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Zürich, Switzerland

jacintsz@google.com

Submitted: Apr 29, 2018; Accepted: Oct 28, 2019; Published: Jan 10, 2020

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Given a non-negative integer j and a positive integer k, a j-restricted k-matching
in a simple undirected graph is a k-matching, so that each of its connected compo-
nents has at least j+1 edges. The maximum non-negative node weighted j-restricted
k-matching problem was recently studied by Li who gave a polynomial-time algo-
rithm and a min-max theorem for 0 6 j < k, and also proved the NP-hardness of
the problem with unit node weights and 2 6 k 6 j. In this paper we derive an
Edmonds–Gallai-type decomposition theorem for the j-restricted k-matching prob-
lem with 0 6 j < k, using the analogous decomposition for k-piece packings given
by Janata, Loebl and Szabó, and give an alternative proof to the min-max theorem
of Li.

Mathematics Subject Classifications: 05C70

1 Introduction

In this paper all graphs are simple and undirected. Given a set F of graphs, an F-
packing of a graph G is a subgraph M of G such that each connected component of M
is isomorphic to a member of F . An F -packing M is called maximal (resp. maximum) if
there is no F -packing M ′ with V (M) ( V (M ′) (resp. |V (M)| < |V (M ′)|). An F -packing
M is perfect if V (M) = V (G). The F -packing problem is to find a maximum F -packing
of G.

Several polynomial F -packing problems are known in the case K2 ∈ F . For instance,
we get a polynomial packing problem if F consists of K2 and a finite set of hypomatchable
graphs [2, 3, 4, 9]. In all known polynomial F -packing problems with K2 ∈ F it holds that
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each maximal F -packing is maximum too; those node sets which can be covered by an F -
packing form a matroid, and the analogue of the classical Edmonds–Gallai decomposition
theorem for matchings (see [6, 7, 5, 16]) holds.

The first polynomial F -packing problem with K2 /∈ F was considered by Kaneko [11],
who presented a Tutte-type characterization of graphs having a perfect packing by long
paths, that is, by paths of length at least 2.

A shorter proof for Kaneko’s theorem and a min-max formula was subsequently found
by Kano, Katona and Király [12] but polynomiality remained open. The long path packing
problem was generalized by Hartvigsen, Hell and Szabó [8] by introducing the k-piece
packing problem, that is, the F -packing problem where F consists of all connected graphs
with highest degree exactly k. Such a graph is called a k-piece. Note that a 1-piece is
just K2, thus the 1-piece packing problem is the classical matching problem. The 2-
piece packing problem is equivalent to the long path packing problem because a 2-piece
is either a long path or a circuit C of length at least 3 so deleting an edge from C results
in a long path. The main result of [8] is a polynomial algorithm for finding a maximum
k-piece packing. Later, Janata, Loebl and Szabó [10] gave a canonical Edmonds–Gallai-
type decomposition for the k-piece packing problem, showed that maximal and maximum
packings do not coincide, and actually the maximal packings have a nicer structure than
the maximum ones.

As another generalization of matchings, Li [14] introduced j-restricted k-matchings.
For an integer k > 0, a k-matching of G is a subgraph M of G with no isolated node and
degrees at most k. For two integers j > 0 and k > 0, a j-restricted k-matching of G is
a k-matching whose each connected component has more than j edges [14]. Obviously,
k-matchings are equal to 0-restricted k-matchings. Moreover, the (k − 1)-restricted k-
matching problem is exactly the maximum matching problem for k = 1 and the long path
packing problem for k = 2.

Given non-negative weights on the nodes of G, the maximum non-negative node
weighted j-restricted k-matching problem is to find a j-restricted k-matching of G such
that the total weight of the nodes covered is maximized. Note that, contrary to the usual
analysis of k-matchings, here we are interested in the weight of covered nodes, not edges.
In [14], a polynomial-time algorithm composed of a min-cost max-flow algorithm and an
alternating tree algorithm was proposed for solving the above problem with 0 6 j < k,
and the algorithm was proved valid by showing a min-max theorem (Theorem 6 in this
paper). In contrast, the maximum unit node weight j-restricted k-matching problem with
2 6 k 6 j is proved to be NP-hard in [14].

