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Abstract

We give new interpretations of the ν-Tamari lattice of Préville-Ratelle and Vien-
not. First, we describe it as a rotation lattice of ν-trees, which uncovers the relation
with known combinatorial objects such as tree-like tableaux and north-east fillings.
Then, using a formulation in terms of bracket vectors of ν-trees and componentwise
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order, we provide a simple description of the lattice property. We also show that
the ν-Tamari is isomorphic to the increasing-flip poset of a suitably chosen sub-
word complex, and settle a special case of Rubey’s lattice conjecture concerning the
poset of pipe dreams defined by chute moves. Finally, this point of view general-
izes to multi ν-Tamari complexes, and gives (conjectural) insight on their geometric
realizability via polytopal subdivisions of multiassociahedra.

Mathematics Subject Classifications: 06A07, 05E45, 05E10, 05A05, 05A19

1 Introduction

The ν-Tamari lattice is a partial order on the set of lattice paths weakly above a given
path ν that generalizes the Dyck/ballot-path formulation of the classical Tamari lat-
tice [31, 46]. It has been recently introduced by Préville-Ratelle and Viennot [37] as a
further generalization of the m-Tamari lattice on Fuss-Catalan paths, which was first
considered by F. Bergeron and Préville-Ratelle in connection to the combinatorics of
higher diagonal coinvariant spaces [4]. These lattices have attracted considerable at-
tention in other areas such as representation theory and Hopf algebras [9, 11, 32], and
remarkable enumerative, algebraic, combinatorial and geometric properties have been dis-
covered [3, 10, 12, 14, 19].

Figure 1: The ν-Tamari lattice for ν = ENEEN (left). The rotation lattice of
ν-trees (middle). The lattice of ν-bracket vectors (right).

In this paper, we present a new formulation of the ν-Tamari lattice as a rotation lattice
of ν-trees (Theorem 15), which specializes to the rotation lattice of binary trees in the
Catalan case ν = (NE)n. Our ν-trees are the k = 1 case of Jonsson’s (k+ 1)-diagonal-free
maximal subsets of a Ferrers diagram associated with ν [24]. These were later studied by
Serrano and Stump under the name of k-north-east fillings of Ferrers diagrams [42], who
showed that they can be realized as pipe dreams and facets of certain subword complexes.
This connection for the classical Catalan case had been shown earlier by Woo in [49].
Additionally, ν-trees are also equivalent to non-crossing tree-like tableaux (Proposition 6),
introduced by Aval, Bossicault, and Nadeau in [1] in connection to permutations and
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alternative tableaux [15, 16, 36, 44], and their Catalan subfamilies [2, 48]. Furthermore,
the ν-Tamari lattice is one of Viennot’s recently presented Maule posets [47].

The presentation in terms of ν-trees provides new interpretations of properties of
the ν-Tamari lattice. In particular, we show that the ν-Tamari lattice is isomorphic
to a lattice of ν-bracket vectors under componentwise order (Theorem 21). This leads
to a description of the meet of two ν-bracket vectors as their componentwise minimum
(Proposition 31), providing a simple proof of the lattice property similar to the one shown
by Huang and Tamari in their original “simple proof of the lattice property” [23]. An
example of Theorem 15 and Theorem 21 is illustrated in Figure 1. The equivalence of
the ν-Tamari lattice and the rotation lattice of ν-trees follows from a flushing bijection
between ν-trees and ν-paths (Proposition 16). This bijection is shown to be equivalent
to (a slight generalization of) a bijection between certain pipe dreams and Dyck paths
presented by Woo in [49, Section 3], which is described in terms of the Edelman-Greene
correspondence (Proposition 46).

Moreover, our results imply that the ν-Tamari lattice is isomorphic to the increasing
flip poset of a suitably chosen subword complex (Theorem 37). Subword complexes are
simplicial complexes introduced by Knutson and Miller in their study of the Gröbner
geometry of Schubert varieties [26, 27]. Our result generalizes a known result of Pilaud
and Pocchiola for the classical Tamari lattice [34, Section 3.3 and Theorem 23], which
has been rediscovered by Stump [45] and Stump and Serrano in [42], and which follows
from Woo’s bijection in [49]. As a consequence of our result, we settle a special case of
Rubey’s Lattice Conjecture [40, Conjecture 2.8], which affirms that a poset of reduced
pipe dreams defined by (general) chute moves has the structure of a lattice (Theorem 41).

The relation between the Tamari lattice and subword complexes has inspired further
connections with pseudotriangulation polytopes [38, 39], cluster algebras [13, 21, 22], Hopf
algebras [6], and multiassociahedra [24, 43]. Concerning the latter, the definition of the
multiassociahedron can be naturally generalized to ν-trees, giving rise to the (k, ν)-Tamari
complex, which is also a subword complex (these are the complexes of (k + 1)-diagonal
free subsets and k-north-east fillings considered in [24] and [42]). For special choices of k
and ν, we show that the facet adjacency graph of the (k, ν)-Tamari complex can be realized
as the edge graph of a polytopal subdivision of a multiassociahedron (Proposition 47),
partially extending previous results for the case k = 1 [12]. It would be interesting to
know whether a similar result might hold for more general k and ν (Question 48).

2 The rotation lattice of ν-trees

Let ν be a lattice path on the plane consisting of a finite number of north and east unit
steps. We denote by Fν the Ferrers diagram that lies weakly above ν inside the smallest
rectangle containing ν, and by Aν the set of lattice points weakly above ν in Fν . We
say that p, q ∈ Aν are ν-incompatible, and write p � q, if and only if p is southwest
or northeast to q and the smallest rectangle containing p and q lies entirely inside Fν .
Otherwise, we say that p and q are ν-compatible; see Figure 2.

Definition 1. A ν-tree is a maximal collection of pairwise ν-compatible elements in Aν .
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Figure 2: The ν-compatibility relation.

We start with a lemma with many structural properties of ν-trees. We omit the proof,
which follows easily from the definition.

Lemma 2. Every ν-tree T contains the following points of Aν:

1. the top-left corner of Aν, which we call the root of T ;

2. the valleys of ν (i.e. points between an east and a north step of ν);

3. the starting points of the initial north steps of ν;

4. the ending points of the final east steps of ν;

5. at least one element on each column of Aν;

6. at least one element on each row of Aν; and

7. for every point different from the root there is either a point above it in the same
column, or a point to its left in the same row, but not both.

Definition 3. We refer to the elements of a ν-tree T as nodes, and to the top-left corner
of Aν as the root of T .

Recall that a rooted binary tree is a rooted tree in which each vertex has at most two
children, which are labeled left and right. We associate a rooted binary tree τ to each
ν-tree T by connecting each element p of T other than the root with the next element of T
north or west of p (exactly one of these two exists, by (7)). See Figure 1 (middle). The ν-
compatibility condition implies that the planar drawing of τ induced by T is non-crossing;
otherwise, the parent nodes of two crossing edges would be ν-incompatible.

Lemma 4. Each rooted binary tree τ can be obtained uniquely as the binary tree of a
ν-tree T , where ν is uniquely determined by τ .

Proof. We construct the inverse map that, given a rooted binary tree τ , provides a lattice
path ν = ν(τ) and a ν-tree T = T (τ) such that τ is the binary tree associated to T . The
proof is recursive, and describes the points of T with a coordinate system with the root
at the origin, the x-axis pointing to the right and the y-axis pointing downwards.
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Let τ be a (non-empty) rooted binary tree. Let τ` and τr be the left and right subtrees
of the root. If τ` is empty, we set ν` and T` to be empty, and x` = 0; otherwise, we set
ν` = ν(τ`)N, T` = T (τ`), and x` to be the largest x-coordinate of a point in T`. Similarly,
if τr is empty we set νr and Tr to be empty, and yr = 0; otherwise, we set νr = Eν(τr),
Tr = T (τr), and yr to be the largest y-coordinate of a point in Tr.

