still free, so by Claim 21 he can also isolate one internal
vertex in S3.
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If Claim 22 (b) or (c) are true for S1, then Isolator can isolate two internal vertices
in S1, and at most two of the edges in {e8} ∪ S2 ∪ S3 can have been claimed by Toucher.
Hence, there must exist a segment of three consecutive edges not claimed by Toucher
among the nine edges in {e8} ∪ S2 ∪ S3 = {e8, e9, . . . , e16}, in which case Isolator can
isolate another internal vertex there (by applying Claim 21).

If Claim 22 (d) is true for S1, then Isolator can isolate three internal vertices in S1.

Case 2: Toucher claimed one of the edges in {e4, e5}.
Isolator splits the free edges {e1, e2, e3, e6, e7, . . . , e16} into three sequences of consecu-

tive edges S1 = {e6, e7, . . . , e10}, S2 = {e11, e12, . . . , e16}, and S3 = {e1, e2, e3} (note that
this time |S2| = 6, but S2 and S3 are no longer adjacent). Isolator again plays first in S1.

If Claim 22 (a) or (d) are true for S1, then the proof is exactly the same as with Case 1.
If Claim 22 (b) or (c) hold for S1, then Isolator can isolate two internal vertices in S1,

and at most two of the edges in S2∪S3 can have been claimed by Toucher. Since |S2| = 6
and |S3| = 3, there must then exist a segment of three consecutive free edges in either S2

or S3, in which case we can apply Claim 21 and Isolator is done.

Case 3: Toucher claimed the edge e6.
Isolator splits the free edges into three sequences of consecutive edges S1 = {e1, e2, . . . ,

e5}, S2 = {e11, e12, . . . , e16}, and S3 = {e7, e8, e9, e10}. Note that we again have |S1| = 5,
|S2| = 6, and |S3| > 3, so we may apply exactly the same proof as with Case 2.

Case 4: Toucher claimed one of the edges in {e7, e8}.
Isolator splits the free edges into three sequences of consecutive edges S1 = {e9, e10, . . . ,

e13}, S2 = {e1, e2, . . . , e6}, and S3 = {e14, e15, e16}. Again, we have |S1| = 5, |S2| = 6, and
|S3| > 3, so we may again apply exactly the same proof as with Cases 2 and 3.

We may now prove the lower bound from Theorem 3. Since Lemma 20 already guar-
antees three untouched vertices for every sixteen edges, the main substance of the proof
is to deal satisfactorily with the ‘leftover’ edges when n is not exactly divisible by 16.

Proof of lower bound of Theorem 3. After Toucher has made her first move, let Isolator
then partition the n edges into segments of 16 consecutive edges, together with one ‘left-
over’ segment of 1 to 16 consecutive edges, so that the edge claimed by Toucher is the
last edge in the leftover segment.

Let Isolator then use the strategy of always responding in the same segment in which
Toucher played her previous move. By Lemma 20, Isolator can thus guarantee that the
number of untouched internal vertices in each 16-edge segment will be at least three.

Hence, if we use k to denote the number of edges in the leftover segment, it suffices to
show that Isolator can also guarantee isolating at least 3

16
(k − 3) internal vertices here.

If k 6 3, then there is nothing to prove.
If k ∈ {4, 5, 6, 7, 8}, then we need to show that Isolator can isolate at least one internal

vertex. Since Toucher’s edge is the last one in this segment, there exist at least three
consecutive free edges, so we may simply apply Claim 21.
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If k ∈ {9, 10, 11, 12, 13}, then we need to show that Isolator can isolate at least two
internal vertices. Since Toucher’s edge is the last one in this segment, there exist at least
eight consecutive free edges, so we may split these into two sequences of consecutive edges
S1 and S2 with |S1| = 5 and |S2| = 3. Isolator then plays first in S1. By Claim 22, either
he can isolate two internal vertices in S1 and is done, or he isolates one internal vertex in
S1 and all edges in S2 are still free, so by Claim 21 he can then also isolate one internal
vertex in S2.

If k ∈ {14, 15, 16}, then we need to show that Isolator can isolate at least three
internal vertices. To achieve this, we may split the thirteen consecutive free edges into
three adjacent sequences of consecutive edges S1, S2, and S3 with |S1| = |S2| = 5 and
|S3| = 3, and argue exactly as in Case 1 of Lemma 20.

