On the weight of Berge-F-free hypergraphs

Sean English

Department of Mathematics University of Illinois, Urbana-Champaign Urbana, Illinois, U.S.A.

senglish@illinois.edu

Abhishek Methuku[†]

Discrete Mathematics Group Institute for Basic Science (IBS) Daejeon, Republic of Korea

abhishekmethuku@gmail.com

Dániel Gerbner*

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, Hungary

gerbner@renyi.hu

Cory Palmer[‡]

Department of Mathematical Sciences University of Montana Missoula, Montana, U.S.A.

cory.palmer@umontana.edu

Submitted: Feb 9, 2019; Accepted: Aug 19, 2019; Published: Oct 11, 2019 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

For a graph F, we say a hypergraph is a Berge-F if it can be obtained from F by replacing each edge of F with a hyperedge containing it. A hypergraph is Berge-F-free if it does not contain a subhypergraph that is a Berge-F. The weight of a non-uniform hypergraph \mathcal{H} is the quantity $\sum_{h \in E(\mathcal{H})} |h|$.

Suppose \mathcal{H} is a Berge-*F*-free hypergraph on *n* vertices. In this short note, we prove that as long as every edge of \mathcal{H} has size at least the Ramsey number of *F* and at most o(n), the weight of \mathcal{H} is $o(n^2)$. This result is best possible in some sense. Along the way, we study other weight functions, and strengthen results of Gerbner and Palmer; and Grósz, Methuku and Tompkins.

Mathematics Subject Classifications: 05C65, 05C35

1 Introduction

Generalizing the notion of hypergraph cycles due to Berge, the authors Gerbner and Palmer [6] introduced so-called *Berge hypergraphs*. Given a graph F, we say that a

^{*}Supported by the János Bolyai Research Fellowship of the Hungarian Academy of Sciences and by the National Research, Development and Innovation Office – NKFIH, grant SNN 116095, grant K 116769 and grant KH 130371.

[†]Supported by IBS-R029-C1 and the National Research, Development and Innovation Office NKFIH grant K116769.

^{\ddagger}Supported by University of Montana UGP Grant #M25460.

hypergraph \mathcal{H} is Berge-F if there is an injection $f: V(F) \to V(\mathcal{H})$ and bijection $f': E(F) \to E(\mathcal{H})$ such that for every edge $uv \in E(F)$ we have $\{f(u), f(v)\} \subseteq f'(uv)$. Equivalently, \mathcal{H} is Berge-F if we can embed a distinct graph edge into each hyperedge of \mathcal{H} to obtain a copy of F. Note that for a fixed F there are many different hypergraphs that are Berge-F, and a fixed hypergraph \mathcal{H} can be Berge-F for many different graphs F.

We say that a hypergraph is Berge-F-free if it does not contain a subhypergraph that is Berge-F. There are several results concerning the largest size of Berge-F-free hypergraphs, see e.g., [1, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 11, 15]. For a short survey of extremal results for Berge hypergraphs see Subsection 5.2.2 in [8].

Most of these results deal with the uniform case, but some also examine non-uniform hypergraphs. Note that replacing a hyperedge with a larger hyperedge containing it never removes a copy of Berge-F, but may add a copy. Thus, to build a Berge-F-free hypergraph that maximizes the number of hyperedges, one picks small hyperedges. To make large hyperedges more attractive, one can assign a weight to each hyperedge that increases with the size of the hyperedge.

