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Abstract

Given m points and n hyperplanes in Rd (d > 3), if there are many incidences,
we expect to find a big cluster Kr,s in their incidence graph. Apfelbaum and Sharir
[1] found lower and upper bounds for the largest size of rs, which match (up to a
constant) only in three dimensions. In this paper we close the gap in four and five
dimensions, up to some polylogarithmic factors.

Mathematics Subject Classifications: 05C35, 52C10, 05D10

1 Introduction

Throughout this paper, let d denote an integer at least three. Given a set P of m points
and a set Q of n hyperplanes in Rd, their incidence graph G(P,Q) is a bipartite graph
with vertex set P ∪ Q and (p, q) ∈ P × Q forms an edge iff p ∈ q. It is proved in [1]
that if this graph does not contain Kr,s (a complete bipartie graph with two parts A,B,
|A| = r, |B| = s and (a, b) is an edge for every a ∈ A, b ∈ B) as a subgraph for some
fixed integers r, s > 2, then it can have at most Od((mn)d/(d+1) + m + n) edges. Here
the notation f = Od(g) means there exists some constant C that depends on d such that
f 6 Cg. The number of incidences between P and Q, denoted by I(P,Q) is the number
of edges of G(P,Q).

Conversely, when the incidence graph has many edges, we expect to find a big subgraph
isomorphic to Kr,s. How big can rs (the number of edges of Kr,s) be in terms of m,n and
the number of edges of the incidence graph? To make the question precise, we use the
following definition:

Definition 1. Given a set P of points and Q of hyperplanes in Rd, let rs(P,Q) be the
maximum size of a complete bipartite subgraph of its incidence graph, and rsd(m,n, I)
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be the minimum of this quantity over all choices of m points and n hyperplanes in Rd

with I incidences. To be precise:

rs(P,Q) := max{rs : Kr,s ⊂ G(P,Q)}

rsd(m,n, I) := min
|P |=m,|Q|=n,|I(P,Q)|=I

rs(P,Q).

We are interested in how big rsd(m,n, I) can be in terms of m, n and I. Apfelbaum
and Sharir [1] gave a satisfactory answer to this question when d = 3.

Theorem 2 (Apfelbaum and Sharir [1]). The following statements hold true in three
dimensions.

1. If I = Ω(mn1/2 + nm1/2), then rs3(m,n, I) = I2

mn
−Θ(m+ n).

2. If m 6 n, I = O(nm1/2) and I = Ω(m3/4n3/4), then rs3(m,n, I) = Θ( I4

m2n3 + I
m

).

3. Symmetrically, if n 6 m, I = O(mn1/2) and I = Ω(m3/4n3/4), then rs3(m,n, I) =
Θ( I4

n2m3 + I
n
).

4. If I = O(m3/4n3/4 +m+ n), then rs3(m,n, I) = Θ( I
m

+ I
n
).

However, much less is known in higher dimensions. One thing we know is that
rsd(m,n, I) > max{ I

m
, I
n
} by looking at the star subgraphs centering at the point and

the hyperplane with maximum degrees in G(P,Q). As noted in [1], when the dimen-
sion d increases beyond 3, there are progressively more ranges of I (as a function of m
and n) where the bounds for rsd change qualitatively. At one extreme, when I is small
enough, we expect the graph not to contain any big complete bipartite subgraph. Indeed,

if I = Od,ε((mn)1−
2

d+2
−ε) for some ε > 0 and d is odd, Brass and Knauer [3] constructed

an example of point-hyperplane incidence graph in Rd with I incidences and no Kt,t for

some fixed integer t > 2. A similar result holds if d is even, and I = Od,ε((mn)
1− 2(d+1)

(d+2)2
−ε

).
These bounds have been slightly improved in [2]. At another extreme, when I is very
large, we expect to find a large Kr,s.

Theorem 3 (Apfelbaum and Sharir [1]). For any d > 3, if I = Ωd(mn
1− 1

d−1 +nm1− 1
d−1 ),

then

rsd(m,n, I) = Ωd

((
I

mn

)d−1
mn

)
. (1)

Morever, if I = Ωd((mn)1−
1

d−1 ), then

rsd(m,n, I) = Od

((
I

mn

) d+1
2

mn

)
. (2)
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These lower and upper bounds only match (up to a constant) when d = 3 (which is
why we have a tight bound in part 1 of Theorem 2). In this paper we close the gap (up to
polylogarithmic factors) in four and five dimensions for this range of I. More specifically
we prove the following two results.

