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Abstract

Stiebitz determined the chromatic number of generalised Mycielski graphs us-
ing the topological method of Lovász, which invokes the Borsuk–Ulam theorem.
Van Ngoc and Tuza used elementary combinatorial arguments to prove Stiebitz’s
theorem for 4-chromatic generalised Mycielski graphs, and asked if there is also
an elementary combinatorial proof for higher chromatic number. We answer their
question by showing that Stiebitz’s theorem can be deduced from a version of Fan’s
combinatorial lemma. Our proof uses topological terminology, but is otherwise
completely discrete and could be rewritten to avoid topology altogether. However,
doing so would be somewhat artificial, because we also show that Stiebitz’s theorem
is equivalent to the Borsuk–Ulam theorem.

Mathematics Subject Classifications: 05C15, 55U10

1 Introduction

The Mycielski construction [10] is one of the earliest and arguably simplest constructions
of triangle-free graphs of arbitrary chromatic number. Given a graph G = (V,E), we let
M2(G) be the graph with vertex set V ×{0, 1}∪{z}, where there is an edge {(u, 0), (v, 0)}
and {(u, 0), (v, 1)} whenever {u, v} ∈ E, and an edge {(u, 1), z} for all u ∈ V . It is an
easy exercise to show that the chromatic number increases with each iteration of M2(·).
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Figure 1: The graph M3(C5) ∼= M3(M2(K2)) ∈M4.

The construction was generalised by Stiebitz [15] (see also [12, 5]), and independently
by Van Ngoc [16] (see also [17]), in the following way. Given a graph G = (V,E) and an
integer r > 1, we define Mr(G) as the graph with vertex set V × {0, . . . , r − 1} ∪ {z},
where there is an edge {(u, 0), (v, 0)} and {(u, i), (v, i+ 1)} whenever {u, v} ∈ E, and an
edge {(u, r − 1), z} for all u ∈ V . The construction is illustrated in Figure 1.

If r > 2, it is no longer true that the chromatic number increases with each iteration
of Mr(·). For instance, it can be shown that if C7 is the complement of the 7-cycle, then
χ(M3(C7)) = χ(C7) = 4. However, Stiebitz [15] was able to show that the chromatic
number does increase with each iteration of Mr(·) if we start with an odd cycle, or some
other suitably chosen graph. For every integer k > 2, let us denote by Mk the set of all
‘generalised Mycielski graphs’ obtained from K2 by k − 2 iterations of Mr(·), where the
value of r can vary from iteration to iteration. Stiebitz [15] (see also [5, 8]) proved the
following.

Theorem 1 (Stiebitz [15]). If G ∈Mk, then χ(G) > k.

Stiebitz’s proof is based on Lovász’s [7] bound on the chromatic number in terms of the
connectedness of the neighbourhood complex, which Lovász developed to prove Kneser’s
conjecture (see [8] for a comprehensive account). Lovász’s bound uses the following result
of Borsuk [2], usually known in the literature as the Borsuk–Ulam theorem.

Theorem 2 (Borsuk [2]). There exists no continuous antipodal mapping f : Sn → Sn−1;
that is, no continuous mapping such that f(−x) = −f(x) for all x ∈ Sn.

To this day, no combinatorial proof of Theorem 1 is known (see [8, pp. 133]), except
for the case k = 4 [17]. At the end of their paper, Van Ngoc and Tuza [17] propose the
following problem:

Finally, we would like to invite attention to the problem that no elementary com-
binatorial proof is known so far for the general form of Stiebitz’s theorem, yielding
graphs of arbitrarily large chromatic number and fairly large odd girth.

The answer to the problem depends on the interpretation of ‘elementary combinatorial
proof’. Does it mean a proof that is ‘discrete’ and does not rely on continuity? Or
does it mean a ‘graph theoretic’ proof which avoids any topological concepts, such as
triangulations of spheres?
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In this note we will give a new discrete proof of Theorem 1 based on a generalisation,
due to Prescott and Su [11], of a classical lemma of Fan [4], and on a result of Kaiser and
Stehĺık [6]. Since the proofs of both these theorems are discrete, this provides a discrete
proof of Theorem 1.

Triangulations of spheres are central to our proof, and rewriting the proof so as to
avoid any topological concepts (as Matoušek [9] has done for the Lovász–Kneser theorem)
is certainly possible, but seems somewhat artificial. Indeed, we show that Theorem 2
follows fairly easily from Theorem 1.