Győri [10] proved that if \mathcal{H} is a Berge-triangle-free hypergraph, then $\sum_{h \in E(\mathcal{H})} (|h|-2) \leq n^2/8$ if n is large enough. Note that this result is about a multi-hypergraph \mathcal{H} , thus $\sum_{h \in E(\mathcal{H})} |h|$ can be arbitrarily large by taking a hyperedge of size 2 an arbitrary number of times. In [13], the authors showed that for a Berge- C_4 -free multi-hypergraph \mathcal{H} we have $\sum_{h \in E(\mathcal{H})} (|h| - 3) \leq 12\sqrt{2}n^{3/2} + O(n)$ and they gave a construction of a Berge- C_4 -free multi-hypergraph with approximately $n^{3/2}/8$ hyperedges. The upper bound was improved by Gerbner and Palmer [6] to $\sqrt{6}n^{3/2}/2$, while the lower bound was improved to $(1 + o(1))n^{3/2}/(3\sqrt{3})$. For arbitrary cycles, Győri and Lemons [14] proved that if \mathcal{H} is either a Berge- C_{2k} -free or Berge- C_{2k+1} -free hypergraph on n vertices and every hyperedge in \mathcal{H} has size at least $4k^2$, then $\sum_{h \in E(\mathcal{H})} |h| = O(n^{1+1/k})$.

Gerbner and Palmer [6] proved the following general result about Berge-F-free hypergraphs.

Theorem 1 (Gerbner and Palmer [6]). Let F be a graph and let \mathcal{H} be a Berge-F-free hypergraph on n vertices. If every hyperedge in \mathcal{H} has size at least |V(F)|, then $\sum_{h \in E(\mathcal{H})} |h| = O(n^2)$.

We strengthen Theorem 1 in Theorem 3 by showing that the statement still holds if one replaces |h| with $|h|^2$ in the above sum; moreover, our proof is much simpler compared to the proof of Gerbner and Palmer in [6]. For uniform hypergraphs, the above theorem states that for any graph F and Berge-F-free r-uniform n-vertex hypergraph \mathcal{H} we have $|E(\mathcal{H})| = O(n^2)$ provided r is large enough. Grósz, Methuku and Tompkins showed that, in fact, $|E(\mathcal{H})| = o(n^2)$ for large enough r. This is stated more precisely in the following theorem. Given two graphs F and G, let R(F, G) denote the 2-color Ramsey number of F and G. If $e \in E(F)$, then we write $F \setminus e$ for the graph with $V(F \setminus e) = V(F)$ and $E(F \setminus e) = E(F) \setminus \{e\}$.

Theorem 2 (Grósz, Methuku and Tompkins [9]). Let F be a fixed graph and $e \in E(F)$. Let \mathcal{H} be an r-uniform Berge-F-free hypergraph. If $r \ge R(F, F \setminus e)$, then $|E(\mathcal{H})| = o(n^2)$. We improve this theorem in Theorem 4. Let us return to non-uniform hypergraphs. So far, we have only added up the sizes of the hyperedges. Here we will change the weight function and consider first $\sum_{h \in E(\mathcal{H})} |h|^2$.

Theorem 3. Let F be a fixed graph. Let \mathcal{H} be a Berge-F-free hypergraph on n vertices such that every edge of \mathcal{H} has size at least |V(F)|. Then

$$\sum_{h \in E(\mathcal{H})} |h|^2 = O(n^2)$$

Furthermore, this result is trivially sharp as can be seen by considering any hypergraph with at least one edge of size $\Omega(n)$. Interestingly, the next theorem shows that either small or large edges are necessary for such a weighted sum to reach this upper bound.

Theorem 4. Let F be a fixed graph and let $e \in E(F)$. Let \mathcal{H} be a Berge-F-free hypergraph on n vertices such that every edge of \mathcal{H} has size at least $R(F, F \setminus e)$ and at most o(n). Then

$$\sum_{h \in E(\mathcal{H})} |h|^2 = o(n^2).$$

Combining Theorem 3 and Theorem 4, we can show the sum of the sizes of the edges (i.e., the weight) of a Berge-F-free hypergraph is $o(n^2)$ provided all the hyperedges are large enough, presenting another improvement of Theorem 1 and Theorem 2. In fact, this follows from a much more general theorem (which is presented below) by setting w(m) = m.