Theorem 4. When d = 4, there exist positve constants C4 and C ′4 such that if I >
C4(mn

2/3 + nm3/5), then

rs4(m,n, I) > C ′4

(
I

mn

)5/2

mn(logmn)−4.

Theorem 5. When d = 5, there exist positive constants C5 and C ′5 such that if I >
C5(mn

3/4 + nm2/3), then

rs5(m,n, I) > C ′5

(
I

mn

)3

mn(logmn)−10.

The main tool used to prove Theorem 4 and Theorem 5 is an incidence bound between
points and nondegenerate hyperplanes by Elekes and Tóth [5], which is reviewed in the
next section. We then present the proof of Theorem 4 and sketch the proof of Theorem
5 in the subsequent sections. At the end we explain why our method does not work in six
dimensions.
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2 Incidences with nondegenerate hyperplanes

We use the following notation. Let A and B be two sets of geometric objects in Rd. Their
incidence graph G(A,B) is a bipartite graph on A × B, where (a, b) forms an edge iff
a ⊂ b. The number of incidences between A and B, denoted by I(A,B), is the number of
edges of this graph. In this paper, A is either a set of points or a set of lines, and B is a
set of higher dimensional flats. An affine d′-dimensional flat, or a d′-flat is a subset of Rd

that is congruent to Rd′ for some integer 0 6 d′ 6 d. Points, lines, planes and hyperplanes
are flats of dimensions 0, 1, 2 and d− 1 respectively. Given a flat F1, F2 is a subflat of F1

if it is a flat and a subset of F1; it is a proper subflat if F2 ( F1.
Given a set S of m points in Rd and some β ∈ (0, 1), an affine hyperplane H is β-

degenerate with respect to (w.r.t.) S if there exists a proper subflat F ⊂ H that contains
more than β fraction of the number of points of S in H, i.e. |F∩S| > β|H∩S|. Otherwise,
H is β-nondegenerate. Elekes and Tóth proved the following incidence bound.
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Theorem 6 (Elekes-Tóth [5]). If S is a set of m points andH is a set of n β-nondegenerate
hyperplanes w.r.t. S (for any 0 < β < 1)1 in Rd (for any integer d > 2), then there exists
a constant Cβ,d > 0 such that

I(S,H) 6 Cβ,d

(
(mn)

d
d+1 +mn1− 1

d−1

)
. (3)

This implies the maximum number of β-nondegenerate, k-rich (i.e. containing at least

k points of S) hyperplanes is Oβ,d

(
md+1

kd+2 + md−1

kd−1

)
. Elekes-Tóth in fact proved the second

statement; it is shown to be equivalent to (3) in [1]. When d = 2, it reduces to the well
known Szemerédi-Trotter point-line incidence bound [7].

Since points and hyperplanes are dual to each other, we also have a dual version of
the above result. Given a set H of n hyperplanes in Rd, a point p is β-nondengenerate
with respect to (w.r.t.) H if there does not exist a line ` such that #{H ∈ H : ` ⊂ H} >
β#{H ∈ H : p ∈ H}.
Corollary 7. If H is a set of n hyperplanes in Rd and P is a set of m β-nondegenerate
points w.r.t. H (for any d > 2, 0 < β < 1), there exists a constant Cβ,d > 0 such that

I(S,H) 6 Cβ,d

(
(mn)

d
d+1 + nm1− 1

d−1

)
. (4)

Equivalently, given n hyperplanes in Rd, the number of k-rich, β-nondegenerate points is

Oβ,d

(
nd+1

kd+2 + nd−1

kd−1

)
.

3 Proof in four dimensions

We first outline our strategy. Let S be a set of m points, and H be a set of n hyperplanes
in R4. There are two ways to form a big Kr,s in the incidence graph G(H,S): either a
plane contains many points of S and belongs to many hyperplanes of H, or a line does. By
an averaging argument, we can assume that each hyperplane is Ω( I

m
)-rich (i.e. contains

at least Ω( I
m

) points of S). By Theorem 6, the contribution from β-nondegenerate
hyperplanes is negligible, so we can assume that each hyperplane is β-degenerate, i.e. it
contains some plane with at least β portion of the total number of points in that plane,
hence the plane is Ω(β I

m
)-rich. In this case, we say each hyperplane degenerates to a rich

plane. Either one of those planes belongs to many hyperplanes, which would form a big
Kr,s, or we can find a subset Pi of planes such that I(S,Pi) is large. We then repeat
our argument: using the averaging argument and Corollary 7, we can assume that each
point in S belongs to many planes in Pi and degenerates to a line. Either one of those
lines contains many points, which then form a big Kr,s, or we can find a subset Lj of lines
such that I(Lj,Pi) is large. But after some transformation, this number is the same as
the number of incidences between points and lines in R2 and hence cannot be too large
by Theorem 6 for d = 2, or equivalently, Szemerédi and Trotter’s theorem in [7].