There is a simple but essential relation between k-piece packings and j-restricted k-
matchings, namely that every k-piece is a j-restricted k-matching for every 0 6 j < k.
This connection has many important implications. The most prominent example is the
fact that the critical graphs with respect to the j-restricted k-matching problem are also
critical with respect to the k-piece packing problem (the role of critical graphs will be
clear from the Edmonds–Gallai-type decomposition Theorems 3 and 10). This connection
makes it possible to translate the analysis on k-piece packings to j-restricted k-matchings,
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and to prove analogous results.
Exploiting this relationship, in this paper we give an alternative proof to Theorem 6

of Li [14]. In addition, we prove two new results on the j-restricted k-matching problem.
Theorem 3 is an Edmonds–Gallai-type decomposition, and Theorem 4 is a characterization
of the maximal j-restricted k-matchings. Both proofs are based on the analogous results
on k-piece packings [10].

The k = 1 case is the classical matching problem, for which our results are well known
theorems. Thus in this paper the focus will be on the k > 2 case. However, for the sake
of completeness, the general k > 1 case will be treated as a whole.

After formulating the main results and the min-max Theorem 6 of Li [14] in Section
2, we review the k-piece packing problem and associated concepts and results from [8, 10]
in Section 3. From these results we then derive Theorem 3 in Section 4, and Theorem 4
in Section 5. In Section 5 we give the alternative proof to Theorem 6, as well. Finally,
we conclude the paper with open questions in Section 6.

2 Main results

We need some notations to state our main results, Theorems 3 and 4. For a simple,
undirected graph G we denote by c(G) the number of connected components (shortly,
components) of G, and by ∆(G) the largest degree of G. For X ⊆ V (G), let G[X] denote
the subgraph induced by X; let Γ(X) denote the set of nodes not belonging to X but
adjacent to a node in X; and let G−X denote the subgraph of G induced by the nodes
of G not in X. G − {v} is simply written as G − v for v ∈ V (G). Similarly, for node or
edge sets S and T we sometimes use the shorthand S − T for S \ T and S + T for S ∪ T .
An edge is said to enter X if exactly one end node of the edge is contained in X. A node
set X ⊆ V (G) is said to be covered (resp. missed) by a subgraph M of G if X ⊆ V (M)
(resp. X ∩ V (M) = ∅).

Definition 1. A connected graph G is hypomatchable if G− v has a perfect matching for
every v ∈ V (G).

Hereafter we always assume that k and j are integers satisfying 1 6 k and 0 6 j < k.

Definition 2. For an integer k > 1 a connected graph G is a k-blossom if there exists a
hypomatchable graph F with |V (F )| > 3, such that V (G) = V (F ) ∪ {zv1 , . . . , zvk−1 : v ∈
V (F )} and E(G) = E(F ) ∪ {vzv1 , . . . , vzvk−1 : v ∈ V (F )}.

A connected graph G is a sub-j-graph if |E(G)| 6 j.

Thus a k-blossom is obtained from F by adding k − 1 pendant edges together with
their end nodes to every node of F . For a k-blossom G, where k > 2, every degree-1 node
of G is called a tip; every node of a 1-blossom is called a tip; and every sub-j-graph itself
is called a tip. See Figure 1 for some examples of k-blossoms and sub-j-graphs.

One of our main results is the following.
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Figure 1: k-blossoms and sub-j-graphs. Tips are circled.

Theorem 3. [Edmonds–Gallai-type decomposition for j-restricted k-matchings] For a
graph G and integers 0 6 j < k, let

U(G) = {v ∈ V (G) : v is missed by a maximal j-restricted k-matching of G},

D = {v : |U(G− v)| < |U(G)|}, A = Γ(D) and C = V (G) \ (D ∪ A). Then

1. every component of G[D] is either a k-blossom or a sub-j-graph,

2. for all ∅ 6= A′ ⊆ A, the number of the components of G[D] that are adjacent to A′

is at least k|A′|+ 1,

3. G[C] has a perfect j-restricted k-matching, and

4. a j-restricted k-matching M of G is maximal if and only if

(a) exactly k|A| components of G[D] are entered by an edge of M and these com-
ponents are completely covered by M ,

(b) for every component H of G[D] not entered by M , M [H] is a maximal j-
restricted k-matching of H, and

(c) M [C] is a perfect j-restricted k-matching of G[C].