Then ν(τ) is the concatenation ν = ν`νr and T is the union of (0, 0) with the translation
of T` by (0, yr + 1) and the translation of Tr by (x` + 1, 0). Note that T is a ν-tree by
construction. Indeed, that T belongs to Aν is direct, and the peak NE that separates
ν(τ`) and ν(τr) ensures that no point of T` + (0, yr + 1) is ν-incompatible with a point in
Tr + (x` + 1, 0). In Lemma 11 we will prove that all ν-trees have as many nodes as the
number of lattice points of ν. Since this is the case for T , we deduce that T is maximal.

This construction can be described non-recursively as follows. Traversing the boundary
of τ counter-clockwise from the root, there are four types of steps: a node to its left or
right child, which we denote by ↓ and →, respectively, and from a left or right child to
its parent, which we denote by ↑ and ←. To get the lattice path ν, start with the empty
path and add E and N for each → and ↑ step, respectively. To construct T , associate
each node v of τ with the point (x, y) where x is the number of → steps before the first
appearance of v in the traversal, and y is the number of ↑ steps after the last appearance
of v in the traversal.

An example of the maps described in this proof is depicted in Figure 3. Note that
the path ν(τ) is the canopy of τ as described in [37]. This concept was first introduced
in [28].

Figure 3: The counter-clockwise traversal of the boundary of a binary tree, and
its associated lattice path and ν-tree.

Remark 5. The notion of ν-tree has already appeared under different guises in the lit-
erature. In this paper, we use the language of ν-trees on the one hand to emphasize
the analogy with the binary tree representation of the classical Tamari lattice; and on
the other hand because it provides structural insight on its lattice of rotations, and in
particular for the definition of bracket vectors in Section 4.

• In [24], Jonsson defines an `-diagonal of a polyomino Λ as a sequence of ` boxes
such that each is strictly north east of the previous one, and such that the smallest
rectangle containing the boxes lies inside Λ. Hence, ν-trees are the special case of
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2-diagonal-free maximal subsets of the Ferrers diagram Aµ bounded above the path
µ = EνN (the shifting with E and N is needed because in [24] the points are placed
in the interior of the cells instead of the lattice points of the Ferrers diagram).

• Tree-like tableaux, introduced in [1], are fillings of a Ferrers diagram such that

(i) the top left cell of the diagram contains a point, called the root point;

(ii) for every non-root pointed cell c, there exists either a pointed cell above c in
the same column, or a pointed cell to its left in the same row, but not both;

(iii) every column and every row possesses at least one pointed cell.

A crossing of a tree-like tableau is an empty cell with both a point above it and to
its left. A tree-like tableau is non-crossing if contains no crossings. In Proposition 6
we show that ν-trees are equivalent to non-crossing tree-like tableaux on the Ferrers
diagram bounded by EνN.

Tree-like tableaux are in bijection with the widely studied permutation tableaux and
alternative tableaux [16, 36, 44]. All these families are in bijection with permuta-
tions [15], and each has a ‘Catalan’ subfamily enumerated by the Catalan numbers.
Non-crossing tree-like tableaux play the role of Catalan tree-like tableaux, in analogy
to Catalan alternative tableaux and Catalan permutation tableaux [2, 48].

Proposition 6. ν-trees are in correspondence with non-crossing tree-like tableaux on the
Ferrers diagram bounded by EνN.

Proof. By associating each cell with its southeast corner, we can translate between cells
of the Ferrers diagram bounded by EνN and lattice points of the Ferrers diagram bounded
by ν. Under this correspondence, properties (i), (ii), and (iii) defining tree-like tableaux
become the ν-tree properties (1), (5), (6) and (7) from Lemma 2. This proves that every
ν-tree is a tree-like tableau. To see that it is non-crossing, note that if there was an empty
cell with both a point above it and a point to its left, these points would be ν-incompatible.

Conversely, the non-crossing property implies that the set of points of a non-crossing
tree-like tableau are ν-compatible. Indeed, if there is a couple of incompatible points,
the southeast corner of the smallest rectangle containing them must be empty (by prop-
erty (7)), and hence induces a crossing. So it only remains to prove the maximality to
deduce that each non-crossing tree-like tableau is a ν-tree. The number of points in a
tree-like tableau is always one less than the half-perimeter of the tableau (see [1, pg. 5]),
which is the number of lattice points of ν. In Lemma 11 we will prove that all ν-trees
have as many nodes as the number of lattice points of ν, and hence non-crossing tree-like
tableaux must be maximal.

We say that two ν-trees T and T ′ are related by a right rotation if T ′ can be obtained
by exchanging an element q ∈ T by an element q′ ∈ T ′ as illustrated in Figure 4, where
both p and r belong to T and T ′, and no further nodes of T or T ′ lie along the solid lines.
The inverse operation is called a left rotation.
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Figure 4: Right rotation operation on ν-trees.

Definition 7. The rotation poset of ν-trees is the partial order on the set of ν-trees defined
by the covering relations T < T ′ whenever T ′ is obtained from T by a right rotation.

Theorem 8. The rotation poset of ν-trees is a lattice.

We will give two proofs of this result in Sections 3 and 4.

Example 9 (Complete binary trees). For the path ν = (NE)n, ν-trees coincide with
complete binary trees with n internal nodes, as illustrated in Figure 5. The rotation
coincides with the usual rotation on complete binary trees. The rotation lattice of ν-trees
is therefore the classical Tamari lattice.

Figure 5: Complete binary trees seen as ν-trees for ν = (NE)n.

We present now some properties of ν-tree rotations that will be useful later. For this,
we define the minimal ν-tree Tmin as the subset of Aν containing all the points on the
left most column, together with all ending points of the east steps of ν. The maximal
ν-tree Tmax is the subset of Aν containing all the points on the top most row, and all the
starting points of the north steps of ν. These are clearly ν-trees, with the property that
Tmin admits no left rotation and Tmax admits no right rotation; they are shown in Figure 1
(middle) as the minimal and maximal elements of the lattice.

The following lemma is the special case of k = 1 in [40, Lemma 3.3], although without
a proof there.

Lemma 10. A rotation of a ν-tree is also a ν-tree.

Proof. Let T be a ν-tree and T ′ = T r {q} ∪ {q′} be obtained from T by a right rotation
involving p, q, r ∈ T , as in Figure 4.

Rotations preserve compatibility: Assume there is some s ∈ T ∩ T ′ such that s � q′.
If s is due northeast of q′ then s � p in T . If s is due southwest of q′, there are three cases
to consider. (i) Since s, q ∈ T are ν-compatible, s cannot lie due northeast or southwest
of q; (ii) s cannot lie due northwest of q, for then s � p; (iii) finally, if s is due southeast of
q, then s � r. Either way we get a contradiction, so T ′ consists of pairwise ν-compatible
points. The proof for left rotation is similar.
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Rotations preserve maximality: Assume T ′ is not maximal, so there is some s ∈ Aν
with s /∈ T ′ that is ν-compatible with every element in T ′. (i) If s is not in the rectangle
with vertices p, q, r, q′, we can obtain T ∪ s by applying a left rotation to T ′ ∪ s. (ii) If s
lies on the rectangle with vertices p, q, r, q′, it must necessarily lie on the same row or
column of q′, as otherwise s � q′. Say that s lies on the same row as q′ (the other case
being analogous). Then we can obtain T ∪ s′ from T ′ ∪ s by applying two left-rotations
as in Figure 6. In both situations we get a contradiction on the maximality of T because
left rotations preserve ν-compatibility.

p s q′

r

p s

s′ r

p

q s′ r
Figure 6: Producing T ∪ s′ from T ′ ∪ s via two left rotations.