We would like to point out that our proof of Theorem 1 leads to a discrete proof of
Schrijver’s [13] sharpening of the Lovász–Kneser theorem [7], via the following result of
Kaiser and Stehĺık [6] (whose proof is entirely combinatorial). For a definition of SG(n, k),
we refer the reader to [6] or [8].

Theorem 3 (Kaiser and Stehĺık [6]). For all integers k > 1 and n > 2k, there exists a
graph G ∈Mn−2k+2 homomorphic to SG(n, k).

2 Preliminaries

Our graph theoretic terminology is standard and follows [1]. For an excellent introduction
to topological methods in combinatorics, and all the topological terms used in this paper,
see [8].

Prescott and Su [11] introduced flags of hemispheres to prove a slight generalisation of
Fan’s combinatorial lemma [4]. A flag of hemispheres in Sn is a sequence H0 ⊂ · · · ⊂ Hn

where each Hd is homeomorphic to a d-ball, {H0,−H0} are antipodal points, Hn∪−Hn =
Sn, and for 1 6 d 6 n,

∂Hd = ∂(−Hd) = Hd ∩ −Hd = Hd−1 ∪ −Hd−1 ∼= Sd−1.

The polyhedron |K| of a simplicial complex K is defined as the union of all of its
simplices.1 We say that K is a triangulation of |K| (or any space homeomorphic to it). A
triangulation K of Sn is (centrally or antipodally) symmetric if σ ∈ K whenever −σ ∈ K.
A symmetric triangulation K of Sn is said to be aligned with hemispheres if we can find
a flag of hemispheres such that for every d, there is a subcomplex of the d-skeleton of K
that triangulates Hd.

Given a simplicial complex K and a labelling (map) λ : V (K) → Z \ {0}, we say a
d-simplex σ ∈ K is positive alternating if it has labels {+j0,−j1,+j2, . . . , (−1)djd}, where
0 < j0 < j1 < · · · < jd. The following version of Fan’s lemma [4] is a key ingredient of
our proof.

Theorem 4 (Prescott and Su [11]). Let K be a symmetric triangulation of Sn aligned with
hemispheres, and let λ : V (K) → {±1, . . . ,±k} be a labelling such that λ(−v) = −λ(v)
for every vertex v ∈ V (K), and λ(u) + λ(v) 6= 0 for every edge {u, v} ∈ K. Then there
exists an odd number of positive alternating n-simplices. In particular, k > n+ 1.

1In the terminology of Matoušek [8], K is a geometric simplicial complex.
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We remark that the proof in [11] is constructive and discrete, and that Fan’s original
result [4] imposes a more restrictive condition on the triangulation.

Suppose K is a symmetric triangulation of Sn. A 2-colouring of K is an assignment
of two colours (black and white) to the vertices of K. The 2-colouring is said to be
antisymmetric if antipodal vertices receive distinct colours, and it is proper if no n-simplex
is monochromatic.

Given a symmetric triangulation K of Sn and a proper antisymmetric 2-colouring κ
of K, we denote by G̃(K,κ) the graph obtained from the 1-skeleton K(1) by deleting all
monochromatic edges. If ν denotes the antipodal action on G̃(K,κ), we set G(K,κ) =
G̃(K,κ)/ν, and let p : G̃(K,κ) → G(K,κ) be the corresponding projection. Note that
the graph G̃(K,κ) is a bipartite double cover of G(K,κ).

The first part of the following theorem is an immediate consequence of [6, Lemma 3.2
and Theorem 6.1], where the results are stated in terms of so-called quadrangulations of
projective spaces. The second part is an easy exercice.

Theorem 5 (Kaiser and Stehĺık [6]). Given n > 1, let K be a symmetric triangulation of
Sn with a proper antisymmetric 2-colouring κ. For any r > 1, there exists a symmetric
triangulation K ′ of Sn+1 with a proper antisymmetric 2-colouring κ′ such that G(K ′, κ′) ∼=
Mr(G(K,κ)). Moreover, if K is aligned with hemispheres, then so is K ′.

3 A combinatorial proof of Theorem 1

Our proof of Theorem 1 is based on the following corollary of Theorem 4.

Corollary 6. Let K be a symmetric triangulation of Sn aligned with hemispheres, and
let λ : V (K) → {±1, . . . ,±(n + 1)} be a labelling such that λ(−v) = −λ(v) for every
vertex v ∈ V (K), and every n-simplex has vertices of both signs. Then there exists an
edge {u, v} ∈ K such that λ(u) + λ(v) = 0.