We now give a detailed proof.

1Elekes and Tóth actually proved this only for β < βd for some small βd. It is later shown in [4] that
we can take βd = 1

d−1 and in [6] that we can take βd = 1.
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Proof of Theorem 4. Assume for contradiction that there exist a set S of m points and
a set H of n hyperplanes in R4 with I incidences where I > C4(mn

2/3 + nm3/5) and the

incidence graph G(S,H) contains no Kr,s where rs > C ′4
(
I
mn

)5/2
mn(logmn)−4. We shall

choose the suitable positive constants C4 and C ′4 to derive a contradiction.

Step 1: We can assume that each hyperplane is I
4n

-rich and β-degenerate with respect
to S for some β ∈ (0, 1), say β = 1/2.

Indeed, remove all the hyperplanes that contain fewer than I
4n

points and the hyper-
planes that are β-nondegenerate. The number of incidences from the non-rich hyperplanes
is at most n I

4n
= I

4
. By Theorem 6, the number of incidences from the β-nondegenerate

hyperplanes is at most Cβ,4((mn)4/5+mn2/3) < C4

4
(mn2/3+nm3/5) if we choose C4 > 8Cβ,4.

Indeed, this only fails if (mn)4/5 > mn2/3 and (mn)4/5 > nm3/5, which are equivalent to
m 6 n2/3 and n 6 m, but those two inequalities cannot hold at the same time. There-
fore, after the removal, there remain at least I

2
incidences. Assume that there remain n1

hyperplanes for some n1 6 n. Throughout the proof, there are many inequalities that
involve n1, but we can always use n to upper bound n1 in the correct direction. Therefore,
without loss of generality, we can assume that n1 = n.

Step 2: For each I
4n

-rich β-degerenate hyperplane H, we can find a proper subflat P ⊂ H

so that |P | > β|H| > βI
4n

. Since dim(H) = 3, we can assume that P is a plane. Let P
denote the set of these planes. We claim that no plane in P belongs to more than s0
hyperplanes in H, where

s0 :=
c1I

3/2

m3/2n1/2(logmn)4
(5)

where c1 is a sufficiently small constant to be specified later. Indeed, assume that there
are at least s0 hyperplanes that degenerate to a same plane, then we have a configuration
of Kr,s with r = βI

4n
and s = s0. This leads to a contradiction if we choose C ′4 <

βc1
4

:

rs >
βI

4n
· c1I

3/2

m3/2n1/2(logmn)4
> C ′4

(
I

mn

)5/2

mn(logmn)−4.

Step 3: We use a dyadic decomposition to find a subset of planes with many incidences
with S. Let Pj denote the set of all planes that are assigned to at least 2j and fewer
than 2j+1 hyperplanes, for 1 6 j < log s0 < log n (here the logarithm is in base 2). The
contribution to incidences from the planes must be at least β fraction of the number of
incidences from the β-degenerate hyperplanes, which implies

∑log s0
j=0 2j+1I(S,Pj) > β

4
I.

Hence there must exist some i such that

I ′ := I(S,Pi) >
βI

4 log s02i+1
>

c2I

2i log n
, (6)

where c2 = β/8. We claim that the following holds where β is the same as before, and
Cβ,3 is defined in Theorem 6:

I ′ = I(S,Pi) > 4Cβ,3

[
(|Pi||S|)

3
4 + |Pi||S|

1
2

]
. (7)
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Indeed, assume otherwise. By (6), I 6 c−12 2iI ′ log n 6 c32
i log n

[
(|Pi||S|)

3
4 + |Pi||S|

1
2

]
,

where c3 = c−12 4Cβ,3. We shall now derive a contradiction using two facts: |Pi| 6 n
2i

and

2i 6 s0. The first fact follows from
∑log s0

j=0 2j|Pj| 6 n, since each hyperplane is assigned
to exactly one plane. Using the formula for s0 in (5), we have:

I 6 c32
i log n

[
(|Pi||S|)

3
4 + |Pi||S|

1
2

]
6 c3 log n2i

((nm
2i

)3/4
+
n

2i
m1/2

)
6 c3 log n(mn)3/4s

1/4
0 + c3(log n)nm1/2

6 c3 log n(mn)3/4
(

c1I
3/2

m3/2n1/2(logmn)4

)1/4

+ c3(log n)nm1/2. (8)

By our assumption, I > C4nm
3/5, thus the second term on the right hand side of (8),

c3(log n)nm1/2, is less than I
2

for large values of m,n. This implies the first term of (8)
must be at least I

2
. Rearranging we get

I5/8 6 2c3c
1/4
1 m3/8n5/8 log n

logmn

6 (c4nm
3/5)5/8

where c4 = (2c3c
1/4
1 )8/5. However, we can choose c1 small enough and C4 big enough so

that c4 < C4 and hence this contradicts I > C4nm
3/5. So (7) must hold.

Step 4: Let us consider G(S,Pi), the incidence graph between the points S and the
set of planes Pi from Step 3. We can use an averaging argument similar to Step 1 to
assume that each point in S is I′

4m
-rich (i.e. belongs to at least I′

4m
planes in Pi). Since

the bound in (7) is the same as that in Corollary 7, we can also assume each point in
S is β-degenerate w.r.t. Pi (in the sense defined before Corollary 7). Each such point
degenerates to a line that is β I′

4m
-rich. Let L denote the set of all these lines. We claim

that no line in L contains more than r0 points, where

r0 :=
c5I

3/2

m1/2n3/2(logmn)3
(9)

for some small enough positive constant c5 to be chosen later. Indeed, since each plane in
Pi belongs to at least 2i hyperplanes in H by definition, each line in L belongs to at least
βI′

4m
planes in Pi, and thus belongs to at least βI′2i

4m
> βc2I

4m logn
hyperplanes in H by (6). If

there are at least r0 points that degenerate (or belong) to a same line, then we have a
configuration of Kr,s where

rs > r0 ·
βc2I

4m log n
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=
c5I

3/2

m1/2n3/2(logmn)3
· βc2I

4m log n

>
c2c5β

4

(
I

mn

)5/2

mn(logmn)−4.

This contradicts our assumption if we choose C ′4 < c2c5β/4.

Step 5: Similar to Step 3, we use a dyadic decomposition to find a subset of lines in L
that form many incidences with Pi. Here we say a line ` is incident to a plane P if ` ⊂ P .
Let Lk denote the set of all lines that contain at least 2k and fewer than 2k+1 points for
1 6 k < log r0 < logm. The contribution to I ′ from the lines must be at least β fraction,
which implies

∑log r0
k=0 2k+1I(Lk,Pi) > β

4
I ′. Hence there must exist some j such that

I ′′ := I(Lj,Pi) >
βI ′

8 log r02j
>

β2I

64 logm log n2i+j
>

c6I

2i+j logm log n
, (10)

where c6 = β2/64. We claim that the following holds where CST is the constant in
Szemerédi and Trotter’s theorem [7]:

I ′′ = I(Lj,Pi) > CST
(
|Pi|2/3|Lj|2/3 + |Pi|+ |Lj|

)
. (11)

Indeed, assume otherwise. By (10):

I 6 c−16 2i+jI ′′ logm log n 6 c72
i+j
(
|Pi|2/3|Lj|2/3 + |Pi|+ |Lj|

)
logm log n

where c7 = c−16 CS−T = 64CST/β
2. We make use of the following four facts: |Pi| 6 n

2i
,

|Sj| 6 m
2j

, 2i 6 s0 and 2j 6 r0. We already showed |Pi| 6 n
2i

. The second fact holds for a

similar reason: since each point is assigned to exactly one line we have
∑log r0

k=0 2k|Lk| 6 m,
and thus |Lj| 6 m

2j
. We now write:

I 6 c7(logm log n)2i+j
[( n

2i
m

2j

)2/3
+
n

2i
+
m

2j

]
6 c7(logm log n)

(
(2i2j)1/3(mn)2/3 + n2j +m2i

)
6 c7(logm log n)

(
(s0r0)