The first statement of the following lemma is the special case k = 1 of [40, Theo-
rem 3.8]. The second statement concerning the cardinality of ν-trees follows from [24,
Theorem 10].

Lemma 11. The rotation poset of ν-trees is connected. In particular, all ν-trees have the
same number of nodes, which equals the number of lattice points on ν.

Proof. Note that if T contains all the points on the top row of Aν then T = Tmax. Assume
that T 6= Tmax and let j be the first column whose highest point does not belong to T (we
index the columns from left to right, and the rows from bottom to top). Note that j > 2
because the top-left corner (i.e. the root of T ) belongs to every ν-tree (cf. Lemma 2).
Let p′ ∈ T be the point in column j − 1 on the topmost row, and r = (i, j) ∈ T be the
highest point of T in column j (which is non-empty by item (5) in Lemma 2). We claim
that that q = (i, j − 1) ∈ T . Indeed, assume there is a point t ∈ T such that t � q. If t
lies due southwest of q, then t � p′ as well. If t lies due northeast of q, it must lie due
northeast of r too, and this would mean that t � r. Both cases yield contradictions.

Let p be the next point of T due north of q (which may equal p′). Then the points
p, q, r ∈ T are in the situation of Figure 4, so we may right-rotate q to a point q′ due north
of r. Thus, it is always possible to apply a right rotation to a non-maximal tree. Since
right rotation is an acyclic operation and the number of ν-trees is finite, we eventually
reach Tmax by a finite sequence of right rotations. The number of nodes on Tmax is clearly
equal to the number of lattice points on ν.

Lemma 12. Two ν-trees differ by a single element if and only if they are related by a
rotation.

Proof. The “if” direction holds by definition. For the “only if” direction, consider two
ν-trees T and T ′ such that T ′ = T r q ∪ q′. It is clear that q � q′, for otherwise T ∪ q′
would consist of pairwise ν-compatible points, contradicting the maximality of T . We
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claim that the points p and r, lying respectively on the northwest and southeast corners
of the smallest rectangle containing q, q′, belong to both T and T ′, and that no further
points of T or T ′ lie on that rectangle.

Indeed, one observes that the existence of any point s ∈ T ∩ T ′ with s � p or s � r
would imply incompatibilities s � q or s � q′. We leave the easy details to the reader.
Hence, p and r must belong to T and T ′ by maximality. Moreover, the rectangle pqrq′

must be empty because any point inside would be incompatible with q or q′. From this it
follows that T and T ′ are related by a rotation.

3 The ν-Tamari lattice as a rotation lattice

In this section we show that the rotation lattice of ν-trees is equivalent to the ν-Tamari
lattice of Préville-Ratelle and Viennot [37].

3.1 ν-Tamari lattices

We identify lattice paths that consist of a finite number of north and east unit steps with
words on the alphabet {N,E}. Given a lattice path ν, a ν-path is a lattice path with the
same endpoints as ν that is weakly above ν. The set of ν-paths is endowed with a partial
order which we now recall.

Definition 13. The ν-Tamari poset Tamν on the set of ν-paths is the transitive closure <ν

of the covering relation lν defined as follows:
Let µ be a ν-path. For a lattice point p on µ define the distance horizν(p) to be the

maximum number of horizontal steps that can be added to the right of p without crossing
ν. Given a valley p of µ (a point preceded by an east step E and followed by a north
step N) we let q be the first lattice point in µ after p such that horizν(q) = horizν(p).
We denote by µ[p,q] the subpath of µ that starts at p and finishes at q, and consider the
path µ′ obtained from µ by switching E and µ[p,q]. The covering relation is defined to be
µlν µ

′.

An example is illustrated in Figure 1 (left). The case ν = (NE)n yields the classical
Tamari lattice.

In [37], Préville-Ratelle and Viennot proved several structural results about Tamν . In
particular, they showed that it has the structure of a lattice.

Theorem 14 (Préville-Ratelle and Viennot [37]). The ν-Tamari poset is a lattice.

3.2 The rotation lattice of ν-trees is isomorphic to the ν-Tamari lattice

We present now a bijection that induces an isomorphism between the rotation lattice of
ν-trees and the ν-Tamari lattice. Theorem 8 is then a direct consequence of Theorem 14.

Theorem 15. The ν-Tamari lattice is isomorphic to the rotation lattice of ν-trees.
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Figure 7: Bijection between ν-paths and ν-trees. Forbidden x-coordinates are
indicated by vertical creased lines.

To describe the isomorphism, consider the following maps between ν-paths and ν-
trees. Let µ be a ν-path. We construct a ν-tree T = R(µ) by Right-flushing the points
in µ row-wise in the following way. First label the points in µ in the order they appear
along the path, traversed from southwest to northeast. Starting from the bottom row and
proceeding upwards, the points in a row are placed as rightmost as possible on the same
row of Aν , in the assigned order and avoiding x-coordinates that are forbidden by previous
flushed rows. The x-coordinates forbidden by a row are those of its right-flushed lattice
points, excepting the last (i.e. leftmost) one. The collection of lattice points obtained
by right flushing all the points in µ constitutes the ν-tree R(µ). This is illustrated in
Figure 7 (top).

Symmetrically, the inverse map is defined as a row-wise Left-flushing of the lattice
points in a ν-tree T . First we label the points of T in the order they appear when
traversed from bottom to top and from right to left. Starting from the bottom row and
proceeding upwards, the points in a row are placed as leftmost as possible on the same
row, in the assigned order and avoiding x-coordinates that are forbidden by previous
flushed rows. This time, the x-coordinates forbidden by a row are those of its left-flushed
lattice points, excepting the last (i.e. rightmost) one. The resulting collection of lattice
points forms the path µ = L(T ); see Figure 7 (bottom).

Thus, the above maps give a one-to-one correspondence between lattice points in a
ν-path µ and nodes in a ν-tree T = R(µ). We will often decorate labels of lattice points
in a ν-tree with an overline, and write p↔ p for this correspondence1. We show now that
R and L are indeed well-defined inverse bijections.

Proposition 16. The following assertions hold:

1We will be rather lax with the overlined notation for nodes of ν-trees, and only employ it when the
correspondence p↔ p induced by flushing needs to be stressed.
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1. The right and left flushing maps R,L are well-defined.

2. R and L are inverse bijective correspondences between ν-paths and ν-trees.

3. Two ν-paths µ, µ′ are related by a ν-Tamari covering relation if and only if the ν-trees
R(µ),R(µ′) are related by rotation.

Proof. (1): First, we verify that right-flushing can proceed up to the top row, in the sense
that there are always x-coordinates available to place a flushed point. Given a point p
on a ν-path µ and the corresponding right-flushed point p, this means that the difference
between the width of the Ferrers diagram Fν at the row on which p lies and the number
of x-coordinates forbidden prior to p is nonnegative. Indeed, we recognize the subtrahend
as the number of east steps of µ prior to p, so the difference equals the quantity horizν(p)
(cf. Section 3.1), which is nonnegative by construction.