We will prove Theorem 3 in Section 4 by deriving it from the Edmonds–Gallai-type
decomposition for k-piece packings (Theorem 10, proved in [10]). After the proof we try
to explain why this non-trivial definition of the canonical set D is required, and thus why
Theorem 3 is not a direct generalization of the classical Edmonds–Gallai-theorem.

It is a well known fact in matching theory that those node sets which can be covered
by a matching form a matroid. In the j-restricted k-matching problem, maximal and
maximum j-restricted k-matchings do not coincide, thus this matroidal property holds
only in the following weaker form.
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Theorem 4. There exists a partition π on V (G) and a matroid P on π such that the
node sets of the maximal j-restricted k-matchings are exactly the node sets of the form⋃
{X : X ∈ π′} where π′ ⊆ π is a base of P.
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Figure 2: A graph with the matroidal partition π, j = 1, k = 2

Example 5. Figure 2 shows a graph with the partition π as in Theorem 4, for j = 1 and
k = 2 (it even works for any k > 2). In this graph the node sets coverable by j-restricted
k-matchings do not form a matroid.

The analogue of Theorem 4 for k-piece packings was proved in [10].
A Berge-type characterization 6 of j-restricted k-matchings with maximum node weight

was proved by Li [14], based on a polynomial time alternating tree algorithm. In this pa-
per we will derive it by analyzing the maximum weight bases of the matroid P above.
Assume that a non-negative weight function w : V (G) → R+ is given. [14] defines the
deficiency weight of a k-blossom or sub-j-graph G as

1. w(G) =
∑
{w(v) : v ∈ V (G)} if G is a sub-j-graph,

2. w(G) = min{w(v) : v is a tip of G} if G is a k-blossom.

Let (j, k)-galt(G) denote the number of k-blossom and sub-j-graph components H of a
graph G with w(H) > t. (The rationale of this definition and the notation “gal” will be
clear later.)

Theorem 6. [14][Weighted j-restricted k-matchings] Let G be a graph with n nodes,
and w : V (G) → R+ non-negative node weights. Then the maximum total weight of a
j-restricted k-matching of G is

∑
{w(v) : v ∈ V (G)} −max

n∑
i=1

(ti − ti−1)
(
(j, k)-galti(G− Ai)− k|Ai|

)
,

where the max is taken over all sequences of node sets V (G) ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An and
0 = t0 6 t1 6 . . . 6 tn.

The analogue of Theorem 6 for k-piece packings was proved in [8]. We will prove
Theorems 4 and 6 in Section 5 by analyzing the matroid P in Theorem 4.
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3 k-piece packings

In this section we collect the relevant notions and results on k-piece packings from [8, 10].
In the rest of the paper k is a fixed positive integer.

A k-piece is a connected graph G with ∆(G) = k. The k-piece packing problem
is, given a graph G, to find a maximum k-piece packing of G. The main result of [8]
is a polynomial-time algorithm for the k-piece packing problem. Moreover, from the
algorithm, the graphs with a perfect k-piece packing were characterized, and a min-max
theorem for the number of nodes in a maximum k-piece packing was derived.

It was revealed in [8] that k-galaxies play a critical role in solving the k-piece packing
problem.

Definition 7. For a graph G we denote IG = G[{v ∈ V (G) : degG(v) > k}].

Definition 8. For an integer k > 1 the connected graph G is a k-galaxy if it satisfies the
following properties:

• each component of IG is a hypomatchable graph, and

• for each v ∈ V (IG), there are exactly k− 1 edges between v and V (G) \V (IG), each
being a cut edge of G.

For a k-galaxy G, where k > 2, every component of G − V (IG) is called a tip, and
every node of a 1-galaxy is called a tip. In the case k > 2 a k-galaxy may consist of only
a single tip (a graph with highest degree at most k− 1), but must always contain at least
one tip.

A hypomatchable graph has no node of degree 1 so a k-galaxy has no node of degree
k. Furthermore, each component of IG is a hypomatchable graph on at least 3 nodes.
Galaxies generalize hypomatchable graphs because the 1-galaxies are exactly the hypo-
matchable graphs. Kaneko introduced the 2-galaxies under the name ‘sun’ [11]. See
Figure 3 for some k-galaxies. The nodes of IG are drawn as big dots, the edges of IG as
thick lines, and every tip is circled (for the 4-galaxy not all tips are circled for sake of
visibility).

