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Abstract

We find the first non-octahedral balanced 2-neighborly 3-sphere and the bal-
anced 2-neighborly triangulation of the lens space L(3, 1). Each construction has
16 vertices. We show that there exists a balanced 3-neighborly non-spherical 5-
manifold with 18 vertices. We also show that the rank-selected subcomplexes of a
balanced simplicial sphere do not necessarily have an ear decomposition.

Mathematics Subject Classifications: 05E45

1 Introduction

A simplicial complex is called k-neighborly if every subset of vertices of size at most
k is the set of vertices of one of its faces. Neighborly complexes, especially neighborly
polytopes and spheres, are interesting objects to study. In the seminal work of McMullen
[12] and Stanley [19], it was shown that in the class of polytopes and simplicial spheres of
a fixed dimension and with a fixed number of vertices, the cyclic polytope simultaneously
maximizes all the face numbers. The d-dimensional cyclic polytope is bd

2
c-neighborly.

Since then, many other classes of neighborly polytopes have been discovered. We refer to
[4], [16] and [18] for examples and constructions of neighborly polytopes. Meanwhile, the
notion of neighborliness was extended to other classes of objects: for instance, neighborly
cubical polytopes were defined and studied in [8], [9], and [17], and neighborly centrally
symmetric polytopes and spheres were studied in [1], [3], [7] and [14].

In this paper we discuss a similar notion for balanced simplicial complexes. Balanced
complexes were defined by Stanley in [20], where they were called completely balanced.
A (d−1)-dimensional simplicial complex is called balanced if its graph is d-colorable. For
instance, the barycentric subdivision of regular CW complexes and order complexes are
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balanced. We say that a balanced simplicial complex is balanced k-neighborly if every set
of k or fewer vertices with distinct colors forms a face. For example, if ∆1 and ∆2 are
balanced k-neighborly spheres, then the join ∆ = ∆1 ∗∆2 is also a balanced neighborly
k-sphere, and we call ∆ join-decomposable. However, apart from the cross-polytopes,
it is not known whether other join-indecomposable balanced k-neighborly polytopes or
spheres exist. To the best of our knowledge, no examples of such objects appear in the
current literature, even for k = 2. As for balanced 2-neighborly manifolds, one such
construction that triangulates the sphere bundle is given in [11]; it is also a minimal
balanced triangulation of the underlying topological space.

This more or less explains why so far there is even no plausible sharp upper bound
conjecture for balanced spheres or manifolds. The goal of this paper is to partially rem-
edy this situation by searching for balanced neighborly spheres and manifolds of lower
dimensions. It turns out that even in the lower dimensional cases balanced neighborly
spheres or manifolds with a given number of vertices do not always exist.

• The octahedral 3-sphere is the only balanced 2-neighborly 3-sphere with less than
16 vertices.

• There is a unique balanced 2-neighborly 4-sphere with 15 vertices, known as 4155
2 in

[10].

• There exists a balanced 3-neighborly non-spherical 5-manifold with 18 vertices.

• There are two constructions of balanced 2-neighborly 3-manifolds with 16 vertices;
one triangulates the sphere, and the other triangulates the lens space L(3, 1).

In a different direction, it is also interesting to ask whether every rank-selected sub-
complex of a balanced simplicial polytope or sphere has a convex ear decomposition.
This statement, if true, would imply that rank-selected subcomplexes of balanced simpli-
cial polytopes possess certain weak Lefschetz properties, see Theorem 3.9 in [22]. As a
consequence, it would also provide an alternative proof of the balanced Generalized Lower
Bound Theorem, see Theorem 3.3 and Remark 3.4 in [13]. We present an example giving
a negative answer to this question for 3-dimensional spheres.

The structure of this manuscript is as follows. In Section 2, after reviewing basic
definitions, we establish basic properties of balanced neighborly spheres; in particular, we
prove that for some values of f0, such spheres cannot exist. In Section 3 we discuss how
to find balanced k-neighborly (2k − 1)-manifolds from less neighborly balanced (2k − 2)-
spheres, for k = 2, 3. In Section 4, we construct a balanced 2-neighborly 3-sphere with
16 vertices. In Section 5, we present the balanced 2-neighborly triangulation of L(3, 1)
with 16 vertices. In Section 6 we provide a way to construct balanced spheres whose
rank-selected subcomplex does not have an ear decomposition.

2 Basic properties of balanced neighborly spheres

A simplicial complex ∆ with vertex set V is a collection of subsets σ ⊆ V , called faces,
that is closed under inclusion, and such that for every v ∈ V , {v} ∈ ∆. For σ ∈ ∆, let
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dimσ := |σ|−1 and define the dimension of ∆, dim ∆, as the maximum dimension of the
faces of ∆. A facet is a maximal face under inclusion. We say that a simplicial complex
∆ is pure if all of its facets have the same dimension.

If ∆ is a simplicial complex and σ is a face of ∆, the star of σ in ∆ is st∆ σ := {τ ∈
∆ : σ ∪ τ ∈ ∆}. We also define the link of σ in ∆ as lk∆ σ := {τ − σ ∈ ∆ : σ ⊆ τ ∈ ∆},
and the deletion of a subset of vertices W from ∆ as ∆\W := {σ ∈ ∆ : σ ∩W = ∅}. If
∆1 and ∆2 are simplicial complexes on disjoint vertex sets, then the join of ∆1 and ∆2,
denoted ∆1 ∗ ∆2, is the simplicial complex with vertex set V (∆1) ∪ V (∆2) whose faces
are {σ1 ∪ σ2 : σ1 ∈ ∆1, σ2 ∈ ∆2}.