Proposition 23. The graph C3 provides a tight example to the lower bound in Theorem 3.

In the appendix, we use similar arguments to this section to prove Theorem 4 on paths.

4 2-regular graphs

In this section, we now generalise our playing board from a cycle to a collection of disjoint
cycles, i.e. any 2-regular graph. Again, we shall start by applying Theorem 2 to immedi-
ately obtain the upper bound in Theorem 5, and then we will work towards deriving the
lower bound.

Proof of upper bound of Theorem 5. This follows from Theorem 2.

Proposition 24. Any graph consisting of C4 components will provide a tight example to
the upper bound in Theorem 5.

Proof. Note that Isolator can certainly isolate one vertex from each such component by
always immediately taking the opposite edge in any C4 on which Toucher plays and then
taking the fourth edge as soon as Toucher takes the third edge.

The proof of the lower bound in Theorem 5 will involve treating the components
differently depending on their size modulo 6, so we shall find it useful to first prove three
lemmas related to this. We begin by applying Theorem 1 to obtain a result specific to
the case when a cycle has length k ∈ {4, 5, 6} mod 6.

Lemma 25. Let k ∈ {4, 5, 6} mod 6. Then

u(Ck) >
k

6
.

Proof. Let us write k as 6r + s, where s ∈ {4, 5, 6}. Then, by Theorem 3, we have

u(Ck) >
3

16
(k − 3) =

3

16
(6r + s− 3) >

3

16
(6r + 1) > r.

Since u(Ck) must be an integer, we then in fact have u(Ck) > r + 1 > k
6
, and we are

done.
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Remark 26. It is also relatively simple to give a self-contained proof of this result, rather
than using Theorem 3.

Note that the bound of Lemma 25 is certainly not valid for all k (e.g. consider C3).
Hence, in the next two lemmas we shall deal separately with components of length k ∈
{1, 2, 3} mod 6. We shall find it extremely helpful to consider the case when Isolator
allows Toucher to have the first two moves in such a component.

Lemma 27. Let k ∈ {1, 2, 3} mod 6. Then Isolator can guarantee that the number of
untouched vertices in Ck will be at least k−3

6
even if Toucher has the first two moves (and

Isolator and Toucher play alternately after this).

Proof. Wlog (since we have a cycle), Toucher makes her first move in edge 1.
For every 6-edge section after this (i.e. edges 2–7, edges 8–13, etc.), we can consider

the six edges as two 3-edge segments (e.g. edges 2–7 will be considered as two 3-edge
segments 2–4 and 5–7).

Whenever Toucher plays in one of these 6-edge sections for the first time, Isolator can
then immediately take the central edge of the other 3-edge segment within that section
(unless he happens to have already taken it earlier, in which case he can just make an
arbitrary move). Isolator can also always eventually take one of the edges on either side
of this central edge (since when Toucher takes one, Isolator can just immediately take the
other if he hasn’t already done so).

Hence, Isolator can certainly always obtain two consecutive edges in each of these
6-edge sections of the cycle, so there will be an untouched vertex each time.

Now observe that there are exactly
⌈
k−3
6

⌉
such sections, since k ∈ {1, 2, 3} mod 6, so

we are done.

We shall also find it helpful to consider the case when Isolator makes the first move
in a component.

Lemma 28. Let k ∈ {1, 2, 3} mod 6. Then Isolator can guarantee that the number of
untouched vertices in Ck will be at least k+3

6
if Isolator plays first (and Toucher and

Isolator play alternately after this).

Proof. The k = 3 case can easily be verified, so let us assume that k > 7.
Let Isolator initially use the strategy of trying to extend his first edge into a long string

of consecutive edges, by always choosing an edge immediately adjacent to his current string
until Toucher has ‘blocked’ both sides of this string with edges of her own (note that these
two edges of Toucher will be distinct, since k > 3).

If Isolator is able to use this strategy for the entire game, then he will finish with
⌈
k
2

⌉
consecutive edges, and hence the number of untouched vertices will be

⌈
k
2

⌉
− 1, which is

certainly greater than k+3
6

(since we are assuming that k > 7), so we are done. Thus, we
may assume that this does not happen.