Theorem 5. Define $w : \mathbb{Z}_+ \to \mathbb{Z}_+$ to be any weight function such that $w(m) = o(m^2)$. Let F be a fixed graph and let $e \in E(F)$. If \mathcal{H} be a Berge-F-free hypergraph on n vertices such that every edge of \mathcal{H} has size at least $R(F, F \setminus e)$, then

$$\sum_{h \in E(\mathcal{H})} w(|h|) = o(n^2)$$

Before we prove our results, we will comment on some of the specific conditions in Theorem 5.

Theorem 5 is best possible in the sense that one cannot take a larger weight function. Indeed if $w(m) = \Omega(m^2)$, then considering a single hyperedge of size n shows that the conclusion of Theorem 5 cannot hold. More precisely, this gives a Berge-F-free hyper-graph \mathcal{H} with $\sum_{h \in \mathcal{H}} w(|h|) \ge w(n)$. On the other hand, for many weight functions with $w(m) = \Omega(m^2)$, the bound O(w(n)) is an upper bound on the weight of Berge-F-free hypergraphs: Indeed, if the function $\max_{1 \le i \le n} w(i)/i^2 = O(w(n)/n^2)$ (which is achieved e.g., if $w(m)/m^2$ is eventually non-decreasing in m), then using Theorem 3 we have

$$\sum_{h \in E(\mathcal{H})} w(|h|) = \sum_{h \in E(\mathcal{H})} \frac{w(|h|)}{|h|^2} |h|^2 = O\left(\frac{w(n)}{n^2}\right) \sum_{h \in E(\mathcal{H})} |h|^2 = O(w(n)).$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(4) (2019), #P4.7

Note that in Theorem 5, the smallest possible size of edges allowed in \mathcal{H} must grow with the forbidden graph F: Indeed, let r be an integer and assume $r \mid n$. Let a vertex set on n vertices be partitioned into n/r singletons and n/r sets of size r-1. Let \mathcal{H} be the r-uniform hypergraph consisting of all the edges that contain one singleton and one (r-1)-set. Then it is easily verified that \mathcal{H} is an r-uniform Berge- K_r -free hypergraph, but $\sum_{h \in E(\mathcal{H})} |h| = n^2/r$. In fact, it was shown by Grósz, Methuku and Tompkins [9] that there are $(\omega(F) - 1)^2$ -uniform Berge-F-free hypergraphs with $\Omega(n^2)$ edges, where $\omega(F)$ denotes the clique number of F. It is an interesting open problem to determine the smallest uniformity when $\Omega(n^2)$ drops to $o(n^2)$.

It is also worth noting that the bound $o(n^2)$ in Theorem 5 is close to being best possible: Erdős, Frankl and Rödl [2] constructed *r*-uniform hypergraphs with more than $n^{2-\varepsilon}$ hyperedges for any ε , and with the property that there are no 3 hyperedges on 3(r-1) vertices. Observe that a Berge-triangle is on at most 3(r-1) vertices, hence those hypergraphs are also Berge-triangle-free.

Notation. In the rest of the paper, we use the following notation. For a set S of vertices, let $\Gamma(S)$ denote the graph whose edge-set is the set of all the pairs contained in S. For a hypergraph \mathcal{H} , its 2-shadow is the graph whose edge-set is $\Gamma(\mathcal{H}) := \bigcup_{h \in \mathcal{H}} \Gamma(\{h\})$, i.e. all the edges contained in at least one hyperedge of \mathcal{H} .

2 Proofs

In this section we will use the following easy consequence of Turán's theorem: if G is F-free, then there exists a constant $\alpha = \alpha(F)$ such that the number of edges in G is at most $(1-\alpha)\binom{|V(G)|}{2}$.

2.1 Proof of Theorem 3

We will say an edge in $\Gamma(\mathcal{H})$ is *blue* if it is contained in at most |E(F)| - 1 hyperedges of \mathcal{H} .

Claim 6. Every copy of F in $\Gamma(\mathcal{H})$ contains a blue edge.