If ∆ is a pure (d − 1)-dimensional complex such that every (d − 2)-dimensional face
of ∆ is contained in at most two facets, then the boundary complex of ∆ consists of all
(d− 2)-dimensional faces that are contained in exactly one facet, as well as their subsets.
A simplicial complex ∆ is a simplicial sphere (resp. simplicial ball) if the geometric
realization of ∆ is homeomorphic to a sphere (resp. ball). The boundary complex of a
simplicial d-ball is a simplicial (d− 1)-sphere. A simplicial sphere is called polytopal if it
is the boundary complex of a convex polytope. For instance, the boundary complex of an
octahedron is a polytopal sphere; we will refer to it as an octahedral sphere.

For a fixed field or group k, we say that ∆ is a (d− 1)-dimensional k-homology sphere
if H̃i(lk∆ σ; k) ∼= H̃i(Sd−1−|σ|; k) for every face σ ∈ ∆ (including the empty face) and
i > −1. A homology d-ball (over k) is a d-dimensional simplicial complex ∆ such that (i)
∆ has the same homology as the d-dimensional ball, (ii) for every face F , the link of F
has the same homology as the (d−|F |)-dimensional ball or sphere, and (iii) the boundary
complex ∂∆ is a homology (d − 1)-sphere. The classes of simplicial (d − 1)-spheres and
homology (d− 1)-spheres coincide when d 6 3. From now on all homology are computed
with coefficients in Z and we will omit it from our notation.

Next we define a special structure that exists in some pure simplicial complexes.

Definition 1. An ear decomposition of a pure (d− 1)-dimensional simplicial complex ∆
is an ordered sequence ∆1,∆2, · · · ,∆m of pure (d − 1)-dimensional subcomplexes of ∆
such that:

1. ∆1 is a simplicial (d − 1)-sphere, and for each j = 2, 3, · · · ,m, ∆j is a simplicial
(d− 1)-ball.

2. For 2 6 j 6 m, ∆j ∩ (∪j−1
i=1 ∆i) = ∂∆j.

3. ∪mi=1∆i = ∆.

We call ∆1 the initial complex, and each ∆j, j > 2, an ear of this decompostion. No-
tice that this definition is more general than Chari’s original definition of a convex ear
decomposition, see [2, Section 3.2], where the ∆i’s are required to be subcomplexes of
the boundary complexes of polytopes. In particular, if a complex has no ear decompo-
sition, then it has no convex ear decomposition. However, by the Steinitz theorem, all
simplicial 2-spheres are polytopal, and hence also all simplicial 2-balls can be realized as
subcomplexes of the boundary complexes of 3-dimensional polytopes. So for 2-dimensional
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simplicial complexes, the notion of an ear decomposition coincides with that of a convex
ear decomposition.

A (d − 1)-dimensional simplicial complex ∆ is called balanced if the graph of ∆ is
d-colorable, or equivalently, there is a coloring map κ : V → [d] such that κ(x) 6= κ(y)
for any edge {x, y} ∈ ∆. Here [d] = {1, 2, · · · , d} is the set of colors. We denote by
Vi the set of vertices of color i. A balanced simplicial complex is called balanced k-
neighborly if every set of k or fewer vertices with distinct colors forms a face. We say e
is a missing colored edge if e /∈ ∆ and the vertices of e have distinct colors. For S ⊆ [d],
the subcomplex ∆S := {F ∈ ∆ : κ(F ) ⊆ S} is called the rank-selected subcomplex of ∆.
We also define the flag f -vector (fS(∆) : S ⊆ [d]) and the flag h-vector (hS(∆) : S ⊆ [d])
of ∆, respectively, by letting fS(∆) := #{F ∈ ∆ : κ(F ) = S}, where f∅(∆) = 1, and
hS(∆) :=

∑
T⊆S(−1)#S−#TfT (∆). The usual f -numbers and h-numbers can be recovered

from the relations fi−1(∆) =
∑

#S=i fS(∆) and hi(∆) =
∑

#S=i hS(∆).
In the remainder of this section, we establish some restrictions on the possible size of

color sets of balanced neighborly spheres.

Lemma 2. Let ∆ be a balanced k-neighborly homology (2k − 1)-sphere. Then ∆ has the
same number of vertices of each color. In particular, f0(∆) = 2k` for some ` > 2.

Proof. Let W ⊆ [2k] be an arbitrary subset of the set of the colors with |W | = k. Since
∆ is balanced k-neighborly, ∆W is also balanced k-neighborly, and hence ∆W is the join
of k color sets of colors in W , each considered as a 0-dimensional complex. By the
definition of the join and the flag h-numbers, we have fU∪{i}(∆) = fU(∆)f{i}(∆) and
hence hU∪{i}(∆) = hU(∆)h{i}(∆) for all i ∈ W , U ⊂ W and i /∈ U . Therefore,∏
i∈W

(|Vi| − 1) =
∏
i∈W

h{i}(∆) = hW (∆)
(∗)
= h[2k]\W (∆) =

∏
i∈[2k]\W

h{i}(∆) =
∏

i∈[2k]\W

(|Vi| − 1),

where (∗) follows from the Dehn-Sommerville relations. Since W is an arbitrary k-subset
of [2k], it follows that each color set in ∆ must have the same size.

Remark 3. Lemma 2 not only holds for homology (2k− 1)-spheres but also for orientable
homology (2k − 1)-manifolds. Indeed by replacing the flag h-numbers with the flag h′′-
numbers (see [6] for definition), Theorem 4.1 in [6] gives h′′W (∆) = h′′[2k]\W (∆), which

further implies that hW (∆) = h[2k]\W (∆) since both W and [2k]\W are of size k. The
rest of the proof is the same.

Unfortunately, the above lemma is not sufficient to tell whether a balanced k-neighborly
homology (2k − 1)-sphere or manifold with 2k` vertices can exist for given k, ` > 2.

3 Balanced neighborly (d − 1)-manifolds with 3d vertices

In this section, we consider balanced bd
2
c-neighborly (d − 1)-manifolds (for d = 3, 4, 5)

with each color set of size 3. We begin with the following lemma.
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Figure 1: Left: triangulation of the vertex link lk∆ vi for vi ∈ V4, where {u1, u2, u3},
{w1, w2, w3} and {z1, z2, z3} are the three other color sets. Right: the complex Σ.