Let us therefore consider the state of the game at the time when Isolator is about to
make his first move for which he is no longer able to use this strategy (due to both sides
having been blocked by Toucher).
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Suppose Isolator had managed to achieve a string of j consecutive edges (note it must
be that j > 2), and wlog let these be edges 2 to (j + 1). Hence, Toucher has edges 1 and
j + 2, and Toucher also has another j − 2 ‘rogue’ edges elsewhere.

Let us split the edges from j + 3 to k into 3-edge segments (i.e. edges j + 3 to j + 5,
edges j + 6 to j + 8, and so on, ignoring the final one or two edges if k − (j + 2) is not
congruent to 0 mod 3).

There will be at least k−2−(j+2)
3

= k−j−4
3

such segments, at most j − 2 of which will

contain one of Toucher’s rogue edges. Hence, at least k−j−4
3
− (j − 2) = k−4j+2

3
of these

segments will be ‘unspoilt’, in the sense that none of their edges have yet been taken by
either player.

Recall that Isolator has the next move. Hence, he can immediately take the central
edge from one of the unspoilt segments, and (as in the proof of Lemma 27) can also always
eventually take one of the edges either side of this central edge, thus isolating a vertex.

Whenever Toucher plays first in one of the unspoilt segments, Isolator can then imme-
diately take the central edge of any remaining unspoilt segment, again eventually isolating
a vertex.

Hence, we see that Isolator will be able to guarantee at least one untouched vertex
from at least half of the segments that were unspoilt. Thus, he will obtain at least k−4j+2

6

such vertices, together with the j − 1 vertices that he already had from his string of j
consecutive edges.

Hence, the total number of untouched vertices adds up to at least k+2j−4
6

, which is at
least k

6
by our observation that j > 2, and at least k+3

6
due to integrality and the fact

that k ∈ {1, 2, 3} mod 6.

We are now ready to use our three lemmas to complete the proof of Theorem 5.

Proof of lower bound of Theorem 5. Recall from Lemma 25 that Isolator can guarantee
that at least 1

6
of the vertices from each component of size k for k ∈ {4, 5, 6} mod 6 will

be untouched. Hence, it only remains to deal with the other components.
Let us pair up these other components into partners, with at most one such component

left over (it will not matter whether the partners have the same size mod 6, only that
the sizes belong to {1, 2, 3} mod 6).

When Toucher first plays in one of a pair, let Isolator make one move in the partner.
After this, whenever Toucher plays again anywhere in this pair, let Isolator respond in
the same component as Toucher (so Toucher will have the first two moves in one of the
pair, with alternate moves after this, and Isolator will have the first move in the partner,
with alternate moves after this).

By Lemmas 27 and 28, if two paired components have sizes k1 and k2, respectively, then
Isolator can guarantee that the number of untouched vertices in these two components
will be at least k1−3

6
+ k2+3

6
= k1+k2

6
. Thus, Isolator can guarantee that at least 1

6
of the

vertices from each pair will be untouched.
By then applying Lemma 27 as a lower bound for the number of untouched vertices

in the leftover component (if one exists), we hence obtain our result.
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Proposition 29. Any graph consisting of an odd number of C3 components will provide
a tight example to the lower bound in Theorem 5.

Proof. Note that Toucher can make the first move in Component 1, say, and can then
pair up the remaining components to ensure that she can also make the first move in half
of these.

In every component in which Toucher made the first move, she can guarantee even-
tually taking a second edge and hence leaving no untouched vertices. In every other
component, she can guarantee eventually taking one edge and hence leaving only one
untouched vertex.

Remark 30. Note that Theorem 3 implies that the lower bound of Theorem 5 will not be
tight for Cn if n > 3. Thus, as mentioned earlier in Remark 18, this observation together
with the tight example of Proposition 29 shows that u(G) is not solely determined by the
degree sequence (see also Section 6).

5 Trees

In the previous section, we explored one way of generalising the playing board from the cy-
cles and paths considered in Theorem 3 and Theorem 4, by investigating general 2-regular
graphs. In this section, we consider another natural extension, by instead examining gen-
eral trees. We start by proving the upper bound of Theorem 6 and providing a family of
tight examples, and then we also prove the lower bound and give a tight example.