We will use the following fact at many places.

Lemma 9. [8] A k-galaxy has no perfect k-piece packing.

The following Edmonds–Gallai-type decomposition for the k-piece packings was proved
in [10]. The classical Edmonds–Gallai theorem [5, 6, 7] first defines the node set D to
consist of those nodes which can be missed by a maximum matching. In the k-piece
packing problem we need a different formulation, and so Theorem 10 is not a direct
generalization of the classical Edmonds–Gallai theorem. After the proof of Theorem 3 we
try to explain the reason.

Theorem 10. [Edmonds–Gallai-type decomposition for k-piece packings] For a graph G,
let Uk(G) = {v ∈ V (G) : v is missed by a maximal k-piece packing of G}, Dk = {v ∈
V (G) : |Uk(G− v)| < |Uk(G)|}, Ak = Γ(Dk) and Ck = V (G) \ (Dk ∪ Ak). Then
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Figure 3: Galaxies

1. every component of G[Dk] is a k-galaxy,

2. for all ∅ 6= A′ ⊆ Ak, the number of the components of G[Dk] that are adjacent to
A′ is at least k|A′|+ 1, and

3. G[Ck] has a perfect k-piece packing.

In the graph packing terminologies, the node set Ak in the above theorem is called a
barrier, and the k-galaxies are called critical graphs in the k-piece packing problem.

4 Proof of Theorem 3

In this section we make use of the established connection between j-restricted k-matchings
and k-piece packings to derive Theorem 3 from Theorem 10.

4.1 (j, k)-galaxies and k-solar systems

In this subsection we define (j, k)-galaxies, introduce k-solar-systems, make observations
on both of them, and review the rank of the transversal matroid of bipartite graphs.

Definition 11. For integers 0 6 j < k, a connected graph is a (j, k)-galaxy if it is a
k-galaxy without a perfect j-restricted k-matching.

Lemma 12. If k > 2, j = k − 1 and M is a j-restricted k-matching of a k-blossom G,
then there exists a tip T of G such that V (T ) ∩ V (M) = ∅.

Proof. Recall that every tip consists of only one node, and let TG denote the set of these
tip nodes. Suppose that every node in TG is covered by M . Then also all edges in
E ′ = {uv : u ∈ TG, v ∈ V (IG)} are contained in M because j > 1. Note that every node
v ∈ V (IG) has k − 1 incident edges in E ′. Let M ′ = M [V (IG)]. Now degM ′(v) > 1 for all
v ∈ V (IG), as otherwise the component of M containing v would only have k − 1 edges,
which is not a (k− 1)-restricted k-matching. On the other hand, ∆(M ′) 6 1 as otherwise
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∆(M) > k would hold. Thus M ′ is a perfect matching of the hypomatchable graph IG,
which is impossible.

The next theorem shows the connection between k-galaxies, k-blossoms and sub-j-
graphs.

Theorem 13. For j < k − 1, every (j, k)-galaxy is a sub-j-graph, and vice versa. For
j = k − 1, every (j, k)-galaxy is a k-blossom or a sub-j-graph, and vice versa.

Proof. First, k-blossoms and sub-j-graphs are clearly k-galaxies. Now we prove that
they have no perfect j-restricted k-matchings, and thus are (j, k)-galaxies for the given
j, k. Trivially, this holds for sub-j-graphs for all 0 6 j < k. As for k-blossoms in the
case j = k − 1, for k = 1 observe that both (0, 1)-galaxies and 1-blossoms are just
hypomatchable graphs, and for k > 2 use Lemma 12.

Now we prove that every (j, k)-galaxy is either a k-blossom or a sub-j-graph for the
given j, k’s.

Let G be a (j, k)-galaxy. If IG = ∅, that is ∆(G) < k, then it is clear that G has no
perfect j-restricted k-matching if and only if it is a sub-j-graph. So assume that IG 6= ∅.

For the case of j < k−1, let G′ = (V (G), E(G)−E(IG)) be the subgraph of G without
the edges of IG. Clearly, ∆(G′) = k − 1. Moreover, every component of G′ has at least
k − 1 > j edges because it contains a node from V (IG). Thus G′ is a perfect j-restricted
k-matching of G and so G cannot be a (j, k)-galaxy.