Lemma 4. Let d > 4. If ∆ is a balanced homology (d − 1)-sphere and Vd = {v1, v2, v3}
is the set of vertices of color d, then lk∆ vi ∩ lk∆ vj is a homology (d − 2)-ball for any
1 6 i < j 6 3, and ∩3

k=1 lk∆ vk is a homology (d− 3)-sphere.

Proof. Let {i, j, k} = [3] be distinct, Σ = lk∆ vi ∩ lk∆ vj and Γ = ∩3
k=1 lk∆ vk. We first

prove that Σ and Γ have the same homology as a simplicial (d − 2)-ball and simplicial
(d− 3)-sphere respectively. Since each (d− 2)-face of ∆ is contained in exactly 2 facets,
it follows that lk∆ vi ∪ lk∆ vj = ∆[d−1]. By the Mayer-Vietoris sequence, for any n > 0,

· · · → Hn+1(∆[d−1])→ Hn(Σ)→ Hn(lk∆ vi)⊕Hn(lk∆ vj)→ Hn(∆[d−1])→ · · · . (1)

Note that ∆[d−1] is a deformation retract of ∆ minus three points, hence βd−2(∆[d−1]) = 2
and βk(∆[d−1]) = 0 for 0 6 k 6 d− 3. We conclude from (1) that βk(Σ) = 0 for all k > 0.
Since lk∆ vk ∪ Σ = ∆[d−1] and lk∆ vk ∩ Σ = Γ, by the Mayer-Vietoris sequence we obtain

· · · → Hn+1(∆[d−1])→ Hn(Γ)→ Hn(lk∆ vk)⊕Hn(Σ)→ Hn(∆[d−1])→ · · · .

Hence βd−3(Γ) = 1 and βk(Γ) = 0 for 0 6 k 6 d− 4.
Next, for any τ ∈ Γ, we have lkΣ τ = lklk∆ τ vi ∩ lklk∆ τ vj and lkΓ τ = ∩3

i=1 lklk∆ τ vi.
Since lk∆ τ is a balanced homology (d−1−|τ |)-sphere, using the same argument as above,
we may show that lkΣ τ and lkΓ τ have the same homology as a (d − 2 − |τ |)-ball and
(d−3−|τ |)-sphere respectively. Therefore Γ is a homology (d−3)-sphere. Finally, for any
interior face σ of Σ, lkΣ σ = lklk∆ vi σ = lklk∆ vj σ, and hence lkΣ σ is a homology sphere.
By definition we conclude that Σ is a homology (d− 2)-ball.

Remark 5. The complex Γ in Lemma 4 is not balanced, since Γ is (d−1)-colorable instead
of being (d− 2)-colorable.

Proposition 6. The only balanced 2-neighborly 3-manifold with 12 vertices triangulates
the nonorientable S2-bundle over S1.

Proof. Let ∆ be a balanced 2-neighborly 3-manifold with 12 vertices. Its f -vector is
f(∆) = (1, 12, 54, 84, 42). By Lemma 2 and Remark 3, each color set of ∆ has three
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vertices. We let V4 = {v1, v2, v3} be the set of vertices of color 4. Since ∆ is balanced
2-neighborly, each lk∆ vi is a 2-sphere with 9 vertices, its f -vector is (1,9,21,14). Further-
more, the balancedness of ∆ implies that every vertex u ∈ lk∆ vi has deglk∆ vi

u = 4 or 6.
If x is the number of vertices of degree 6 in lk∆ vi, then

4(9− x) + 6x =
∑

u∈lk∆ vi

deg(lklk∆ vi u) = 2f1(lk∆ vi) = 42,

and hence x = 3. A balanced 2-sphere with 9 vertices, 3 of which have degree 6, is unique
up to isomorphism, as shown in Figure 1. Hence all vertex links in ∆ are combinatorially
isomorphic.

Since fi(∆[3]) = fi(∆)−
∑3

j=1 fi−1(lk∆ vj) for all i 6 2, we have f(∆[3]) = (1, 9, 27, 21).
Let i, j, k ∈ [3] be distinct and Σ := lk∆ vi∩lk∆ vj. Any facet F of Σ are 2-dimensional, for
otherwise if F is an edge, then lk∆ F is either a 4-cycle or 6-cycle, where in both cases vi
and vj share at least one common neighbor w, i.e., F∪{w} ∈ Σ, a contradiction. Similarly,
the facet cannot be 0-dimensional. Also the facets of Σ do not belong to lk∆ vk. Hence Σ
is a pure 2-dimensional subcomplex of lk∆ vi with 9 vertices and f2(∆[3])− f2(lk∆ vk) = 7
triangles.

On the other hand, for any u ∈ Σ, the vertex link lk∆ u is isomorphic to Figure 1 and
vi, vj ∈ lk∆ u. The intersection of links of arbitrary two vertices of the same color has the
following property

(∗): lkΣ u = lklk∆ u vi ∩ lklk∆ u vj is either an edge, or a path of length 3.

Since Σ is 2-dimensional, each connected component of Σ has at least 3 vertices. If
there are three components, then Σ is the disjoint union of three triangles, contradicting
that f2(Σ) = 7. Otherwise, if Σ is connected, then by observation (∗) we have that Σ is
a triangulated 2-manifold (with boundary). Since 21 = 3f2(Σ) =

∑
u∈Σ f1(lkΣ u) and by

observation (∗) f1(lkΣ u) ∈ {1, 3}, the links of three vertices in Σ are single edges, while
the rest are paths of length 3. However, enumeration based on observation (∗) yields that
there is no such complex Σ.