Proof of upper bound of Theorem 6. By Theorem 2, we have

u(T ) 6
∑

v∈V (T )

2−d(v).

Note that (since T can have no vertices of degree 0) the sum on the right-hand-side is
maximised when all but one of the vertices have degree 1, since otherwise one can always
achieve a higher value by decreasing the second largest degree by 1 and increasing the
largest degree by 1.

Hence, we obtain

u(T ) 6
n− 1

2
+ 21−n.

But since n > 3, we have 21−n < 1
2
, so the integrality of u(T ) then implies that we

must actually have u(T ) 6 n−1
2

.

Proposition 31. Any star with an odd number of vertices will provide a tight example to
the upper bound in Theorem 6.

We now move on to the lower bound.
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Proof of lower bound of Theorem 6. In the main part of the proof, we shall work towards
showing

u(T ) >
n+ d1 − 1

8
. (3)

The result will then follow from a combination of (3), Theorem 4, and one special case
that will need to be considered separately.

In order to establish (3), we shall proceed by first (i) analysing the proof of the lower
bound of Theorem 2 to see that some aspects can be improved slightly when the graph
is known to be a tree, then (ii) obtaining a useful result on the average degree of the
non-leaves, and finally (iii) using this to optimise our bound.

(i) Recall that the proof of the lower bound of Theorem 2 utilised the concept of the
Danger of a vertex. The bound obtained then followed from showing that the total Danger
will decrease by at most 1 with Toucher’s first move, and then by at most 1

4
with every

subsequent pair of moves if Isolator uses the tactic of always choosing the edge which
maximises the sum of the Dangers of the two vertices incident to it.

However, it can immediately be seen that for a tree with n > 2 vertices, the total
Danger can actually only decrease by at most 3

4
with Toucher’s first move, since there

cannot be two adjacent leaves. Hence, we can certainly add an extra 1 − 3
4

= 1
4

to the
lower bound obtained in Theorem 2. We shall now also show that the total Danger can
only decrease by at most 1

8
with the first subsequent pair of moves, meaning that we can

then add a further 1
4
− 1

8
= 1

8
to this bound.

To see this, first note that (with the stated tactic) Isolator will certainly take an
unplayed edge uw incident to a leaf w on his first move. If we use D(z) to denote the
Danger of a vertex z after Toucher’s first move, then Isolator’s move thus causes the total
Danger to temporarily increase by 1

2
+ D(u).

In order for the total Danger to then decrease back by more than 5
8

+ D(u) with
Toucher’s next move, note that she would have to take an adjacent edge uv (due to
the maximality condition in Isolator’s strategy) satisfying 2D(u) + D(v) > 5

8
+ D(u),

i.e. D(u) + D(v) > 5
8
.

Since u cannot be a leaf (as it is adjacent to the leaf w), this is only possible if D(u) = 1
4

and D(v) = 1
2
. But in this case, the entire tree T would consist of just the path wuv,

which would contradict the fact that Toucher has already been able to take one edge
somewhere with her first move!

Hence, we find that we are indeed able to add the promised increments to the lower
bound given in Theorem 2 if T is a tree (with |V (T )| > 2), and we thus obtain

u(T ) >
∑

v∈V (T )

2−d(v) − |E(T )|+ 7

8
+

1

4
+

1

8
=
d1
2

+
∑

v:d(v)>2

2−d(v) − n

8
− 3

8
. (4)

(ii) We shall now work towards our aforementioned result on the average degree of the
non-leaves of T . Let us first recall that (since n > 2) any two leaves must be non-adjacent,
and so Isolator can definitely isolate at least d1−1

2
of the leaves. Hence, (3) is certainly

satisfied if d1 > n
3

+ 1, so we may assume that d1 <
n
3

+ 1.
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Now let x denote the average degree of the n − d1 non-leaves, and observe that d1 +
x(n− d1) = 2n− 2, so x = 1 + n−2

n−d1 . Thus, since d1 <
n
3

+ 1 < n
2

+ 1, we have x < 3.