Likewise, to left-flush a node p of a ν-tree T to a point p via L, we require again that
the difference between the width of the Ferrers diagram Fν at the row on which p lies
and the number of x-coordinates forbidden prior to p be nonnegative. We recognize this
quantity as the number of horizontal edges in the unique path in T from p to the root,
and denote it by hrootT (p). Clearly hrootT (p) > 0 for every p ∈ T

We now check that R and L map to ν-trees and ν-paths, respectively. Given a ν-
path µ, we claim that T := R(µ) is a ν-tree. It is not difficult to see that, by construction
of R, the points of T are pairwise ν-compatible. Indeed, if p and q are incompatible,
with q northeast of p, then either there is a point in p’s row in the same column as q, or
this x-coordinate was already forbidden by a previous row; in both cases, the x-coordinate
of q is forbidden, which is a contradiction. On the other hand, T is maximal because, by
Lemma 11, the number of nodes in every ν-tree equals the number of lattice points in ν,
which in turn equals the number of nodes in µ.

Given a ν-tree T , we claim that µ := L(T ) is a ν-path. Indeed, the correspondence p↔
p between lattice points of µ and nodes of T induces the equality horizν(p) = hrootT (p),
since the expressions for these quantities as differences agree, modulo exchanging p and p.
Since hrootT (p) is non-negative for every p ∈ T , µ lies weakly above ν.

(2): Injectivity of the right flushing map µ 7→ R(µ) follows becauseR(µ) depends only
on the number of lattice points of µ on each row, and this statistic uniquely determines
the path. The surjectivity of R follows from the left flushing map T 7→ L(T ), which is
the inverse of R.

(3): It remains to show that the covering relation on ν-paths translates to rotation
on ν-trees, and vice versa. Let p be a valley of µ, q be the first point on µ after p such
that horizν(q) = horizν(p), and µ′ be the path obtained from µ by switching the east step
preceding p and µ[p,q]. Let T = R(µ) and p, q be the corresponding nodes of p and q,
respectively. We claim that q is the parent of p in T . The reason is that, since p is the
leftmost node of its row, all the nodes with labels between p and its parent have larger
horizontal distance to the root. Therefore, the parent q of p is the first node after p such
that hrootT (q) = hrootT (p). The tree T ′ = R(µ′) is then obtained from T by replacing p
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by a node on the same row as q. Therefore T ′ is necessarily equal to rotating p to the
right in T . The same argument works to prove the converse correspondence.

Theorem 15 is a direct consequence of Proposition 16. As a corollary, we get an
alternative proof of one of the main results in [37].

Corollary 17 ([37, Theorem 2]). Let ←−ν be the path obtained by reading ν backwards and
replacing the east steps by north steps and vice versa. Then Tamν is isomorphic to the
dual lattice of Tam←−ν .

Proof. The ←−ν -trees can be obtained from ν-trees by reflecting them on the line of slope

minus 1 passing through the root. This reflecting operation, that we represent by T →
←−
T ,

maps Tamν to the dual of Tam←−ν bijectively, because it turns right rotations on T into

left rotations on
←−
T .

Remark 18. The correspondence between Tamν and the dual of Tam←−ν can be made

explicit at the level of lattice paths by the bijection L ◦
←−
(·) ◦ R. We illustrate this

composition in Figure 8.

R ← L

Figure 8: Bijection between ν-paths and ←−ν -Dyck paths via flushing.

Remark 19. In [12], the concept of (I, J)-trees was introduced in order to produce geo-
metric realizations of ν-Tamari lattices. The ν-trees presented in this paper are equivalent
to the grid representation of the (I, J)-trees (cf. [12, Remark 2.2]).

4 The rotation lattice via bracket vectors

In this section, we provide a direct proof of the lattice property for the rotation lattice of
ν-trees. The core notion is that of a bracket vector, which has a natural meaning in the
graph theoretical context of ν-trees. For completeness, we also include a description of
bracket vectors in terms of lattice paths.

4.1 ν-bracket vectors

Definition 20. Let ν be a lattice path from (0, 0) to (m,n) with length ` = `(ν) = m+n.
The minimal ν-bracket vector bmin is a vector consisting of ` + 1 non-negative integers
obtained by reading the y-coordinates of the lattice points on ν in the order they appear
along the path. We define the set of fixed positions as the set F = {f0, f1, . . . , fn} where
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fk is the position of the last appearance of k in bmin. A ν-bracket vector is a vector
b = (b1, . . . , b`+1) satisfying the following properties:

1. bfk = k for 0 6 k 6 n;

2. bmin
i 6 bi 6 n for all i;

3. the sequence (b1, . . . , b`+1) is 121-avoiding.

Recall that a sequence is 121-avoiding if it does not contain any subsequence (k, k′, k)
with k < k′. Condition (3) in this definition can be equivalently replaced by

(3′) if bi = k, then bj 6 k for i 6 j 6 fk. .

Theorem 21. The ν-Tamari lattice is isomorphic to the lattice of ν-bracket vectors under
componentwise order.

This theorem provides a simple description of the lattice. Its proof is delayed until
Section 4.4, and the description of the meet and join operations are presented in Sec-
tion 4.5.

Remark 22. Our definition of bracket vectors is inspired by the work of Huang and Tamari
in [23], who introduced a notion of right bracketings of a word x0x1 . . . xn to provide a
simple proof of the lattice property for the classical Tamari lattice Tamn. Each right
bracketing is encoded by an n-vector satisfying similar properties as in our definition of ν-
bracket vectors (Definition 20). Indeed, their vectors can be obtained from our ν-brackets
vectors, for ν = (NE)n, by removing the values at the fixed positions f0, . . . , fn. Our
Theorem 21 generalizes the main result in [23].

Remark 23. Préville-Ratelle and Viennot showed that the ν-Tamari lattice can be ob-
tained as an interval in the classical Tamari lattice [37]. Restricting the classical bracket
vectors of Huang and Tamari in [23] to this interval gives a similar description of the
ν-Tamari lattice as in Theorem 21. However, the description of ν-bracket vectors in this
paper is simpler and more direct; it also uncovers essential information about ν-trees, as
we will now see.

4.2 Bracket vectors from ν-trees

The bracket vector of a ν-tree is obtained using the in-order traversal2 of the tree, which is
defined recursively as follows: if x is the root, A is its left subtree and B its right subtree,
we visit the nodes A in in-order, then visit x and finally visit B in in-order.

Definition 24 (Bracket vector of a ν-tree). We label each node of a ν-tree T by its
y-coordinate. The bracket vector b(T ) is the result of reading the labels of the nodes in
in-order. Note that bmin = b(Tmin), the bracket vector of the minimal ν-tree.

2The in-order is called symmetric order by Préville-Ratelle and Viennot in [37]
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Figure 9: The bracket rotation.

An example of the bracket vectors for all ENEEN-trees is illustrated in Figure 1 (right),
where the bold numbers are the values at the fixed positions (f0, f1, f2) = (2, 5, 6). The
rotation operation induces a simple operation at the level of bracket vectors, schematically
depicted in Figure 9. Let T ′ be a rotation of T . If b(T ) = AxByC, where x is the
entry corresponding to the node that is being rotated, and y that of its parent; then
b(T ′) = AyByC. Note that in such rotation all entries of the vectors remain unchanged
except for the label corresponding to the rotated node. This explains why the values at
the fixed positions remain unchanged for all ν-trees.