The last case is that Σ has two connected components. From observation (∗) we
see that each component cannot have 4 or 5 vertices. If one component is the triangle,
then the other component (as a 6-triangle subcomplex of the 9-vertex balanced 2-sphere)
must be the triangulated annulus as shown in Figure 1. By symmetry lk∆ vi ∩ lk∆ vk
and lk∆ vj ∩ lk∆ vk are also isomorphic to Σ. In this way we determine ∆[3] = lk∆ vi ∪
lk∆ vj: it is the union of three octahedral 2-spheres, each having a pair of antipodal facets
(F1, F2), (F2, F3) and (F3, F1), respectively. This also determines ∆, which is the balanced
triangulation of the nonorientable S2-bundle over S1 known as 31283

2 in [10].

Remark 7. The balanced 2-neighborly manifold 31283
2 is also known as BM4 defined in

[11]. In particular in [11, Proposition 6.9] it is shown that 31283
2 is the only balanced

12-vertex 3-manifold with β1 6= 0. See [11] and [23] for extension in higher dimensional
cases.

Next we characterize all balanced 3-spheres with each color sets of size 3.
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Lemma 8. Up to an isomorphism, there are four triangulations of balanced 3-spheres
with each color set of size 3.

Proof. Let ∆ be such a sphere and let V4 = {v1, v2, v3}. Each vertex link of ∆ is a
balanced 2-sphere with at most 9 vertices, hence it is either the octahedral sphere, the
suspension of a 6-cycle, or the connected sum of two octahedral spheres. We denote these
three 2-spheres as Σ1, Σ2 and Σ3 respectively. By Lemma 4, ∆[3] is the union of three
triangulated 2-balls Bi = lk∆ vj ∩ lk∆ vk, where {i, j, k} = [3], glued along their common
boundary complex c. Assume that f0(lk∆ vi) 6 f0(lk∆ vj) when i 6 j. An easy counting
leads to

f0(∆[3]) = f0(c) +
3∑
i=1

f0(Bi\c) = 9, f0(lk∆ vi) = f0(c) + f0(Bj\c) + f0(Bk\c) ∈ {6, 8, 9},

(2)
where f0(Bi\c) counts the number of interior vertices of Bi. By the Dehn-Sommerville
relations, the f -vector of any triangulated 3-manifold satisfies that f1 = f3 + f0. Since
every facet of ∆ contains exactly one vertex from V4, we have that f3(∆) =

∑3
i=1 f2(lk∆ vi)

and hence

f1(∆) =
3∑
i=1

f2(lk∆ vi) + f0(∆) =
3∑
i=1

(2f0(lk∆ vi)− 4) + 12 = 2
3∑
i=1

f0(lk∆ vi) 6 54,

we enumerate the combinatorial type of each f0(lk∆ vi) as follows:
Case 1: lk∆ v1

∼= Σ1. It follows that lk∆ v3 is obtained from lk∆ v2 by a cross flip (see
[5] for a reference). Since f0(∆[3]) = 9, either lk∆ v2

∼= Σ1, lk∆ v3
∼= Σ3, and the cross flip

replaces a 2-face of lk∆ v2 with its complement in the octahedral sphere. Or lk∆ v2
∼= Σ2,

lk∆ v3
∼= Σ3, and the cross flip replaces the union of three 2-faces of lk∆ v2 with its

complement in the octahedral sphere. In the first case the 3-sphere is the connected sum
of two octahedral 3-spheres, which we denote as S1. In the second case we obtain a 3-
sphere S2 (with lkS2 vi

∼= Σi for i ∈ [3]). Their f -vectors are f(S1) = (1, 12, 42, 60, 30) and
f(S2) = (1, 12, 46, 68, 34).

Case 2: lk∆ v1
∼= Σ2. In this case the number of missing colored edges in ∆[3] is

9·6
2
− f1(∆[3]) = 27−

∑3
i=1 f0(lk∆ vi), which equals either 1,2 or 3.

Subcase 1: lk∆ v2
∼= lk∆ v3

∼= Σ2. By conditions (2), c is a 6-cycle and ∆[3]\c consists
of three disjoint vertices of degree either 4 or 6. Note that in Σ2 every pair vertices of
degree 4 and degree 6 forms an edge. Since ∆[3] has only three missing edges between
vertices of different colors, the vertices in ∆[3]\c are of the same color and has degree 6.
Hence ∆[3] is the join of c and three disjoint vertices and ∆ is the join of two 6-cycles.
Denote this sphere as S3; its f -vector is (1, 12, 48, 72, 36).

Subcase 2: lk∆ vi ∼= Σi for i = 2, 3. Then c is a 7-cycle; furthermore, B3 has no
interior vertices and B1, B2 have a unique interior vertex b1, b2 respectively. Since ∆[3]

has two missing colored edges, and three vertices of degree 6 form an empty triangle in
lk∆ v3

∼= Σ3, WLOG assume that deg b1 = 4 and deg b2 = 6. The only vertex b3 not
connected to b2 in B2 must be the vertex of degree 6 in lk∆ v1

∼= Σ2. Hence B3 is the join
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of b3 with the path of length 5, which is c\b3. But then b3 is also the degree-6 vertex in
lk∆ v2

∼= Σ2, and there is no way to triangulate B1 such that it shares no common interior
edge with B2.

Subcase 3: lk∆ v2
∼= lk∆ v3

∼= Σ3. Then c is an 8-cycle and only B1 has an interior
vertex a. Also ∆[3] has one missing colored edge, so a is of degree 6. Three vertices of
degree 6 in Σ3 are of different colors, hence in lk∆ v2 and lk∆ v3 the other two vertices of
degree 6 must be two pairs of antipodal vertices in lk∆[3]

a (the other pair of antipodal
vertices in lk∆[3]

a is the missing edge in ∆[3]). In this way we recover lk∆ v2 = B1 ∪
B3, lk∆ v3 = B1 ∪ B2, where B1, B2, B3 are the 2-balls shown in the figure below (from
left to right); in particular, labels of the vertices represent the color and the blue (red
resp.) edges form the missing triangle in lk∆ v2 (lk∆ v3 resp.). We call this 3-sphere S4.
Its f -vector is (1, 12, 52, 80, 40).