(iii) We shall now utilise our bound on x in conjunction with (4).
Note that (for given d1) the sum

∑
v:d(v)>2 2−d(v) is minimised when the non-leaves all

have degrees differing by at most 1, since otherwise one can always achieve a lower value
by increasing the smallest non-leaf degree by 1 and decreasing the largest non-leaf degree
by 1.

Hence, since x < 3, we find that the sum
∑

v:d(v)>2 2−d(v) is minimised (for given d1)

when the non-leaves all have degree 2 or 3. In this case, we have d1 + 2d2 + 3d3 = 2(n−1)
and d2 = n− d1 − d3, and so we obtain d2 = n+ 2− 2d1 and d3 = d1 − 2.

Thus, (4) then gives

u(T ) >
d1
2

+
n+ 2− 2d1

4
+
d1 − 2

8
− n

8
− 3

8
=
n+ d1 − 1

8
,

as desired.

If d1 > 2, then we are done. If not, then T must be a path, and we can look to apply
our lower bound u(Pn) > 3

16
(n− 2) from Theorem 4.

We certainly have 3
16

(n − 2) > n+2
8

for n > 10, and it can also be checked that⌈
3
16

(n− 2)
⌉
> n+2

8
for n ∈ {3, 4, 5, 6, 8, 9}, leaving only the case when T = P7.

For this final case, it suffices to show that Isolator can always guarantee that at least
two of the vertices will be untouched, and it can be checked that this is indeed so.

Proposition 32. The graph P6 provides a tight example to the lower bound in Theorem 6.

Proof. This follows immediately from Theorem 4.

6 3-regular graphs

Recall that in Section 4 we considered the case when our playing board is a 2-regular
graph. The natural generalisation of this is to consider k-regular graphs for k > 2.
However, we already know from Theorem 1 that u(G) = 0 for all k-regular G when k > 3.
Hence, it only remains to now deal with the case when k = 3.

We start by giving an upper bound for u(G), then we focus on constructing 3-regular
examples with u(G) > 0 (proving Theorem 7), and then finally we observe that there are
also 3-regular examples with u(G) = 0.

As mentioned, we begin with our best known upper bound, which is a direct conse-
quence of Theorem 2.

Corollary 33. For any 3-regular graph G with n vertices, we have

u(G) 6
n

8
.

Proof. This follows immediately from Theorem 2.
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It is not at all straightforward to construct any 3-regular graphs with u(G) > 0.
However, the following example shows that there do indeed exist such graphs.

Proposition 34. The 3-regular graph G depicted in Figure 1 will have an untouched
vertex.

G

H1

H3H2

e23

e13e12

Figure 1: A 3-regular graph G satisfying u(G) > 1.

Proof. First, let us observe that G consists of three identical blocks H1, H2, and H3,
together with the edges e12, e13, and e23. Thus, by symmetry, wlog Toucher makes her
first move somewhere in H1 ∪ e12 ∪ e13. Let Isolator then take the edge e23, and note that
wlog Toucher’s next move is not in H3.

From this point on, we shall just focus on the graph H3, as shown in Figure 2. Recall
that Isolator has already taken the edge e23, all the edges in H3 are as yet unplayed (it
will not matter whether or not the edge e13 has been taken), and Isolator has the next
move. Let Isolator use this move to take the internal edge u1u2 marked with an I.

v3

v4 u1

u2 u3

v1 v2

3b

3d

3e

3c3a

I

2a

1a
e23

I

e13

?

1b

2b 2c

Figure 2: The graph H3.

Case (i): Toucher does not take one of the ‘inner’-edges (i.e. those labelled with a 1 or
a 2) in her next move.
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Then all these inner edges are still unplayed, and the inner-vertices u1, u2, and u3 are
still untouched. Thus, Isolator may then take 1a, Toucher is forced to take 1b (to avoid
u1 becoming isolated), Isolator may then take 2a, Toucher is forced to take 2b (to avoid
u2 becoming isolated), and Isolator may then take 2c and hence isolate u3.

Case (ii): Toucher takes one of the edges labelled with a 1 in her next move.
Then all the edges labelled with a 2 or a 3 are still unplayed, and the vertices u2, v1,

v2, and v4 are still untouched. Thus, Isolator may then take 2b, Toucher is forced to take
2a (to avoid u2 becoming isolated), Isolator may then take 3b, Toucher is forced to take
3d (to avoid v1 becoming isolated), and Isolator may then take 3a and hence isolate v4.