Remark 25. Our notion of bracket vector is closely related to other definitions of bracket
vectors in the literature. For instance, in [8] Björner and Wachs define (after Knuth [25]
and Pallo [33]) the bracket vector of a complete binary tree T on ` + 2 leaves as the
sequence r(T ) = (r1, . . . , r`+1), where ri denotes the number of internal nodes in the right
subtree of the internal node at position i in the in-order traversal of T . In terms of r(T ),
the entries of the bracket vector b(T ) = (b1, . . . , b2`+3) can be recovered as b2i−1 = i − 1
for 1 6 i 6 ` + 2 (fixed positions) and b2i = ri + i for 1 6 i 6 ` + 1. The latter follows
because b2i equals the number of leaves weakly preceding internal node 2i in the post-order
traversal3 of T minus one (see [12, Remark 2.2]), which in turn equals ri + i. One can
generalize the definition of r(T ) for more general ν-trees, and its relation with b(T ) is
analogous.

4.3 Bracket vectors from ν-paths

Bracket vectors can also be easily defined in terms of ν-paths.

Definition 26 (Bracket vector of a ν-path). We label each lattice point of a ν-path µ
by its y-coordinate. The bracket vector b(µ) is constructed from the labels as follows. We
start with an empty vector of length `+1 and start filling its entries. For k varying from 0
to n, we set as many entries of the vector equal to k as there are lattice points in row k,
rightmost possible but before the fixed position fk. Note that bmin = b(ν), the bracket
vector of ν itself.

3In the post-order traversal of a binary tree, if x is the root, A is its left subtree and B its right
subtree, we visit the nodes A in post-order, then visit B in post-order, and finally visit x.
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An example is illustrated in Figure 10. The underlined numbers denote the values at
the fixed positions (f0, f1, f2, f3, f4) = (3, 4, 7, 8, 10).

(, 0, 0, , , , , , , ) (, 0, 0, 1, , , , , , ) (, 0, 0, 1, , 2, 2, , , ) (3, 0, 0, 1, 3, 2, 2, 3, , ) (3, 0, 0, 1, 3, 2, 2, 3, 4, 4)

Figure 10: Bracket vectors from ν-paths.

Proposition 27. The bracket vectors for ν-trees and ν-paths are characterized by Defini-
tion 20. Moreover, if T = R(µ) is the ν-tree corresponding to a ν-path µ under the right
flushing bijection, then b(T ) = b(µ).

Proof. The result follows from the following three observations:

(i) The bracket vector of a ν-tree T satisfies the properties in Definition 20. Note
that b(Tmin) satisfies Property (1). Since rotations do not change the value at position fk
in a bracket vector, then bfk = k for every tree.

Property (2) follows from the fact that each right rotation increases the values of the
bracket vector. Property (3′) follows because, between two values k in b(T ), we read in
the in-order some labels of nodes that are descendants of the node with the first value k.
These labels are all less than or equal to k.

(ii) Each ν-bracket vector can be obtained uniquely as the bracket vector of a ν-path µ.
Let b be a ν-bracket vector (as in Definition 20) and µ be the unique path containing
as many lattice points on row k as values k in b. Since all values 6 k in b are placed
at positions 6 fk, the path µ is weakly above ν and therefore is a ν-path. If µ′ is a
ν-path with µ′ 6= µ, then µ, µ′ have a different number of points on some row k. But
then b 6= b(µ′) because they do not have the same number of instances of k, so the map
µ 7→ b(µ) is injective. To check that b = b(µ), note that b can be uniquely reconstructed
in the same way as b(µ) is defined: start from the empty vector, and for k varying from 0
to b, add all the values k from b as rightmost as possible before fk inclusive. The resulting
vector is equal to b, for otherwise property (3′) would be invalidated at some point in the
process.

(iii) If T = R(µ) then b(T ) = b(µ). As we have seen in the proof of (ii), a ν-bracket
vector is completely determined by the number of values k it contains for each 0 6 k 6 b.
Since T = R(µ) and µ have the same number of labels equal to k for each k, then their
bracket vectors must be equal.
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4.4 Properties of bracket vectors and proof of Theorem 21

Let T and T ′ be two ν-trees. We will write T → T ′ if the tree T ′ can be obtained from T
by a sequence of right rotations. The rotation action on bracket vectors can be described
as follows.

Lemma 28. Let T ′ be a ν-tree obtained by a right rotation of T at a node with label x.
The bracket vector b(T ′) can be obtained from b(T ) by replacing the first appearance of x
by the value y at position fx + 1 (the value following the last x).

Proof. This result follows from our schematic illustration of right rotation in Figure 9:
The first value x in b(T ) is the node being rotated, while the last x corresponds to the
last node of the subtree B read in in-order. This last x stays at the fixed position fk for
all trees. The first entry y after the last x corresponds to the label of the parent of the
node being rotated, which gets a new label equal to y.

Corollary 29. If T → T ′ then b(T ) < b(T ′).

Proof. Since y > x in the previous lemma, applying a right rotation to a tree acts on its
bracket vector by increasing exactly one of its entries. The result follows by applying a
sequence of rotations.

Note that if a ν-bracket vector b has at least two x’s and x < n, then a right rotation
action can always be performed at the first appearance of x, replacing it by the value y
that appears after the last x in b.

Lemma 30. If b(T ) < b(T ′) then T → T ′.

Proof. Let b(T ) = (b1, . . . , b`+1) and b(T ′) = (b′1, . . . , b
′
`+1) and consider the smallest index

i such that bi 6= b′i. For simplicity we call bi = x and bfx+1 = y the first entry after the
last x in b. We also denote b′i = z and b′fx+1 = w.

b′ = . . . z . . . x w . . . z . . .
b = . . . x . . . x y . . . z . . .

i fx fz

We start by observing that bi is the first entry equal to x in b, otherwise there would
be a pattern x . . . z . . . x with x < z in b′, which would contradict Property (3′) in the
definition of ν-bracket vectors. Applying a rotation operation on this first x produces a
new bracket vector b̄, which is obtained from b by replacing its first x by the value y.
Since y 6 w (because b < b′) and w 6 z by Property (3′) for b′, we get that y 6 z.
Therefore b < b̄ 6 b′. If b̄ = b′ we are done, otherwise we continue doing rotations until
reaching b′ in a finite number of steps.

We are now ready to prove Theorem 21 asserting that the ν-Tamari lattice is isomor-
phic to the lattice of ν-bracket vectors under componentwise order.
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µ µ′ µ ∧ µ′ µ ∨ µ′

T T ′ T ∧ T ′ T ∨ T ′
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←−
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T ′

←−
T ∧
←−
T ′

←−
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b ∧
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Figure 11: Computing the meet and join with bracket vectors.

Proof of Theorem 21. By Theorem 15, the ν-Tamari lattice is isomorphic to the lattice of
ν-trees whose order is induced by right rotations. This lattice is isomorphic to the lattice
of ν-bracket vectors by Proposition 27, Corollary 29 and Lemma 30.

4.5 Meet and join

The properties (1), (2), and (3′) in the definition of ν-bracket vectors are clearly preserved
after taking the componentwise minimum between two bracket vectors. This gives us a
simple description for the meet operation:

Proposition 31. The meet of the two ν-bracket vectors b = (b1, . . . , b`+1) and b′ =
(b′1, . . . , b

′
`+1) is their component-wise minimum

b ∧ b′ = (min{b1, b′1}, . . . ,min{b`+1, b
′
`+1}).

The join cannot be obtained by taking the componentwise maximum. Instead, it can

be computed in terms of the meet of the corresponding reflected trees
←−
T and

←−
T ′.
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Proposition 32. The join T ∨ T ′ =
←−−−−−←−
T ∧
←−
T ′.

Proof. As in the proof of Corolary 17, the map T →
←−
T sends the ν-Tamari lattice Tamν

to the dual of Tam←−ν . The result follows.