Case 3: lk∆ v1
∼= Σ3. This is not possible by Proposition 6.

3

12

3

2

1 3

2
1

3

12

3

2

1 3

2

3

12

3

2

1 3

2

Theorem 9. There exists a unique balanced 2-neighborly homology 4-sphere 4155
2 with

each color set of size 3.

Proof. Let ∆ be such a sphere and let its color set V5 = {v1, v2, v3}. By Alexander
Duality, H̃i(∆{4,5}) ∼= H̃3−i(∆[3]). In particular, since ∆{4,5} is balanced 2-neighborly,
β2(∆[3]) = β1(∆{4,5}) = 4 and β1(∆[3]) = 0. Hence

f2(∆[3]) = (f1 − f0 + χ)(∆[3]) =
9 · 6

2
− 9 + 5 = 23.

By double counting,
∑3

i=1 f1(lk∆ vi) =
∑

W={i,j,5}⊆[5] f2(∆W ) =
(

4
2

)
f2(∆[3]) = 138. By

Proposition 6 and Lemma 8, f1(lk∆ vi) ∈ {42, 46, 48, 52}, it follows that either 138 =
42 + 48 · 2, that is, lk∆ v1

∼= S1 and lk∆ v2, lk∆ v3
∼= S3; or 138 = 46 · 3 and lk∆ vi ∼= S2 for

all i.
Consider the first case above. S1 is the connected sum of two octahedral 3-spheres.

For any 2-subset W ⊂ [4], the induced subcomplex (S1)W is the union of two 4-cycles
glued along an edge, so f1((S1)W ) = 7. Similarly, S3 is the join of two 6-cycles, so we
have (S3)W is either a 6-cycle or the bipartite graph K3,3, i.e., f1((S3)W ) = 6 or 9. Hence

23 = f2(∆W∪{5}) =
3∑
i=1

f1((lk∆ vi)W ) ∈ {19, 22, 25},

the electronic journal of combinatorics 27(1) (2020), #P1.10 8



a contradiction.
Now we consider the second case, where all vertex links in ∆ are isomorphic to S2.

Let Γ = lk∆ v1∩ lk∆ v2∩ lk∆ v3. The proof of Lemma 8 implies that for any vertex p /∈ V5,
lkΓ p = lklk∆ p v1 ∩ lklk∆ p v2 ∩ lklk∆ p v3 is a 5-cycle (as the boundary of the union of three
2-faces, where we apply the cross-flip). Hence Γ must be the boundary of the icosahedron.
Since all lk∆ vi are isomorphic, by Lemma 4 Γ divides the 3-sphere lk∆ v1 into two 3-balls,
each having the same number of facets. If the facets of lk∆ v1 are labeled as in the link of
vertex 1 in 4155

2 (this is a vertex-transitive triangulation of 4-sphere whose vertex links are
isomorphic to S2, see [10]), then one such Γ is the intersection of vertices 1, 6, 8 in 4155

2;
we rename it to Γ1. In this case, lk∆ v1 = B ∪Γ1 B

′, where B,B′ are isomorphic 3-balls.
We check by sage [21] that all other subcomplexes in lk∆ v1 that are isomorphic to Γ1 are
of the form σ(Γ1), where σ is an element in the permutation group of lk∆ v1 (of order 8).
So it suffices to consider just Γ1. To reconstruct lk∆ v2 and hence ∆, note that lk∆ u2 has
the decomposition lk∆ u2 = B′∪Γ1 B

′′ ∼= S2 for some 3-ball B′′, and furthermore B′′ ∼= B′.
To decide B′′ it is equivalent to finding a balanced simplicial isomorphism f : B′ → B′′

with B′ ∩ B′′ = B ∩ B′′ = Γ1 and f(Γ1) = Γ1; in other words, f is a permutation in
Aut(Γ1). We check by sage [21] that the links of vertex 6,8 in 4155

2 are the only candidates
for lk∆ v2. Hence ∆ = 4155

2. Indeed ∆ is balanced: the color sets are {1, 6, 8}, {2, 4, 9},
{3, 7, 11}, {5, 10, 15} and {12, 13, 14}.

Theorem 10. There exists a balanced 3-neighborly non-spherical 5-manifold with each
color set of size 3.

Proof. By Theorem 9, if such 5-manifold exists, then all vertex links are isomorphic to
4155

2, which we denote as Γ. Based on the list of facets of Γ in [15], we take a color-
preserving permutation σ = (1, 6, 8)(2, 4, 9)(11, 3, 7)(10, 15, 5)(13, 14, 12). We choose σ
in such a way that σ /∈ Aut(Γ) and furthermore, Γ ∩ σ(Γ), Γ ∩ σ2(Γ) and σ(Γ) ∩ σ2(Γ)
are isomorphic homology manifolds with no interior faces of dimension < 2 and with a
common boundary C. By computer we check that Γ∪σ(Γ)∪σ2(Γ) is balanced 3-neighborly
and C is the vertex-transitive 3-manifold 31515

1 that triangulates S3/Q as in [15]. Finally
let ∆ = (Γ ∗ {16}) ∪ (σ(Γ) ∗ {17}) ∪ (σ2(Γ) ∗ {18}), where {16, 17, 18} are the vertices of
color 6. By sage [21] one verifies that all vertex links of ∆ is isomorphic to Γ, which is
known as a combinatorial 4-sphere (we say a simplicial complex is a combinatorial sphere
if it is PL homeomorphic to the boundary of the simplex). Hence ∆ is a combinatorial
manifold that is balanced 3-neighborly.