Proof. Consider a copy of F in $\Gamma(\mathcal{H})$. If there is no blue edge in F then every edge of F is contained in at least |E(F)| hyperedges of \mathcal{H} by definition, so one can greedily choose different hyperedges representing the edges of F. Thus we have a Berge-F in \mathcal{H} , a contradiction.

The following claim bounds the number of blue edges in a hyperedge of \mathcal{H} from below.

Claim 7. Let $h \in E(\mathcal{H})$ be a hyperedge. Then there exists a constant $\beta = \beta(F) > 0$, such that the number of blue edges in $\Gamma(h)$ is at least $\beta\binom{|h|}{2}$.

Proof. The graph $\Gamma(h)$ is a clique on $|h| \ge |V(F)|$ vertices, and by Claim 6, the set of blue edges in $\Gamma(h)$ form a graph, the complement of which is *F*-free. Thus, Turán's theorem guarantees a constant $\beta = \beta(F) > 0$ such that there are at least $\beta {|h| \choose 2}$ blue edges in $\Gamma(h)$.

Using Claim 7, we have

$$\sum_{h \in E(\mathcal{H})} \beta\binom{|h|}{2} \leqslant \sum_{h \in E(\mathcal{H})} \# \{ \text{Blue edges in } \Gamma(h) \}.$$
(1)

On the other hand, we have

 $\sum_{h \in E(\mathcal{H})} \# \{ \text{Blue edges in } \Gamma(h) \} \leqslant \# \{ \text{Blue edges in } \Gamma(\mathcal{H}) \} \cdot (|E(F)| - 1) = O(n^2).$ (2)

Indeed each blue edge is counted at most |E(F)| - 1 times in the summation as it is contained in at most |E(F)| - 1 hyperedges of \mathcal{H} . Then combining equations (1) and (2), we have $\sum_{h \in E(\mathcal{H})} \beta\binom{|h|}{2} = O(n^2)$ for constant β , which implies that $\sum_{h \in E(\mathcal{H})} |h|^2 \leq \sum_{h \in E(\mathcal{H})} 4\binom{|h|}{2} = O(n^2)$, completing the proof.

2.2 Proof of Theorem 4

If F has one or fewer edges, the statement is trivial, so we will assume F has at least two edges throughout the rest of the proof. Here we follow an argument similar to Grósz, Methuku and Tompkins [9] but with some important changes. We wish to apply the graph removal lemma to the 2-shadow of a hypergraph \mathcal{H} . To this end, we prove the following claim.

Claim 8. The number of copies of F in $\Gamma(\mathcal{H})$ is $o(n^{|V(F)|})$.

Proof. Any copy of F in $\Gamma(\mathcal{H})$ has at least two edges (and therefore at least three vertices) in some hyperedge of \mathcal{H} , otherwise the hyperedges containing the edges of F would form a Berge-F. Thus we have the following upper bound:

$$\#\{F\text{-copies in } \Gamma(\mathcal{H})\} \leqslant \sum_{h \in \mathcal{H}} \binom{|h|}{3} n^{|V(F)|-3} \binom{\binom{|V(F)|}{2}}{|E(F)|} \leqslant n^{|V(F)|-3} \binom{\binom{|V(F)|}{2}}{|E(F)|} \sum_{h \in \mathcal{H}} |h|^3.$$

Indeed, there are $\binom{|h|}{3}$ ways to select three vertices from a hyperedge $h \in \mathcal{H}$ and there are at most $n^{|V(F)|-3}$ ways to select the remaining |V(F)| - 3 vertices to form a set of |V(F)| vertices. The number of copies of F in this set is bounded by $\binom{|V(F)|}{2}$.