1/3(mn)2/3 + nr0 +ms0
)

Using the formula for s0 and r0 in (5) and (9), we have:

I 6 c7(logm log n)

[
(mn)2/3

(
c1I

3/2

m3/2n1/2(logmn)4
c5I

3/2

m1/2n3/2(logmn)3

)1/3

+m
c1I

3/2

m3/2n1/2(logmn)4
+ n

c5I
3/2

m1/2n3/2(logmn)3

]

6 I

[
(c1c5)

1/3c7 logm log n

(logmn)7/3
+

(
I

mn

)1/2(
c1 logm log n

(logmn)4
+
c5 logm log n

(logmn)3

)]
.
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We can choose c1 and c5 small enough so that

(c1c5)
1/3c7 logm log n

(logmn)7/3
<

1

2

and (
I

mn

)1/2(
c1 logm log n

(logmn)4
+
c5 logm log n

(logmn)3

)
<

1

2

for large values of m,n. In this case, the right hand side of the last inequality is strictly
less than I, a contradiction. So (11) must hold.

Step 6: Project the set of planes Pi and the set of lines Lj to a generic three dimen-
sional subspace, then intersect them with a generic plane Pi within this subspace. After
this transformation, Pi becomes a set of lines P ∗ and Lj becomes a set of points L∗ in
Pi. By (11), I(P ∗, L∗) = I(Lj,Pi) > CST (|P ∗|2/3|L∗|2/3 + |P ∗| + |L∗|), which violates
the Szemerédi-Trotter theorem [7]. This gives the desired contradiction and finishes our
proof.

4 Sketch of the proof in five dimensions

The proof method is the same as that in four dimensions, but the exponents are differ-
ent and the method is repeated one more time. In particular, in the previous section,
we unwrap a point-hyperplane configuration in R4 with many incidences in two layers:
hyperplanes degenerate to planes and points degenerate to lines. At each layer, either
we can find a big Kr,s subgraph, or the number of incidences remain larger than the
nondegenerate bound in Theorem 6, and we can keep unwrapping. In R5, we unwrap
in three layers: hyperplanes degenerate to 3-flats, points degenerate to lines, and 3-flats
degenerate to planes. The detailed proof is quite similar to that in the four dimensions
case, so we only give an outline here. For simplicity, we ignore the polylogarithmic factors
and write f & g (or f . g) to indicate there exists some constants a, b > 0 such that
f > a(logmn)bg (or f 6 a(logmn)bg.

Proof sketch of Theorem 5. Prove by contradiction. Let S denote the set of m points
and H denote the set of n hyperplanes in R5. Assume that I(S,H) & (mn3/4 + nm2/3)

but their incidence graph does not contain any Kr,s subgraph where rs &
(
I
mn

)3
mn.

Step 1: We can assume that every hyperplane is I
n
-rich, and β-degenerate with respect

to S for some β ∈ (0, 1). The choice of β is quite flexible, so we can assume β = 1/2.

Step 2: For each such hyperplane H, we can find a 3-dimensional flat (or a 3-flat) F such
that F ⊂ H and |F ∩ S| > β|H ∩ S| > βI

n
. Let F denote the set of these 3-flats.

Using our assumption on rs, no flat in F belongs to more than s0 hyperplanes where
s0 6 c1

I2

m2n(logmn)10
for some sufficiently small positive constant c1 to be chosen later.

the electronic journal of combinatorics 27(1) (2020), #P1.12 8



Step 3: Let Fj denote the set of all 3-flats in F that are assigned to at least 2j and fewer
than 2j+1 hyperplanes where j 6 log s0 < log n. Then there exists an i such that
I(Fi,S) & I

2i
. We show that

I ′ := I(Fi,S) & (|Fi||S|)4/5 + |Fi||S|2/3.

Indeed, assume otherwise. Using I ′ & 2iI, |Fi| 6 n
2i

and 2i 6 s0 . I2

m2n
, we have

I . 2iI ′ . 2i
[(nm

2i

)4/5
+
n

2i
m2/3

]
. (mn)4/5

(
I2

m2n

)1/5

+ nm2/3,

which cannot happen given our condition I & mn3/4 + nm2/3.