Remark 11. The following properties of the balanced 3-neighborly 5-manifold found in
the proof of Theorem 10 are verified by sage:

1. It is vertex-transitive and has the following generators of the automorphism group
(of order 1080):

(2, 15)(4, 5)(9, 10)(12, 17)(13, 18)(14, 16), (1, 2)(3, 15)(4, 6)(5, 7)(8, 9)(10, 11),

(1, 3)(6, 7)(8, 11)(12, 17)(13, 18)(14, 16), (1, 13)(3, 18)(6, 14)(7, 16)(8, 12)(11, 17),

(1, 6, 8)(2, 3, 17)(4, 7, 18)(5, 15, 10)(9, 11, 16).
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2. The homology groups of ∆ are given by (Z, 0,Z2, 0, 0,Z).

3. The f -vector of ∆ is (1, 18, 135, 540, 1035, 918, 306).

Furthermore by the Dehn-Sommerville relations, any balanced 3-neighborly 5-manifold
having 3 vertex in each color set also has the f -vector (1, 18, 135, 540, 1035, 918, 306). Let
Σ be such a complex, {v1, v2, v3} a color set, Mi = lkΣ vj ∩ lkΣ vk for {i, j, k} = [3] and
N = M1 ∩ M2 ∩ M3. If F is an interior face of Mi, then F ∪ {vi} /∈ Σ. Since Σ is
balanced 3-neighborly, lkΣ v1 = M2 ∪M3

∼= M1 ∪M3 = lkΣ v2 and they have 102 facets,
it follows that each Mi has no interior vertices or edges and with 51 facets. Also since all
vertex links in Σ are isomorphic to 4155

2, the same argument as in the proof of Theorem
9 implies that N is a 3-manifold whose vertex links are isomorphic to the boundary of
the icosahedron; indeed 31515

1 is one such example. We haven’t checked if there exist
other balanced 3-neighborly 5-manifolds. (It is not known if there exist 15-vertex non-
vertex-transitive 3-manifolds whose vertex links are all isomorphic to the boundary of the
icosahedron.)

4 Balanced 2-neighborly 3-sphere with 16 vertices

In this section we provide a balanced 2-neighborly triangulation of the 3-sphere. The
construction is motivated by Lemma 4.

w3

u3

v3
w1u2

v1

u1

w2

v4 u4
w4

v2

w3

u3

v3
w1u2

v1

u1

w2

v4 u4
w4

v2

w3

u3

v3
w1u2

v1

u1

w2

v4 u4
w4

v2

Figure 2: Discs A, B and C (from left to right)
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Figure 3: Left: disc D′. Right: disc D obtained after rearranging the boundary of D′.

w3

u3

v3
w1u2

v2

u1
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v4 u4
w4

v1

w3

u3

v3
w1u2

v2

u1

w2

v4 u4
w4

v1

Figure 4: Left: disc A′. Right: disc B′. Notice that ∂A′ = ∂B′ = ∂D.

Construction 12. Assume V1 = {u1, u2, u3, u4}, V2 = {v1, v2, v3, v4}, V3 = {w1, w2, w3, w4}
and V4 = {z1, z2, z3, z4} are the four color sets of a balanced 3-sphere Γ. We let lkΓ z1 =
A∪∂A∼∂C C and lkΓ z3 = B ∪∂B∼∂C C, where A, B and C are triangulated 2-balls sharing
the same boundary as shown in Figure 2. All possible edges that do not appear in A, B
and C are shown in Figure 3 as solid red edges in disc D′. Notice that the dashed edges
in D′ are edges in discs A and B, so we may rearrange the boundary of D by switching
the positions of vertices v1 and v2, and then replacing the edges containing v1 or v2 in
∂D′ by the dashed edges. In this way, we obtain a triangulation of a 12-gon D as shown
in Figure 3. Furthermore, ∂D ⊆ A ∪ B, and ∂D divides the sphere = A ∪∂A∼∂B B into
two discs A′ and B′ as shown in Figure 4.

We let lkΓ z2 = A′∪∂A′∼∂DD and lkΓ z4 = B′∪∂B′∼∂DD. Since both stΓ z1∩ stΓ z3 = C
and stΓ z2 ∩ (stΓ z1 ∪ stΓ z3) = A′ are simplicial 2-balls, it follows that Σ = ∪3

i=1 stΓ zi is a
simplicial 3-ball. Furthermore, the boundary of Σ is exactly lkΓ z4. Hence Γ = Σ ∪ stΓ z4

is indeed a balanced 2-neighborly 3-sphere.

Remark 13. Here we provide some properties of Γ in Construction 12.

1. (A ∪B,C,D) is an ear decomposition of Γ[3].
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2. The automorphism group of Γ has two generators

(u1u3u2u4)(v1z2v2z1)(v3z4v4z3)(w1w4w2w3),

(z1v1)(z2v2)(z3v3)(z4v4)(u1w1)(u2w2)(u3w3)(u4w4).

(The second generator is given by switching vertices of color 1 and 3, and color 2
and 4, but with the same subscript.) Hence Aut(Γ) has 8 elements.

3. The complex Γ given in Construction 12 is shellable. For lkΓ z1 = A∪∂A∼∂CC, there
exist two shellings c1, . . . , c10, a1, . . . , a10 and a′1, . . . , a

′
10, c

′
1, . . . , c

′
10 such that for any

1 6 i 6 10, ci, c
′
i are facets from C and ai, a

′
i are facets from A. Similarly, there exist

two shellings c1, . . . , c10, b1, . . . , b10 and b′1, . . . , b
′
10, c

′
1, . . . , c

′
10 for lkΓ z3 = B∪∂B∼∂CC,

where bi, b
′
i are facets from B. Then

a′1 ∗ z1, . . . , a
′
10 ∗ z1, c

′
1 ∗ z1, . . . , c

′
10 ∗ z1, c1 ∗ z3, . . . , c10 ∗ z3, b1 ∗ z3, . . . , b10 ∗ z3

gives a shelling of stΓ z1∪stΓ z3. We may extend this shelling into a complete shelling
of Γ by constructing two similar shellings of lkΓ z2 and lkΓ z4. However, we tried
some computer tests and failed to prove either polytopality or non-polytopality.