Let us consider the case of j = k − 1. As we already observed, in the case of k = 1,
both (0, 1)-galaxies and 1-blossoms are just hypomatchable graphs, so let us assume that
k > 2.

If IG is connected, then we prove that every tip of G consists of a single node, and
thus G is a k-blossom. Otherwise, suppose that some v ∈ V (IG) is connected to a tip of
two or more nodes. Since IG is hypomatchable, we let N ′ be a matching of IG that covers
all nodes of IG but v. Then the subgraph (V (G), E(G)−E(IG) +E(N ′)) forms a perfect
j-restricted k-matching, a contradiction to the definition of a (j, k)-galaxy.

If IG has at least two components, we let T be a tip of G that is connected to at least
two components of IG. For every component C of IG, let vC be the unique node of C that
is closest to T in G, and let NC be a perfect matching of C − vC . Let E ′ =

⋃
{E(NC) : C

is a component of IG}, and let M = (V (G), E(G)− E(IG) + E ′). We prove that M is a
perfect j-restricted k-matching of G. As M ∩ E(IG) has maximum degree 1, ∆(M) 6 k,
so it is enough to prove that |E(CM)| > k for every component CM of M .

1. The component CM containing T necessarily covers two nodes u, v ∈ V (IG) from
two different components of IG, thus CM has at least 2(k − 1) > k edges.

2. All other components CM contain an edge uv ∈ E ′ and the nodes u, v together are
incident to 2(k − 1) + 1 > k edges of CM .

The maximal matchings of a hypomatchable graph G are exactly the perfect matchings
of G − v for the nodes v ∈ V (G). The characterization of the maximal j-restricted k-
matchings of a (j, k)-galaxy can be stated by means of the tips in Corollary 16.

the electronic journal of combinatorics 27(1) (2020), #P1.15 8



Figure 4: A k-solar system

Corollary 14. If M is a j-restricted k-matching of a (j, k)-galaxy G, then there exists a
tip T of G such that V (M) ∩ V (T ) = ∅.

Proof. If G is a sub-j-graph, then M must be empty otherwise it would have a component
with at most j edges. For k-blossoms, use the definition of hypomatchable graphs for k = 1
and apply Lemma 12 for k > 2.

Lemma 15. If T is a tip of a (j, k)-galaxy G, then G − V (T ) has a perfect j-restricted
k-matching.

Proof. If G is a sub-j-graph, then it is a tip itself, thus G− T = ∅ and so the statement
is true. Otherwise G is a k-blossom and T = {t} with degG(t) = 1. Denote the neighbor
of t by v ∈ V (IG). IG has at least 3 nodes so we can choose a neighbor w ∈ V (IG) of
v. Since IG is hypomatchable, we let N ′ be a matching of IG that covers all nodes of IG
but w. Then the subgraph (V (G) − {t}, E(G) − E(IG) + E(N ′) + wv) forms a perfect
j-restricted k-matching of G− t.

Corollary 16. The maximal j-restricted k-matchings of a (j, k)-galaxy G are exactly the
perfect j-restricted k-matchings of G− V (T ), where T is a tip of G.

Proof. By Corollary 14 and Lemma 15.

Definition 17. [10] A connected graph G is a k-solar-system (see Figure 4) if it has a
node y, called center, such that degG(y) = k and G− y has k components, each being a
(j, k)-galaxy.

Lemma 18. Every k-solar-system has a perfect j-restricted k-matching.

Proof. In Lemma 3.10 of [10], it is proved that a k-solar system has a perfect k-piece
packing. This is itself a perfect j-restricted k-matching.

Lemma 18 is also easy to prove directly.
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4.2 Tools from matroid theory

We will make use of transversal matroids of bipartite graphs. In this subsection we list
the relevant results which we will use in later proofs. Let G be a graph and A,D ⊆ V (G)
disjoint node sets. Let kA = {zv1 , . . . , zvk : v ∈ A} and denote the set of components of
G[D] by D. We denote by KA,D the bipartite graph (kA,D, {zviH : 1 6 i 6 k,H ∈ D is
connected to node v ∈ A}.