Proof. Let K,λ be as in the corollary and suppose, for the sake of contradiction, that
λ(u) + λ(v) 6= 0 for every edge {u, v} ∈ K. We now define a new labelling µ : V (K) →
{±1, . . . ,±(n+ 1)} by µ(v) = (−1)|λ(v)|λ(v). Observe that

µ(−v) = (−1)|λ(−v)|λ(−v) = −(−1)|λ(v)|λ(v) = −µ(v),

and if µ(u) = −µ(v), then λ(u) = −λ(v), and therefore µ(u) + µ(v) 6= 0 for every
edge {u, v} ∈ K. Hence µ satisfies the hypothesis of Theorem 4. Therefore, there is an
odd number of positive alternating n-simplices, i.e., simplices labelled {1,−2, . . . , (−1)nn,
(−1)n+1(n+1)} by µ. Hence, there is an odd number of simplices labelled {1, 2, . . . , n+1}
by λ. This contradicts the assumption that every n-simplex in K has vertices of both
signs. Hence, there exists an edge {u, v} ∈ K such that λ(u) + λ(v) = 0.

We are now ready to prove Theorem 1.
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Proof of Theorem 1. The case k = 2 (G = K2) and k = 3 (G is an odd cycle) are
trivial, so assume k > 3 and let G ∈ Mk. The graph G is obtained from an odd cycle
by k − 3 iterations of Mr(·), where the value of r can vary from iteration to iteration.
By repeated applications of Theorem 5 (k − 3 applications to be exact), there exists a
symmetric triangulation K of Sk−2 aligned with hemispheres, and a proper antisymmetric
2-colouring κ such that G ∼= G(K,κ). (To see this, observe that Mr(K2) is isomorphic to
the odd cycle C2r+1, which is isomorphic to G(K,κ), where K is a symmetric triangulation
of S1—i.e., a graph—isomorphic to the cycle C4r+2, and κ is a proper 2-colouring of K.
By choosing any pair of antipodal vertices of K to be the hemispheres H0 and −H0, it is
clear that K is aligned with hemispheres.) Let us say the colours used in κ are black and
white.

Consider any (not necessarily proper) (k−1)-colouring c : V (G)→ {1, . . . , k−1}. By
setting

λ(v) =

{
+c(p(v)) if v is black

−c(p(v)) if v is white,

we obtain an antisymmetric labelling λ : V (K) → {±1, . . . ,±(k − 1)} such that every
(k−2)-simplex has vertices of both signs. By Corollary 6, there exists an edge {u, v} ∈ K
such that λ(u)+λ(v) = 0. Hence, the edge {p(u), p(v)} ∈ E(G) satisfies c(p(u)) = |λ(u)| =
|λ(v)| = c(p(v)), i.e., c is not a proper colouring of G. This shows that χ(G) > k.

4 Equivalence of the theorems of Borsuk–Ulam and Stiebitz

Let us recall the following construction due to Erdős and Hajnal [3]. The Borsuk graph
BG(n, α) is defined as the (infinite) graph whose vertices are the points of Rn+1 on Sn,
and the edges connect points at Euclidean distance at least α, where 0 < α < 2. Using
Theorem 2, it can be shown that χ(BG(n, α)) > n + 2 (in fact the two statements are
equivalent, as noted by Lovász [7]). Furthermore, by using the standard (n+ 2)-colouring
of Sn based on the central projection of a regular (n + 1)-simplex, it can be shown
that BG(n, α) is (n + 2)-chromatic for all α sufficiently large. In particular, Simonyi
and Tardos [14] have shown that BG(n, α) is (n + 2)-chromatic for all α > α0, where
α0 = 2

√
1− 1/(n+ 3).

We will need the following lemma.

Lemma 7. For every n > 0 and every δ > 0, there exists G ∈ Mn+2 and a mapping
f : V (G)→ Sn such that ‖f(u) + f(v)‖ < δ, for every edge {u, v} ∈ E(G). In particular,
G ⊂ BG(n,

√
4− δ2).

Proof. The proof is by induction on n. We take n = 1 as the base case, but we remark
that the statement is also true for n = 0, because K2 is the only graph in M2, and the
two vertices u, v of K2 can be placed at antipodal points of S0, so ‖f(u) + f(v)‖ = 0.