Remark 14. It is easy to see that if ∆1 is a balanced 2-neighborly (d1 − 1)-sphere and
∆2 is a balanced 2-neighborly (d2 − 1)-sphere, then ∆1 ∗ ∆2 is a balanced 2-neighborly
(d1 +d2−1)-sphere. Hence by taking joins, we find balanced 2-neighborly (4k−1)-spheres
with 16k vertices for any k > 1.

Question 15. Let d > 4 andm > 5 be arbitrary integers. Is there a balanced 2-neighborly
simplicial (d−1)-sphere all of whose color sets have the same size m? Is there a polytopal
sphere with these properties?

5 Balanced 2-neighborly L(3, 1) with 16 vertices

In this section we present our first construction of a balanced 2-neighborly lens space
L(3, 1) with 16 vertices. We denote it by ∆. Each color set of ∆ has four vertices.

Construction 16. Denote the color sets of ∆ by V1 = {u1, u2, u3, u4}, V2 = {v1, v2, v3, v4},
V3 = {w1, w2, w3, w4} and V4 = {z1, z2, z3, z4}.

In Figure 5 we illustrate the construction of the vertex links lk∆ zi for i = 1, . . . , 4. All
these links are realized as cylinders. Two links lk∆ z1 and lk∆ z2 share the same top and
bottom, which are triangulated hexagons spanned by vertices {ui, vi, wi : i = 1, 3} and
{ui, vi, wi : i = 2, 4}, respectively. To construct lk∆ z3 from lk∆ z1, we switch the positions
of vertices u3, v3, w3 with vertices u4, v4, w4 respectively and form a new cylinder. The
new top and bottom hexagons contain the 2-faces {u1, v1, w1} and {u2, v2, w2}. Similarly,
we construct the link lk∆ z4 from lk∆ z2 by switching the positions of vertices u3, v3, w3

with vertices u4, v4, w4 and letting {u1, v1, w1} and {u2, v2, w2} be the 2-faces that appear
in the triangulation of the top and bottom hexagons. It follows that lk∆ z3 and lk∆ z4 also
share the same top and bottom.
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(d) lk∆ z4

Figure 5: Four vertex links of ∆

Now since ∆ is balanced 2-neighborly, by our construction, it only remains to show
that ∆ triangulates the lens space L(3, 1). The geometric realizations of st∆ z1 and st∆ z2

are filled cylinders that share top and bottom. So their union A := st∆ z1 ∪ st∆ z2 is a
filled torus (that is, a genus-1 handlebody); so is the union B := st∆ z3∪ st∆ z4. Note that
these two handlebodies have identical boundary complexes, thus they provide a Heegaard
splitting of a lens space.

To identify which lens space ∆ triangulates, we need to determine the homeomorphism
φ : ∂A → ∂B. Consider two generators γ, δ of π1(A ∩ B) = π1(∂A), where γ is the 6-
cycle (u3, v1, w3, u1, v3, w1) and δ is the 4-cycle (u1, w2, u4, w3). In particular, δ is also a
generator of π1(A). From the construction we see that φ(γ) is a loop running around the
equator of ∂B thrice and the meridian of ∂B once. Also φ(δ) runs around the equator of
∂B twice and the meridian of ∂B once. Hence it is indeed the lens space L(3, 1).

Remark 17. Our construction ∆ has the following properties:

1. All vertex links are combinatorially equivalent.

2. From Figure 5 we see lk∆ zi ∩ lk∆ zj has two connected components when {i, j} =
{1, 2} or {3, 4} (they are the top and bottom hexagons as shown in Figure 2); and it
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has three connected components when i ∈ {1, 2} and j ∈ {3, 4} (each component is
the union of two facets along the side of the cylinders). In general, the intersection
of two vertex links, where the vertices are of the same color, always has at least two
connected components.

3. There are three group actions on the vertices of ∆:

(a) Fix the subscript and rotate the corresponding vertices of color 1, 2 and 3
respectively. The generator is given by (u1v1w1)(u2v2w2)(u3v3w3).

(b) Rotate vertices of the same color. The generator is

(u1u3u2u4)(v1v3v2v4)(w1w3w2w4)(z1z3z2z4).

(c) Exchange lk∆ z1 and lk∆ z2, lk∆ z3 and lk∆ z4, by exchanging vi and wi (or ui
and wi, ui and vi) for all i ∈ [4]. The generators are

(z1z2)(z3z4)(v1w1)(v2w2)(v3w3)(v4w4),

(z1z2)(z3z4)(u1w1)(u2w2)(u3w3)(u4w4) and

(z1z2)(z3z4)(u1v1)(u2v2)(u3v3)(u4v4).

The automorphism group of ∆ is of size 96.

Proposition 18. The complex ∆ is a balanced vertex minimal triangulation of L(3, 1).

Proof. By Proposition 6.1 in [11], each color set of ∆ is of size at least 3. If there are
exactly three vertices v1, v2, v3 of color 1 in ∆, apply the Mayer-Vietoris sequence on the
triple (st∆ v1 ∪ st∆ v2, st∆ v3,∆) and we obtain that

0 = H1(lk∆ v3)→ H1(st∆ v1 ∪ st∆ v2)⊕H1(st∆ v3)→ H1(∆)→ H0(lk∆ v3) = 0.

Hence H1(st∆ v1∪ st∆ v2) ∼= H1(∆) = Z/3Z. However, this is impossible since H1(st∆ v1∪
st∆ v2) ∼= H0(st∆ v1 ∩ st∆ v2), which cannot be Z/3Z.

The same argument as above also shows that the balanced triangulation of any lens
space L(p, q) with p > 1 must have at least 16 vertices.