An example of the meet and join operation using bracket vectors is illustrated in
Figure 11.

5 The ν-Tamari lattice via subword complexes

The main goal of this section is to show that the ν-Tamari lattice is isomorphic to the
increasing-flip poset of a suitably chosen subword complex (Theorem 37). This will be
achieved through an identification of ν-trees with certain reduced pipe dreams, which are
closely related to the work of Rubey [40] and Serrano and Stump [42].

A pipe dream is defined as a filling of a triangular shape with crosses and elbows
so that all pipes (or lines) entering on the left side exit on the top side, see Figure 12
(right). Given a pipe dream P , we label the left ends of the lines with the numbers 1, 2, . . .
from top to bottom, and transport these labels along the lines to get a labeling of top
ends. We denote by π(P ) the permutation whose one-line representation is given by the
top labels, read from left to right. In our example from Figure 12 (right), the permutation
is π(P ) = [1, 4, 3, 5, 2, 6].

A pipe dream is called reduced if any two pipes have at most one intersection. Reduced
pipe dreams play a fundamental role in the combinatorial understanding of Schubert
polynomials; they were first considered by Fomin and Kirillov in [20] as a “planar history”
of the inversions in a permutation, introduced as rc-graphs by Bergeron and Billey in [5],
and further studied using the pipe dream terminology by Knutson and Miller in [27]. Each
crossing is meant to represent the action of a transposition of the symmetric group,
and the product of the transpositions associated to the crossings (in suitable order)
gives a reduced expression for π(P ) (cf. Section 5.1).

For the purpose of this section, we view the set of lattice points Aν weakly above a
lattice path ν as lattice points of the smallest square grid such that all points in Aν are
strictly above the main diagonal of the grid, as in Figure 12 (left).

With this convention in mind, given a ν-tree T , replace each point in Aν by an elbow
if it belongs to T , and by a crossing otherwise. Further replace each point above

the main diagonal that is strictly below ν by an elbow . We obtain a pipe dream
fitting inside a triangular shape (n, n−1, . . . , 2, 1). We denote by πν(T ) its corresponding
permutation. An example is illustrated in Figure 12 (center).

Proposition 33 ([5]). For a fixed ν, the permutation πν := πν(T ) is independent of the
ν-tree T . Moreover, ν-trees give all reduced pipe dreams for πν.

Proof. In the language of reduced pipe dreams, right rotations on ν-trees correspond to
(general) chute moves (as defined and illustrated in Figure 13)4. Since such moves do

4These chute moves are slightly more general than the (two sided) chute moves originally defined by
Bergeron and Billey in [5]. This more general version was defined by Rubey in [40].
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Figure 12: The pipe dream representation of a ν-tree.
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Figure 13: Rotations of ν-trees correspond to chute moves in pipe dreams.

not alter the permutation of the pipe dream [5, Lemma 3.5], different ν-trees give rise
to the same permutation. Since all reduced pipe dreams of a permutation are connected
by chute and inverse chute moves [5, Thm. 3.7], ν-trees and reduced pipe dreams for πν
coincide. In order to show that the pipe dreams are reduced, it suffices to check it for one
tree; this holds for Tmin.

Remark 34. Proposition 33 is a special case of Rubey’s result [40, Theorem 3.2] where
k = 1 and the polyomino is chosen to be a Ferrers shape, as well as the special case of
Serrano and Stump’s result [42, Theorem 2.1] for k = 1.

5.1 Reduced pipe dreams as facets of subword complexes

Reduced pipe dreams for a permutation w can be identified with the facets of certain
subword complex [27, Section 1.8]. These complexes were introduced by Knutson and
Miller for Coxeter groups in [26], and reduced pipe dreams are a special case corresponding
to the symmetric group.

Let us briefly recall some basic notions relating to subword complexes. Since we
are only working with the symmetric group, we restrict our presentation to this level
of generality. Let Sn+1 be the symmetric group of permutations of [n + 1], and S =
{s1, . . . , sn} be the generating set of simple transpositions si = (i i+1). Every element w ∈
Sn+1 can be written as a product w = si1si2 . . . sik of elements in S. If k is minimal among
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all such expressions for w, then k is called the length `(w) of w, and si1si2 . . . sik is called
a reduced expression for w.

Definition 35 ([26]). Let Q = (q1, . . . , qm) be a word in S and π ∈ Sn+1 be an element of
the group. The subword complex SC(Q, π) is a simplicial complex whose facets (maximal
faces) are given by subsets I ⊂ [m] = {1, 2, . . . ,m}, such that the subword of Q with
positions at [m]r I is a reduced expression of π.

Two facets I and J are adjacent if they differ by one single element, that is Iri = Jrj.
The operation of replacing i by j to go from I to J is called a flip. The flip from I to J is
called increasing if i < j. The increasing flip poset of SC(Q, π) is the partial order on its
facets, whose covering relations correspond to increasing flips. The facet adjacency graph
of SC(Q, π) is the graph whose vertices are facets of SC(Q, π) and edges correspond to
pairs of adjacent facets.

Example 36. Let n = 2 and S = {s1, s2} = {(1 2), (2 3)}. Let π = [2, 3, 1] = s1s2
and Q = (q1, q2, q3, q4, q5) = (s1, s2, s1, s2, s1). Since the reduced expressions of π in Q are
given by q1q2 = q1q4 = q3q4 = π, the facets of SC(Q, π) are {3, 4, 5}, {2, 3, 5} and {1, 2, 5}.
The increasing flips are:

{1, 2, 5} → {2, 3, 5} → {3, 4, 5}.

This subword complex is illustrated in Figure 14.

1 2 3 4

5

Figure 14: Subword complex SC(Q, π) for Q = (s1, s2, s1, s2, s1) and π = s1s2. Its
maximal faces are {3, 4, 5}, {2, 3, 5} and {1, 2, 5}.

For a fixed lattice path ν, recall that Fν is the Ferrers diagram that lies weakly above ν.
For a lattice point p in Fν , denote by d(p) the lattice distance from p to the top-left corner
of Fν . Set d̂ = maxp∈Fνd(p). We denote by πν the permutation in Sd̂+2 whose Rothe
diagram (i.e. the set {(π(j), i) : i < j, π(i) > π(j)}) is equal to Fν with its northwest block
lying at (2,2). Now label each integer lattice point p in Fν by the transposition sd(p)+1.
Define Qν as the word obtained by reading the labels of each row from left to right, and
the rows from bottom to top. See Figure 15 (compare [42]).

Thus, from a ν-tree T one gets a reduced expression for πν as the product of the
transpositions in Qν corresponding to points of Aν not in T . Figure 16 illustrates this,
along with the effect of a rotation.

the electronic journal of combinatorics 27(1) (2020), #P1.14 20



s1 s2

s2 s5

s3 s4

s3

s3

s4

s4

1 4 3 5 2 6

Figure 15: Lattice path ν = ENEEN and its corresponding Ferrers diagram
Fν(left). Rothe diagram of the permutation πν = [1, 4, 3, 5, 2, 6] (middle).

Corresponding word Qν = (s3, s4, s2, s3, s4, s5, s1, s2, s3, s4) (right).

s2s3s2s4 = [1, 4, 3, 5, 2, 6]

s2 s3

s2 s4

s3s2s3s4 = [1, 4, 3, 5, 2, 6]

s2 s3

s3

s4
rotation

Figure 16: Complements of ν-trees are the reduced expressions of πν in Qν .

Theorem 37. The ν-Tamari lattice is isomorphic to the increasing flip poset of the sub-
word complex SC(Qν , πν).