By our assumption, |h| = o(n), and by Theorem 3, we have $\sum_{h \in \mathcal{H}} |h|^2 = O(n^2)$, so $\sum_{h \in \mathcal{H}} |h|^3 = \sum_{h \in \mathcal{H}} |h| \cdot |h|^2 = o(n) \sum_{h \in \mathcal{H}} |h|^2 = o(n^3)$. Therefore, the number of copies of F in $\Gamma(\mathcal{H})$ is $o(n^{|V(F)|})$, proving the claim.

By Claim 8 and the graph removal lemma, there is a set \mathcal{R} of $o(n^2)$ edges in $\Gamma(\mathcal{H})$ such that every copy of F in the 2-shadow of \mathcal{H} contains an edge of \mathcal{R} . We will call an edge in the 2-shadow of \mathcal{H} special if it is contained in \mathcal{R} and is contained in at most |E(F)| - 1hyperedges. Note that the special edges here play a similar but slightly different role than the blue edges in the proof of Theorem 3. Let \mathcal{R}_s be the set of all the special edges. Of course, $\mathcal{R}_s \subseteq \mathcal{R}$.

Recall that $e \in E(F)$, and $R(F, F \setminus e)$ denotes the Ramsey number of F versus $F \setminus e$.

Claim 9. Let $h \in E(\mathcal{H})$ be an arbitrary hyperedge. Then any subset $S \subseteq h$ of size $R(F, F \setminus e)$ contains a special edge (i.e., $\Gamma(S) \cap \mathcal{R}_s \neq \emptyset$).

Proof. Assume by contradiction that there is a set $S \subseteq h$ of size $R(F, F \setminus e)$ which contains no special edge. In other words, every edge of \mathcal{R} contained in S is in at least |E(F)| hyperedges. By the definition of \mathcal{R} , $\Gamma(S) \setminus \mathcal{R}$ cannot contain a copy of F. Applying Ramsey's theorem with the edges of $\Gamma(S) \setminus \mathcal{R}$ colored with the first color and those in $\Gamma(S) \cap \mathcal{R}$ colored with the second, we obtain that $\Gamma(S) \cap \mathcal{R}$ must contain a copy of $F \setminus e$. Let \hat{e} be an edge contained in S whose addition would complete this copy of F. The other edges of this copy of F are each contained in at least |E(F)| hyperedges of \mathcal{H} . Thus we can select greedily |E(F)| different hyperedges of \mathcal{H} to represent the edges in this copy of F: h itself for \hat{e} , and |E(F)| - 1 other hyperedges for the rest of the edges of F. These hyperedges form a Berge-F in \mathcal{H} , a contradiction.

Now we provide a lower bound on the number of special edges contained in a hyperedge of \mathcal{H} .

Claim 10. Let $h \in \mathcal{H}$ be a hyperedge. Then there is a constant $\gamma = \gamma(F)$ such that

$$|\Gamma(h) \cap \mathcal{R}_s| \ge \gamma \binom{|h|}{2}.$$

Proof. Claim 9 implies that $\Gamma(h) \setminus \mathcal{R}_s$ does not contain a complete graph on $R(F, F \setminus e)$ vertices. So by Turán's theorem there is a constant $\gamma = \gamma(F)$ such that $\Gamma(h) \setminus \mathcal{R}_s$ contains at most $(1 - \gamma) \binom{|h|}{2}$ edges. So $\Gamma(h) \cap \mathcal{R}_s$ contains at least $\gamma \binom{|h|}{2}$ edges, as desired. \Box

Now since $\mathcal{R}_s \subseteq \mathcal{R}$, we have $|\mathcal{R}_s| = o(n^2)$. This fact together with Claim 10 implies the following.

$$\sum_{h \in \mathcal{H}} \gamma \binom{|h|}{2} \leqslant \sum_{h \in \mathcal{H}} |\Gamma(h) \cap \mathcal{R}_s| \leqslant |\mathcal{R}_s| \left(|E(F)| - 1 \right) = o(n^2).$$

Indeed, the sum $\sum_{h \in \mathcal{H}} |\Gamma(\{h\}) \cap \mathcal{R}_s|$ counts each edge of \mathcal{R}_s at most |E(F)| - 1 times.