To see that the statement is true for n = 1, observe thatM3 is the family of odd cycles.
The vertices of C2r+1 can be mapped to S1 so that f(u) and −f(v) are at angular distance
π/(2r + 1), for every edge {u, v} ∈ E(G). Therefore, ‖f(u) + f(v)‖ = 2 sin(π/(4r + 2)).
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As r tends to infinity, ‖f(u) + f(v)‖ tends to zero; in particular, for every δ > 0 there
exists r such that ‖f(u) + f(v)‖ < δ for every {u, v} ∈ E(C2r+1).

Now suppose the theorem is true for n > 1. Fix a real number δ > 0. By the
induction hypothesis, there exists G ∈ Mn+2 and a mapping f : V (G) → Sn such that
‖f(u) + f(v)‖ < δ/2 for every {u, v} ∈ E(G). We let r > 2 be a large integer, to be
specified shortly in the proof, and we define a mapping f̄ : V (Mr(G))→ Sn+1 by setting:

f̄(z) := (0, . . . , 0, (−1)r),

f̄((v, i)) :=
(
f(v) cos(πi/2r), (−1)i sin(πi/2r)

)
.

Fix an arbitrary edge {x, y} ∈ E(Mr(G)). We will show that ‖f̄(x)+ f̄(y)‖ < δ. First,
if x = (u, 0) and y = (v, 0), for some {u, v} ∈ E(G), then clearly f̄(x) = (f(u), 0) and
f̄(y) = (f(v), 0), so ‖f̄(x) + f̄(y)‖ = ‖f(u) + f(v)‖ < δ/2.

Second, if {x, y} = {(u, i), (v, i + 1)}, for some {u, v} ∈ E(G), then applying the
triangle inequality (twice) we get:

‖f̄(x) + f̄(y)‖ 6
∥∥f(u) cos(πi/2r) + f(v) cos(π(i+ 1)/2r)

∥∥
+ | sin(πi/2r)− sin(π(i+ 1)/2r)|

6 ‖f(u) + f(v)‖ · | cos(πi/2r)|
+ ‖f(v)‖ · | cos(π(i+ 1)/2r)− cos(πi/2r)|
+ | sin(πi/2r)− sin(π(i+ 1)/2r)|

6 δ/2 + | cos(t)− cos(t+ ε)|+ | sin(t)− sin(t+ ε)|,

where t = πi/2r, ε = π/2r. Since sin and cos are uniformly continuous, having chosen r
sufficiently large, we can assume that | cos(t)− cos(t+ ε)|, | sin(t)− sin(t+ ε)| < δ/4 (for
all t ∈ R in fact). So ‖f(x) + f(y)‖ < δ as required.

Finally, if {x, y} = {(u, r − 1), z}, then we have

‖f̄(x) + f̄(y)‖ =
√

cos2(π(r − 1)/2r) + (1− sin(π(r − 1)/2r)))2

< δ,

where the inequality holds provided r was chosen sufficiently large, using that cos(π(r −
1)/2r) approaches cos(π/2) = 0 and sin(π(r− 1)/2r)) approaches sin(π/2) = 1 as r tends
to infinity.

Thus, we have now shown that, provided r was chosen sufficiently large, for every
{x, y} ∈ E(Mr(G)) we have ‖f̄(x) + f̄(y)‖ < δ. The lemma follows by induction.

We will now show how Theorem 2 can be deduced from Theorem 1 and Lemma 7.

Proof of Theorem 2. Suppose there exists a continuous antipodal map f : Sn → Sn−1. Set
ε = 1/

√
n+ 2. Since every continuous function on a compact set is uniformly continuous,

there exists δ > 0 such that if ‖x− y‖ < δ, then ‖f(x)− f(y)‖ < 2ε.
By Lemma 7, there exists G ∈ Mn+2 and a mapping g : V (G) → Sn such that

‖g(u) + g(v)‖ < δ, for every edge {u, v} ∈ E(G). Therefore, the mapping f ◦ g : V (G)→
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Sn−1 satisfies ‖f(g(u)) + f(g(v))‖ < 2ε, for every edge {u, v} ∈ E(G), so the Euclidean
distance between f(g(u)) and f(g(v)) is

‖f(g(u))− f(g(v))‖ > 2
√

1− ε2 = 2
√

1− 1/(n+ 2).

Recalling that α0 = 2
√

1− 1/(n+ 3), we see that G ⊂ BG(n− 1, α0), and thus χ(G) 6
χ(BG(n− 1, α0)) = n+ 1. On the other hand, we have χ(G) > n+ 2 by Theorem 1. This
contradiction proves that there is no continuous antipodal map f : Sn → Sn−1.
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