Proof. By Theorem 15, the ν-Tamari lattice is isomorphic to the rotation lattice of ν-
trees. The facets of the subword complex SC(Qν , πν) are in correspondence with ν-trees by
Proposition 33. Two facets are related by an increasing flip if and only if the corresponding
ν-trees are related by a right rotation by Lemma 12.

Remark 38. Theorem 37 is equivalent to Theorem 15 and Lemma 12 together with any
of the following two results:

• The specialization of Rubey’s result [40, Theorem 3.2] for k = 1 and the polyomino
being a Ferrers shape.

• The specialization of Serrano and Stump’s result [42, Theorem 2.1] for k = 1.

Note that Lemma 12 implies that all flips between pipe dreams with permutation πν are
(general) chute moves. This is not true for arbitrary permutations, which exhibit flips
that do not correspond to chute moves.

Remark 39. The set of ν-trees is naturally equipped with the simplicial complex structure
of the corresponding subword complex, where covering pairs of ν-trees represent adjacent
facets. This generalization of the simplicial associahedron was already considered in the
context of the ν-Tamari lattice in [12].
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5.2 Rubey’s lattice conjecture

The collection of reduced pipe dreams of a permutation w can be equipped with a natural
poset structure determined by (general) chute moves. Rubey formulated the following
conjecture in [40, Conjecture 2.8].

Conjecture 40 (Rubey’s Lattice Conjecture [40]). The poset of reduced pipe dreams
of a permutation w, whose covering relations are defined by (general) chute moves, is a
lattice.

An important class of permutations arising from the theory of Schubert polynomials
is the class of dominant permutations, see for instance [29]. A dominant permutation is
a permutation whose Rothe diagram is the shape of a partition with its northwest block
located at position (1, 1). Those are permutations avoiding the pattern 132. For u ∈ Sm

and v ∈ Sn we denote by u⊕ v ∈ Sm+n the permutation defined by

(u⊕ v)(i) =

{
u(i), for 1 6 i 6 m

v(i) +m, for m < i 6 m+ n.

The collection of permutations πν associated to lattice paths ν are exactly the permu-
tations of the form w = 1⊕u, where u is a dominant permutation. As a direct consequence
of Theorem 37 we get that Rubey’s conjecture holds for a special class of permutations
determined by dominant permutations:

Theorem 41. Rubey’s Lattice Conjecture holds for permutations w = 1⊕ u where u is a
dominant permutation.

Proof. By Theorem 37 and Lemma 12, the poset of reduced pipe dreams of w is isomorphic
to a ν-Tamari lattice, which is known to be lattice.

5.3 The Edelman–Greene correspondence

Using Edelman–Greene insertion, Woo [49] described a bijection between pipe dreams
with permutation [1, n+ 1, n, . . . , 2] and Dyck paths with 2n steps. His bijection extends
trivially to a bijection between pipe dreams with permutation w = 1 ⊕ u and ν-paths,
where u is a dominant permutation and ν is the path whose Ferrers diagram Fν equals
the Rothe diagram of u. As noticed in Proposition 33, pipe dreams with permutation
w = 1⊕u are in correspondence with ν-trees. The purpose of this section is to show that
Woo’s bijection from ν-trees (when regarded as pipe dreams) to ν-paths coincides with
the left flushing bijection L from Section 3.2.

Remark 42. In [42], Serrano and Stump extended Woo’s result to a bijection between
pipe dreams with permutation w = [1, 2, . . . , k − 1] ⊕ u and k-tuples of nested ν-paths,
and used it to describe a bijection between k-triangulations of a polygon and k-tuples of
nested Dyck paths.

the electronic journal of combinatorics 27(1) (2020), #P1.14 22



Figure 17: The ν-path obtained applying the column Edelman-Greene
correspondence to a ν-tree T coincides with the left flushing L(T ). The reading

biword in this case is ( 1 1 1 1 2 2 3 3 3 4 4 5
5 4 3 2 6 4 5 4 3 6 4 5 ).

Let ν be path and w = 1 ⊕ u, where u is the dominant permutation whose Rothe
diagram is equal to Fν . Edelman-Greene’s (column) correspondence associates to each
ν-tree T a pair (X, Y ) of an insertion tableau and a recording tableau, as follows:

Let T be a ν-tree. We denote by Aν be the set of lattice points weakly above ν in Fν .
Each point in Aν has a coordinate (i, j) where i stands for the ith row from top to bottom
and j stands for the jth column from left to right. The reading biword of T is the array(
a1,...,a`
b1,...,b`

)
obtained by reading

(
i

i+j−1

)
for every point (i, j) in the complement T c := AνrT ,

row by row from right to left and from top to bottom.
We insert the letters of the word formed by the bottom row using column Edelman–

Greene insertion [18] into a tableau, while recording the corresponding letters from the first
row. This produces an insertion tableau X = X(T ) and a recording tableau Y = Y (T ).
An example is illustrated in Figure 17.

We briefly recall the column Edelman–Greene insertion for completeness. When we
insert a letter i into a column:

• if all numbers in that column are smaller than or equal to i, we append i to that
column;

• if the column contains both i and i+1, it remains unchanged and an i+1 is bumped
to the next column;

• otherwise, we replace the smallest number j greater than i in that column by i and
bump j to the next column.
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Lemma 43 ([42, Lemma 3.1]). For every ν-tree T , the shapes of X(T ) and Y (T ) are
given by Fν.

Lemma 44 ([49, Proposition 3]). The kth row of the tableau Y (T ) contains only entries
k or k + 1.

Definition 45 ([49]). For a ν-tree T , define EG(T ) to be the ν-path such that the boxes
weakly above it are precisely those whose row number matches their label in Y (T ). Fig-
ure 17 illustrates an example.

Proposition 46. For every ν-tree T , we have EG(T ) = L(T ).

Proof. We denote by Tk (resp. T ck ) the points in T (resp. T c) that are in row k. For a
ν-path µ we denote by λk(µ) the number of boxes above µ in row k (from top to bottom).
By Lemma 44, the values 1, 2, . . . , k fill all the boxes in the tableau Y (T ) that are above
ν in the first k − 1 rows and part of boxes in the kth row. Therefore, we have:

λk(EG(T )) =
k∑
i=1

|T ck | −
k−1∑
i=1

λi(ν). (1)

On the other hand, λk(L(T )) counts the number of columns that are forbidden by rows
below row k in the left flushing bijection, and so:

λk(L(T )) =
∑
i>k

(|Ti| − 1). (2)

We need to show that λk(EG(T )) = λk(L(T )). Note that the difference on the right hand
side of Equation (1) is independent of the position of the vertices in T located in the
first k rows. Moreover, if there were no forbidden columns produced by rows below row k,
then this difference would be equal to zero. Now, each forbidden column produced by a
row below row k increases this difference by one. Therefore,

k∑
i=1

|T ck | −
k−1∑
i=1

λi(ν) =
∑
i>k

(|Ti| − 1).

This finishes the proof.

6 Multi ν-Tamari complexes

For any integer k > 1 one may define a (k, ν)-tree as a maximal subset of Aν without
k + 1 pairwise ν-incompatible elements. The (k, ν)-Tamari complex is the simplicial
complex on Aν whose facets are (k, ν)-trees. This object was introduced by Jonsson
in [24]. For ν = (NE)n this coincides with the simplicial complex of (k + 1)-crossing-
free subsets of diagonals of a convex (n + 2)-gon. This complex is conjectured to be
realizable as the boundary complex of a simplicial polytope [24], whose dual would be
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Figure 18: For k = 2 and ν = E4N2, the facet adjacency graph of the
(k, ν)-Tamari complex is the graph of a mixed subdivision of a triangle. By the
proof of Proposition 47, this is equivalent to the facet adjacency graph of the

Fuss-Catalan (k, ν ′)-Tamari complex for ν ′ = (NE4)3.

a simple polytope ∆∗n+2,k known as the simple multiassociahedron (see the introductions
of [7] and [30], and the references therein, for the current knowledge on the existence of
these polytopes).