6 Balanced spheres and ear decomposition

In this section our goal is to construct a balanced 3-sphere whose rank-selected sub-
complexes do not have ear decompositions. The motivation is from the balanced 2-
neighborly construction of L(3, 1) in Section 5. Indeed, we want to construct a balanced
3-dimensional complex ∆ so that 1) each vertex link is a 2-sphere; 2) for a fixed color set
V4 = {v1, · · · , vk}, the intersection of any two vertex links lk∆ vi ∩ lk∆ vj always has at
least two connected components (as the property listed in Remark 17); and 3) ∪4

i=1 st∆ vi
is 3-ball, which together with the condition 1) guarantees that ∆ is a 3-sphere.

the electronic journal of combinatorics 27(1) (2020), #P1.10 14



In the following we take k = 5 and give such a construction. Figure 6 illustrates
the links lk∆ v1, · · · , lk∆ v4. Every label represents the color of the vertex. Also each
connected component of lk∆ v1∩ lk∆ v2 is colored in green, lk∆ vi∩ lk∆ v3 is colored in blue
for i = 1, 2, and lk∆ vj ∩ lk∆ v4 is colored in pink for j = 1, 2, 3. Immediately we check
that all these intersections of vertex links have 2 or 3 connected components.

3 2

3

2

3

2

1

1
1

1
2

1 3

1
2

3
1

3

2

3

2

3

2

1

1

1

1
2

1
2

2
3

2
3

3

1

(a) lk∆ v1 and lk∆ v2

33 1

3
1

3 1 3
2

1

2

1

2

2

1
2

1
2

13

1

3

1

(b) lk∆ v3

2

3

3

2

1

2

1

2

1

3

1

3

3

1

1

(c) lk∆ v4

Figure 6: Four vertex links as triangulated 2-spheres. For simplicity’s sake, we omit some
diagonal edges in the quadrilaterals in (b), and some labels of vertices in (c).

(a) lk∆ v1 ∪ lk∆ v2 (b) ∪3
i=1 lk∆ vi (c) ∪4

i=1 lk∆ v4

Figure 7: how the links are glued together.

Figure 7 shows how ∆\V4 is formed from these links. First we glue lk∆ v1 and lk∆ v2

along two green triangles. The resulting complex lk∆ v1 ∪ lk∆ v2 is shown in Figure 7a.
Then we place lk∆ v3 on top of lk∆ v1 ∪ lk∆ v2. As we see from Figure 7b, the boundary
complex of ∪3

i=1 st∆ vi is a triangulated torus. Finally, we place lk∆ v4 on top of ∪3
i=1 lk∆ vi

so that st∆ v4 “covers the 1-dimensional hole” in ∪3
i=1 st∆ vi, see Figure 7c. We denote

the subspace of R3 enclosed by lk∆ vi as Si for 1 6 i 6 4, and let S5 := ∪i64Si. From our
construction it follows that the boundary complex of S5 is a 2-sphere; we let it be lk∆ v5.
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Indeed ∆ is a 3-sphere since ∆ is the union of two 3-balls S5 and st∆ v5 glued along their
common boundary lk∆ v5.

Since each lk∆ vi ∩ lk∆ vj has at least two connected components for 1 6 i 6= j 6 4,
the Mayer-Vietoris sequence implies that Si ∪ Sj is not contractible for all 1 6 i 6= j 6 4.
A similar inspection of lk∆ vi ∪ lk∆ vj ∪ lk∆ vk also implies that the boundary complexes
of Si ∪ Sj ∪ Sk’s cannot be triangulated 2-spheres for distinct 1 6 i, j, k 6 4.

Proposition 19. Not all rank-selected subcomplexes of balanced simplicial spheres have
ear decompositions.

Proof. Consider the complex ∆ constructed above. We denote the union of interior faces
of a complex τ by int τ . Suppose ∆\V4 has an ear decomposition (Γ1,Γ2, · · · ,Γk). Since
|V4| = 5 and β2(∆\V4) = 4, k must be 4. Notice first that ∪i64 lk∆ vi divides R3 into
five subspaces, namely, S1, · · · , S4 and the complement of S5, each having lk∆ vi as the
boundary complex for 1 6 i 6 5 respectively. The complex Γ1 is the union of 2-balls
B1, B2 with ∂B1 = ∂B2 = Γ1 ∩ Γ2. By the Jordan theorem, B1 ∪ Γ2 is a triangulated 2-
sphere that separates R3 into two connected components. Hence the bounded component
must be either Si ∪ Sj or Si ∪ Sj ∪ Sk for some 1 6 i, j, k 6 4. (We may assume that
it is not Si, since otherwise we may consider the 2-sphere ∪i63Γi − ∪16i 6=j63 int(Γi ∩ Γj)
instead of Γ1 ∪ Γ2 − int(Γ1 ∩ Γ2), where the subset enclosed by this sphere in R3 cannot
be Si anymore.) This contradicts the fact that the boundaries of Si ∪ Sj or Si ∪ Sj ∪ Sk
are not 2-spheres.

Remark 20. One can think of all the figures illustrated above as projections of a subcom-
plex of ∆ − st∆ v5 onto R3. However, we do not know whether the complex provided in
this section can be realized as the boundary of a 4-polytope.

Acknowledgements

The author was partially supported by a graduate fellowship from NSF grant DMS-
1361423. I thank Moritz Firsching for pointing out the automorphism groups of the
constructions in Section 3 and 4 and running some computational tests to decide whether
the constructions are polytopal. Many thanks to Lorenzo Venturello and the anonymous
referees for pointing out mistakes in an earlier version and contributing to a few remarks,
improvement of the proofs in this paper.

References

[1] G. Burton. The non-neighbourliness of centrally symmetric convex polytopes having
many vertices. J. Combin. Theory Ser. A, 58:321–322, 1991.

[2] M. K. Chari. Two decompositions in topological combinatorics with applications to
matroid complexes. Trans. Amer. Math. Soc., 349:3925–3943, 1997.

[3] D. L. Donoho and J. Tanner. Counting the faces of randomly-projected hypercubes
and orthants, with applications. Discrete Comput. Geom., 43:522–541, 2010.

the electronic journal of combinatorics 27(1) (2020), #P1.10 16
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