Case (iii): Toucher takes one of the edges labelled with a 2 in her next move.
Then all the edges labelled with a 1 or a 3 are still unplayed, and the vertices u1, v3,

and v4 are still untouched. Thus, Isolator may then take 1b, Toucher is forced to take 1a
(to avoid u1 becoming isolated), Isolator may then take 3a, Toucher is forced to take 3c
(to avoid u3 becoming isolated), and Isolator may then take 3b and hence isolate v4.

Using Proposition 34, we may now prove Theorem 7.

Proof of Theorem 7. Note that the graph G in Proposition 34 has 24 vertices. Hence, we
may simply take

⌊
n
24

⌋
components identical to G, and any 3-regular graph on the other

vertices.

Recall that in the 2-regular case (see Theorem 5), the only graph for which u(G) = 0
is the triangle. However, it turns out that there are infinitely many 3-regular graphs for
which there will be no untouched vertices.

Proposition 35. Any graph consisting of K4 components will have no untouched vertices.

Proof. Whenever Isolator plays first in a component (taking the edge v1v2, say), Toucher
can then immediately take the non-adjacent edge from this same component (let us denote
this edge by v3v4). Wlog (by symmetry), when Isolator plays again in this component
he takes the edge v1v3, in which case Toucher can then immediately take the edge v1v4.
Whenever Isolator takes one of the two remaining edges in this component (note that
both of these will be incident to v2), Toucher can then immediately take the final edge
and will hence have touched all four vertices.

7 Discussion

Perhaps the most interesting unresolved issue concerns the asymptotic proportion of un-
touched vertices in Cn and Pn. We have shown in Theorem 3 and Theorem 4 that this is
somewhere between 3

16
and 1

4
, but where exactly? Could it perhaps be 1

5
? One intuitive

reason for this is that Isolator needs two moves to isolate one vertex, but Toucher can
touch four vertices in this time, so we might expect that there should consequently be
four times as many touched vertices as untouched. However, we have not managed to
turn this reasoning into a formal argument.
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Throughout this paper, whenever we have derived a bound, we have also tried to give
tight examples that hold for infinitely many values of n. However, in the case of our
lower bound for u(T ) in Theorem 6, we only managed to provide one tight example, in
Proposition 32. Hence, it would be interesting to know whether there are other tight
examples, or if in fact this lower bound can be improved for large n. Also, what type of
tree is most suitable for Toucher? Recall that we showed in Proposition 31 that stars are
the best choice for Isolator.

As we have seen in Remark 30 and Section 6, we cannot hope to obtain exact results
just by looking at the degree sequence of the graph. Hence, we are curious to know if any
other properties or parameters of the graph can be utilised to give more precise bounds.

Finally, what is the largest possible proportion of untouched vertices for a 3-regular
graph? By Theorem 7 and Corollary 33, we know that this is between 1

24
and 1

8
.
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A Paths

We now prove Theorem 4 on paths (recall that this result was used in the proofs of both
Theorem 6 and Proposition 32). Clearly, the games on Pn and Cn are very closely related
(in fact, the game on Pn is exactly equivalent to a game on Cn in which Isolator has the
first move), and so the proofs here are similar to those for cycles.

Proof of upper bound of Theorem 4. For 1 < n 6 4, knowing that Toucher is the first to
play, the result follows easily. For n > 4, we add a slight refinement to the analysis given
in the proof of Theorem 2, again considering the strategy where Toucher always chooses
the edge which maximises the sum of the Dangers of the two vertices incident to it.

At the beginning of the game, the total Danger is
∑

v∈V (Pn)
2−d(v) = n+2

4
. Going

through all possible cases, we see that Toucher will always decrease the total Danger by
at least 6

4
in her first two moves, while Isolator will only increase it by at most 5

4
in his

first two moves. Therefore, after these first two pairs of moves, the total Danger will have
decreased by at least 1

4
. Thus, continuing as in the proof of Theorem 2, we hence obtain

u(Pn) 6
∑

v∈V (Pn)

2−d(v) − 1

4
=
n+ 1

4
.