Definition 19. A is k-matched into D by N if N is a matching of KA,D such that
degN(zvi ) = 1 for all v ∈ A, 1 6 i 6 k. A has k-surplus in KA,D if for every component
H ∈ D, A can be k-matched into D \ V (H).

Remark 20. By Kőnig’s theorem [13], A has k-surplus in KA,D if and only if for every
∅ 6= A′ ⊆ A, A′ is connected to at least k|A′|+ 1 components of G[D] in G.

The transversal matroid TK of a bipartite graph K = (U, V ;E) is a matroid on V
where a set V ′ ⊆ V is independent if it can be covered by a matching of K. In a matroid,
an element is a bridge if it is contained in every base. In terms of a transversal matroid
TK , v ∈ V is a bridge if it is covered by every maximum matching of K.

Theorem 21. [17] The rank of TK is |V \ X| + |ΓK(X)|, where X is the set of the
non-bridge elements of TK.

For A ⊆ V (G), let DA(G) =
⋃
{V (H) : H is a (j, k)-galaxy component of G − A},

and let CA(G) = V (G)\(DA∪A). We sometimes use the notationDA and CA, respectively.

Definition 22. A ⊆ V (G) has k-surplus if it has k-surplus in KA,DA
. A is perfect if

G[CA] has a perfect j-restricted k-matching.

Note the multiple meaning of perfectness in this paper. For packings (or subgraphs)
perfect means spanning, while for node sets perfect is as defined in Definition 22.

4.3 The structure of maximal j-restricted k-matchings

Now we turn to establishing the canonical Edmonds–Gallai-type decomposition Theorem
3 for j-restricted k-matchings.

Theorem 23. There exists a perfect node set A ⊆ V (G) with k-surplus.

Proof. Let us consider the decomposition V (G) = Dk∪̇Ak∪̇Ck of Theorem 10. In this de-
composition the components of G[Dk] are k-galaxies, G[Ck] has a perfect k-piece packing,
and by Remark 20, Ak has k-surplus in KAk,Dk . Figure 5 is an illustration of this proof.

Let Hk = {H : H is a component of G[Dk]}, H′ = {H ∈ Hk : H is a (j, k)-galaxy},
and D′ =

⋃
{V (H) : H ∈ H′}. Let T k be the transversal matroid on Hk in the bipartite

graph KAk,Dk , and T ′ = T k|H′.
Applying Theorem 21 to T ′ we get that rT ′ = |H′ \ D|+ k|ΓG(D)| = |H′ \ D|+ k|A|,

where D consists of the non-bridge elements of T ′, D =
⋃
{V (H) : H ∈ D}, and A =

ΓG(D). Define M = T ′|D. That M has no bridge means that every element H ∈ D
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Figure 5: Creating the canonical decomposition for j-restricted k-matchings from the
decomposition for k-piece packings (k = 2)

is missed by some base of M, that is, A can be k-matched into D \ {H}. Thus A has
k-surplus in KA,D.

We prove that A is perfect. By Theorem 10, G[Ck] has a perfect k-piece packing, so
it also has a perfect j-restricted k-matching M1. We show that G[(Ak \ A) ∪ (Dk \ D)]
has a perfect j-restricted k-matching, too. Take a base B of T ′|D, extend it to a base
Bk of T k, and take the matching Nk in KAk,Dk defining Bk. Recall that |B| = k|A| and
|Bk| = k|Ak|, thus Nk matches kA to B in KA,D and k(Ak \ A) to Bk \ B in KAk,Dk .

Using Lemma 18, Nk gives rise to a perfect j-restricted k-matching M2 in the subgraph
induced by

(Ak \ A) ∪
⋃
{V (H) : H ∈ Hk \ D is covered by Nk}.

As the components in H′ \ D are bridges in T ′, all these components are covered by Nk.
Now consider a component H ∈ Hk \ H′ not covered by Nk. By definition, H has a
perfect j-restricted k-matching MH . Thus M1 ∪M2 ∪

⋃
{MH : H ∈ Hk \ H′ not covered

by Nk} is a perfect j-restricted k-matching of G− (A∪D). As the components in D are
(j, k)-galaxies, CA = V (G) \ (A ∪D), and so A is perfect. Moreover, DA = D, and so A
has k-surplus.