2.3 Proof of Theorem 5

Since $w(m) = o(m^2)$ and w is defined only on \mathbb{Z}_+ , there are only finitely many values of m such that $w(m) > m^2$, and thus $w(m) = O(m^2)$. Let C be a constant such that $w(m) \leq Cm^2$ for all $m \in \mathbb{Z}_+$. Theorem 4 implies that

$$\sum_{h \in E(\mathcal{H}): |h| \leq n^{1/2}} w(|h|) \leq \sum_{h \in E(\mathcal{H}): |h| \leq n^{1/2}} C|h|^2 = o(n^2),$$
(3)

simply because $n^{1/2} = o(n)$. Now since $w(m) = o(m^2)$, Theorem 3 implies that

$$\sum_{h \in E(\mathcal{H}):|h| > n^{1/2}} w(|h|) = \sum_{h \in E(\mathcal{H}):|h| > n^{1/2}} o(|h|^2) = o\left(\sum_{h \in E(\mathcal{H}):|h| > n^{1/2}} |h|^2\right) = o(n^2).$$
(4)

So adding up (3) and (4), the proof is complete.

The electronic journal of combinatorics 26(4) (2019), #P4.7

Acknowledgements

We thank József Balogh for suggesting the line of investigation carried out in this paper.

References

- R. Anstee and S. Salazar. Forbidden Berge hypergraphs. *Electronic Journal of Combinatorics*, 24 (2017) #P1.59.
- [2] P. Erdős, P. Frankl and V. Rödl. The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. *Graphs and Combinatorics*, 2 (1986) 113–121.
- [3] Z. Füredi and L. Ozkahya. On 3-uniform hypergraphs without a cycle of a given length. Discrete Applied Mathematics, 216 (2017) 582–588.
- [4] D. Gerbner, A. Methuku and C. Palmer. General lemmas for Berge-Turán hypergraph problems, arXiv:1808.10842 (2018).
- [5] D. Gerbner, A. Methuku and M. Vizer. Asymptotics for the Turán number of Berge- $K_{2,t}$, Journal of Combinatorial Theory, Series B, **137** (2019) 264–290.
- [6] D. Gerbner and C. Palmer. Extremal results for Berge-hypergraphs. SIAM Journal on Discrete Mathematics, 31(4) (2015) 2314–2327.
- [7] D. Gerbner and C. Palmer. Counting copies of a fixed subgraph in F-free graphs. European Journal of Combinatorics, 82 (2019) 103001.
- [8] D. Gerbner and B. Patkós. Extremal Finite Set Theory, 1st Edition, CRC Press, 2018.
- [9] D. Grósz, A. Methuku and C. Tompkins. Uniformity thresholds for the asymptotic size of extremal Berge-F-free hypergraphs. arXiv:1803.01953 (2018).
- [10] E. Győri. Triangle-Free Hypergraphs. Combinatorics, Probability and Computing, 15 (2006) 185–191.
- [11] E. Győri, G.Y. Katona and N. Lemons. Hypergraph extensions of the Erdős-Gallai theorem. European Journal of Combinatorics, 58 (2016) 238–246.
- [12] E. Győri and N. Lemons. 3-uniform hypergraphs avoiding a given odd cycle. Combinatorica, 32 (2012) 187–203.
- [13] E. Győri and N. Lemons. Hypergraphs with no cycle of length 4. Discrete Mathematics, 312 (2012) 1518–1520.
- [14] E. Győri and N. Lemons. Hypergraphs with no cycle of a given length. Combinatorics, Probability and Computing, 21 (2012) 193–201.
- [15] C. Palmer, M. Tait, C. Timmons and A.Z. Wagner. Turán numbers for Bergehypergraphs and related extremal problems. *Discrete Mathematics* 342 (2019) 1553– 1563.