Proposition 36. The graph P3 provides a tight example to the upper bound in Theorem 4.

For the lower bound, the key ingredient is Lemma 20, which enables Isolator to guar-
antee three untouched vertices from every sixteen edges. As with Cn, the main remaining
issue is to deal with the leftover portion when the number of edges is not divisible by 16.
This time, the argument is further complicated by the fact that Isolator will need to take
advantage of the two leaves.

Proof of the lower bound of Theorem 4. Let k ∈ {0, 1, . . . , 15} denote the value of (n −
1) mod 16. If k ∈ {0, 1}, let x = 0; if k ∈ {2, 3, 4, 5, 6}, let x = 1; if k ∈ {7, 8, 9, 10, 11},
let x = 2; and if k ∈ {12, 13, 14, 15}, let x = 6. Let y = k − x > 0.

Before Toucher makes her first move, let Isolator partition the n−1 edges of Pn into a
‘left-end’ segment of x consecutive edges, middle segments each of 16 consecutive edges,
and a ‘right-end’ segment of y consecutive edges.

Let Isolator then use the strategy of always responding in the same segment in which
Toucher played her previous move. By Lemma 20, Isolator can thus guarantee that the
number of untouched internal vertices in each 16-edge segment will be at least three.

Note that the statement of the theorem is equivalent to u(Pn) > 3
16

(|E(Pn)| − 1).
Hence, since k is equal to the total number of edges in the two end segments, it now
suffices to show that Isolator can guarantee isolating at least 3

16
(k − 1) vertices here.

Throughout the remainder of the proof, note that we shall use the word ‘leaf’ solely
for the two leaves in Pn. Moreover, we shall not attempt to isolate the right-most vertex
of the left-end segment or the left-most vertex of the right-most segment.

If k 6 1, then there is nothing to prove.
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If k ∈ {2, 3, 4, 5, 6}, then we need to show that Isolator can isolate at least one vertex.
Recall x = 1, so y = k − x > 1. Hence, as soon as Toucher takes an edge incident to one
of the leaves, Isolator can simply take the edge incident to the other leaf, thus isolating
it.

If k ∈ {7, 8, 9, 10, 11}, then we need to show that Isolator can isolate at least two
vertices. Recall x = 2, so y = k − x > 5. As soon as Toucher takes an edge from one of
the end segments (let us use A to denote this segment), let Isolator take the edge incident
to the leaf in the other end segment (let us use B to denote this segment), thus isolating
it. After Toucher’s second move, we may assume that Toucher’s two edges consist of
the edge adjacent to Isolator’s edge in Segment B and the edge incident to the leaf in
Segment A (since otherwise Isolator could then take one of these, and we would be done).
Hence, since y > 5, the right-end segment must certainly still contain three consecutive
free edges, so we are done by Claim 21.

If k ∈ {12, 13, 14, 15}, then we need to show that Isolator can isolate at least three
vertices. Recall x = 6, so y > 6 too. As soon as Toucher takes an edge from one of
the end segments (let us again use A to denote this segment), let Isolator take the edge
incident to the leaf in the other end segment (let us again use B to denote this segment),
thus isolating it.

Let us denote the first six edges in A, starting from the leaf, as a1, a2, . . . , a6, and let
us similarly denote the first six edges in B, starting from the leaf, as b1, b2, . . . , b6. Hence,
Isolator has claimed b1.

If Toucher’s first two edges consist of b2 and a1, then A still contains five consecutive
free edges and B still contains four consecutive free edges. By Claim 22, either Isolator
can then isolate two internal vertice in A and is done, or he can isolate one internal vertex
in A and then also one internal vertex in B (using Claim 21), and is again done.

If Toucher’s first two edges are not b2 and a1, then Isolator may claim one of these
with his second move, thus isolating a second vertex. If Isolator takes b2, then we may
assume that Toucher’s first three edges include both b3 and a1 (since otherwise Isolator
could then also take one of these, and we would be done), so at least one of A or B will still
contain three consecutive free edges, and so we may then just apply Claim 21. Similarly,
if Isolator takes a1, then we may assume that Toucher’s first three edges include both a2
and b2, and we can then use exactly the same argument.

Proposition 37. The graph P2 provides a tight example to the lower bound in Theorem 4.
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