For k = 1 we have recently shown that the facet adjacency graphs of (1, ν)-Tamari
complexes can be realized as the edge graphs of polytopal subdivisions of (simple) as-
sociahedra5 [12]. We believe that a similar statement might be true for general k. The
following proposition is a first positive result in this direction. See Figures 18 and 19.

Proposition 47. Let m > k and ν = (NEm)k+1. The facet adjacency graph of the Fuss-
Catalan (k, ν)-Tamari complex is the edge graph of a polytopal subdivision of the simple
multiassociahedron ∆∗2k+2,k (a k-dimensional simplex).

Proof. We will show that the facet adjacency graph of the (k, ν)-Tamari complex is the
edge graph of a fine mixed subdivision of an (m − k + 1)-fold dilated k-dimensional
simplex (m − k + 1) · ∆k, obtained from the staircase triangulation of ∆m−k × ∆k via
the Cayley trick [41] (we refer to Sections 6.2 and 9.2 of [17] for a nice introduction to
triangulations of products of simplices, mixed subdivisions, and the Cayley trick).

5Whenever ν does not have two consecutive non-initial north steps or does not have two consecutive
non-final east steps, which holds in particular when the lattice paths weakly above ν are rational Dyck
paths, like Fuss-Catalan paths.
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Figure 19: For k = 3 and ν = E4N3, the facet adjacency graph of the
(k, ν)-Tamari complex is the graph of a mixed subdivision of a tetrahedron. By the

proof of Proposition 47, this is equivalent to the facet adjacency graph of the
Fuss-Catalan (k, ν ′)-Tamari complex for ν ′ = (NE4)4.

Our first observation is that the facet adjacency graph of the (k, ν)-Tamari complex
coincides with the facet adjacency graph of the (k, µ)-Tamari complex for µ = EmNk.
Indeed, all the lattice points p ∈ Aν beyond the mth column, as well as the point in
the lowest row, belong to every (k, ν)-tree. The reason is that such a point p cannot be
contained in a (k + 1)-subset of pairwise ν-incompatible elements. By the same token,
points of Aµ lying in the first k and in the last k southwest-northeast diagonals weakly
above µ also belong to every (k, µ)-tree. We call such nodes belonging to every (k, µ)-tree
irrelevant nodes. See Figure 20, where irrelevant nodes are drawn as white-filled dots.

Figure 20: Example for m = 4 and k = 2. The white-filled dots in the left figure
are irrelevant because they are contained in every facet of the (k, ν)-Tamari

complex. The right figure displays the corresponding relevant transpositions for
the word Qk,ν .
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In [42, Theorem 2.1], Serrano and Stump showed that (k, ν)-trees can be viewed as
reduced pipe dreams of a certain permutation. In particular, this identifies the (k, ν)-
Tamari complex as the join of a simplex with a subword complex SC(Q, π). The vertices
of the simplex correspond to the irrelevant lattice points weakly above ν, and the vertices
of the subword complex to the relevant ones. More precisely, label the lattice points
weakly above ν similarly as in Section 5.1 (see Figure 20), and let Q = Qk,ν be the word
obtained by reading the labels of the relevant points of each row from left to right, and
the rows from bottom to top.

Q = Qk,ν = (sk+1, sk+2, . . . , sm+1)
k+1.

The permutation is given by π = πk,ν = sk+1sk+2 · · · sm+1.
The facet adjacency graph of the (k, ν)-Tamari complex is therefore equal to the

facet adjacency graph of SC(Q, π). Since there is only one possible reduced expression
for π, given by sk+1sk+2 · · · sm+1, the reduced expressions of π in Q correspond to possible
matchings

(sk+1, j1), (sk+2, j2), . . . , (sm+1, jm+1−k)

such that 1 6 j1 6 j2 6 · · · 6 jm+1−k 6 k + 1, where ji is the copy of the factor
(sk+1, sk+2, . . . , sm+1) in Q from which sk+i is chosen; or equivalently the height of the
lattice point that corresponds to this transposition.

Such matchings can be encoded as subgraphs of the complete bipartite graph Gk,ν
∼=

Kk+1,m+1−k with color classes S = {sk+1, . . . , sm+1} and {1, . . . , k + 1}. If we draw the
color classes of vertices of Gk,ν as parallel columns with the given order, it follows that
reduced expressions correspond to minimal subgraphs of Gk,ν whose edges cover all the
vertices in S without crossing (that is, no pair of edges of the form (si, j) and (si′ , j

′)
with i < i′ and j > j′). Two reduced expressions differ by an element if and only if the
corresponding graphs differ by an edge.

Subgraphs of Gk,ν with the non-crossing property determine the cells in the staircase
triangulation of the product of simplices ∆m−k ×∆k (see [17, Section 6.2]). By means of
the Cayley trick (cf. [17, Section 9.2]), we obtain a fine mixed subdivision of (m − k +
1) · ∆k whose cells are in bijection with the non-crossing subgraphs of Gk,ν covering S.
In particular, the vertices of this subdivision are in bijection with minimal non-crossing
subgraphs of Gk,ν covering S, which correspond to reduced expressions of π in Q, or
equivalently, to the facets of SC(Q, π). Two vertices are connected by an edge in the
subdivision if and only if the corresponding facets are adjacent in the subword complex.

Motivated by the proof of Proposition 47, it is natural to consider only lattice paths
of the form ν = EkµNk because all points strictly south-west (resp. north-east) of the
kth east step (resp. kth north step in reverse order) of ν are irrelevant.

Figure 21 illustrates three examples of such paths for k = 2. For the first path, we
get that the (2, ν1)-Tamari complex can be obtained as the boundary complex of a 4-
dimensional cyclic polytope with 7 vertices (see Lemma 8.8 in [35]), which is the dual of
the simple multiassociahedron ∆∗7,2. It would be interesting to know if the facet adjacency
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Figure 21: Three paths of the form ν = EkµNk for k = 2.

graphs of the (2, ν2)- and (2, ν3)-Tamari complexes can be obtained as the edge graphs of
some subdivisions of ∆∗7,2.

Question 48. Let ν = EkµNk be a lattice path such that µ does not have two consecutive
north steps and does not end with a north step. Is the facet adjacency graph of the
(k, ν)-Tamari complex realizable as the edge graph of a polytopal subdivision of a simple
multiassociahedron ∆∗m+2k+2,k, where m is the number of north steps in µ?

We have seen in the proof of Propoposition 47 that the answer to this question is
positive when µ consists only of east steps. Instances of this result are illustrated in
Figures 18 and 19.
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[27] A. Knutson and E. Miller. Gröbner geometry of Schubert polynomials. Ann. Math.
(2), 161(3):1245–1318, 2005.

[28] J.-L. Loday and M. O. Ronco. Hopf algebra of the planar binary trees. Adv. Math.,
139(2):293–309, 1998.

[29] L. Manivel. Symmetric functions, Schubert polynomials and degeneracy loci, volume 6
of SMF/AMS Texts and Monographs. American Mathematical Society, Providence,
RI; Société Mathématique de France, Paris, 2001. Translated from the 1998 French
original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3.
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