Step 4: Since I ′ is large, using Corollary 7, we can assume that each point in S is I′

m
-rich

(i.e. belongs to at least I′

m
flats in Fi, and is β-degenerate w.r.t. Fi. Each such point

degenerates to a βI′

m
-rich line. Let L denote that set of these lines. Then no line in

L can contain more than r0 points where r0 6 c2
I2

mn2(logmn)10
for some sufficiently

small positive constant c2 to be chosen later

Step 5: We use a dyadic decomposition to find a subset of lines with many incidences
with Fi. Let Lk denote the set of all lines in L that contain more than 2k and fewer
than 2k+1 points. Then there exists a j such that I(Fi,Lj) & I′

2j
& I

2i+j . We show
that

I ′′ := I(Fi,Lj) & |Fi|3/4|Lj|3/4 + |Fi||Lj|1/2.

Indeed, assume otherwise. Using I ′′ & I/2i+j, |Fi| 6 n
2i

, |Lj| 6 m
2j

, 2i 6 s0 . I2

m2n

and 2j 6 r0 . I2

mn2 , we have

I . 2i+jI ′′

. 2i+j
[(mn

2i+j

)3/4
+
n

2i

(m
2j

)1/2]
. (mn)3/4

(
I2

m2n

I2

mn2

)1/4

+ nm1/2

(
I2

mn2

)1/2

= 2I

This cannot happen with an appropriate choice of c1, c2 and logarithmic factors.

Step 6: Project the set of 3-dim flats Fi and the set of lines Lj into a generic four
dimensional subspace, then intersect them with a generic 3-dimensional flat in this
subspace. After this transformation, Fi becomes a set of planes and Lj becomes a
set of points in R3. Because of the inequality in the previous step, we can assume
that each 3-flats in Fi degenerate to a plane. Let P denote the set of all such planes.
Then no plane belongs to more than t0 flats in Fi where t0 6 c3

I2

m2n(logmn)10
for some

sufficiently small positive constant c3 to be chosen later.
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Step 7: Using a dyadic decomposition, there exists some subset Pk of planes, each be-
longs to at least 2k and fewer than 2k+1 3-flats in Fi such that I ′′′ := I(Lj,Pk) &
|Pk|2/3|Lj|2/3 + |Pk|+ |Lj|.

Step 8: Project the set of planes Pk and the set of lines Lj into a generic three dimen-
sional subspace, then intersect them with a generic plane in this subspace. After
this transformation, Pk becomes a set of lines and Lj becomes a set of points in
R2. Hence, the inequality on I(Lj,Pk) in Step 7 violates Szemerédi and Trotter’s
theorem for appropriate choices of c1, c2, c3 and logarithmic factors. This gives the
desired contradiction and finishes our proof.

5 Discussion

We first compare our approach with that of Apfelbaum and Sharir in [1]. Their proof
of (1) relies on the incidence bound (3) to unwrap the point-hyperplane configuration
with many incidences: for each k = d − 1, d − 2, . . . , 2, either we can find a big Kr,s

subgraph involving a (k− 1)-flat (i.e. a flat that contains at least r points and belongs to
at least s hyperplanes) or the rich k-flats degenerate to rich (k − 1)-flats. In this paper
we obtain a stronger result by combining (3) with its dual incidence bound (4) to unwrap
the point-hyperplane configuration from both directions.

Our approach can be used to obtain an improved lower bound in six and higher
dimensions, but is not good enough to match the upper bound (2). To understand why
that is the case, let us revisit the construction that attains this upper bound. We start
with a (d−2)-dimensional rectangular integer grid, which we will denote by G, with many
rich ‘hyperplanes’ in the first d − 2 coordinates of Rd; note that these rich hyperplanes
are of dimension d − 3. Extend the configuration to the (d − 1)st coordinate of Rd so
that the points of G become parallel lines L and the hyperplanes of G become parallel
(d − 2)-dimensional flats F . Our point set is obtained by putting an equal number of
points in each line in L and our hyperplane set is obtained by extending each flat in F
to an equal number of hyperplanes in an arbitrary direction.

In this case, every hyperplane is 1-degenerate (since it has a (d − 2)-dimensional
subflat which contains the same number of points), and so is every point. Therefore, our
argument in the first two layers is not wasteful. However, the further layers are no longer
β-degenerate for any fixed constant β ∈ (0, 1). As shown in [5], the second term of (3)
– which dominates the estimate in dimensions at least 4 – is no longer tight when β is
not fixed. One potential fix is to obtain an incidence bound with explicit dependence of
β that is stronger than (6) when β = o(1).
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