Definition 24. Let AG = A as defined in the proof of Theorem 23, DG = DA and
CG = CA. The decomposition V (G) = DG∪̇AG∪̇CG is called the canonical decomposition
of G for j-restricted k-matchings.

Now we investigate the structure of maximal j-restricted k-matchings of G.

Definition 25. For A ⊆ V (G), let WA(G) or simply WA =
⋃
{TH : TH is the node set

of a tip of a (j, k)-galaxy component H of G[DA]}.
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Recall the definition of U(G) in Theorem 3.

Lemma 26. Let A ⊆ V (G) be perfect and k-matchable into DA. Then a subgraph M of
G is a maximal j-restricted k-matching of G if and only if

1. exactly k|A| components of G[DA] are entered by M and these components are com-
pletely covered by M ,

2. if H is a component of G[DA] not entered by M , then there exists a tip T of H such
that M [H] is a perfect j-restricted k-matching of H − V (T ), and

3. M [CA] is a perfect j-restricted k-matching of G[CA].

It holds that U(G) ⊆ WA. Moreover, if A has k-surplus then U(G) = WA.

Proof. Assume that M is a j-restricted k-matching satisfying the properties 1, 2 and 3,
and M ′ is a j-restricted k-matching with V (M) ( V (M ′). By Lemma 14, M ′ must enter
more than k|A| components of G[DA], which is not possible. Thus M is maximal.

Now let M be a maximal j-restricted k-matching of G. We construct a j-restricted
k-matching M ′ for which V (M) ⊆ V (M ′) holds, and if M fails any of the properties 1, 2
and 3, then even V (M) ( V (M ′). This is clearly enough to prove.

Let H = {H : H is a component of G[DA]}, and let T be the transversal matroid on
H in the bipartite graph KA,DA

. Let HM = {H ∈ H : H is entered by M}, and take a
base B ⊇ HM of T . A can be k-matched into DA, so rT = k|A| and thus |B| = k|A|.
By Lemma 14, one can choose a tip TH missed by M in each component H ∈ H \ B.
Similarly as in the proof of Theorem 23, we construct a j-restricted k-matching M ′ of G
missing exactly these tips. First, take a matching N in KA,DA

that defines the base B. In
a component H ∈ H \ B, take a perfect j-restricted k-matching MH of H − V (TH). The
union of these j-restricted k-matchings is M1. Using Lemma 18, N gives rise to a perfect
j-restricted k-matching M2 in the subgraph induced by

A ∪
⋃
{V (H) : H ∈ B}.

Finally, take a perfect j-restricted k-matching M3 of G[CA]. Now M ′ = M1 ∪M2 ∪M3 is
a j-restricted k-matching with V (M ′) = V (G) \

⋃
{V (TH) : H ∈ H \ B} ⊇ V (M).

Trivially, |HM | 6 k|A|. In fact, |HM | = k|A| holds because otherwise the matching N
would enter strictly more components of G[DA] than M , resulting in V (M) ( V (M ′), a
contradiction. The properties 1 and 2 are straightforward by the maximality of M and
by Corollary 16. For the property 3, observe that M has no edge joining A to CA because
otherwise |HM | < k|A| would hold.

It clearly follows that U(G) ⊆ WA. We show that U(G) = WA if A has k-surplus.
Let T be an arbitrary tip in a (j, k)-galaxy component H0 of G[DA]. A has k-surplus, so
T has a base B ⊆ H \H0. Now choose a tip TH in each component H ∈ H \ (H0 ∪ B).
Similarly as above, one can construct a maximal j-restricted k-matching M of G missing
exactly these tips, including T .

the electronic journal of combinatorics 27(1) (2020), #P1.15 12



4.4 Uniqueness of the canonical decomposition

In the matching case, that is, when k = 1, it holds that WA = DA, thus Lemma 26 itself
characterizes DA in the canonical decomposition. In the general case, only WA ⊆ DA

holds, so we have to go one step further in order to characterize DA in Theorem 28. First
we need the following lemma.

Lemma 27. If G is a (j, k)-galaxy and v ∈ V (G), then every component of G − v is
either a (j, k)-galaxy or has a perfect j-restricted k-matching. Moreover, with

W v = {u : u is in a tip in a (j, k)-galaxy component H of G− v}

and WG = {u : u is in a tip of G}, we have W v ( WG.

Proof. If G is a sub-j-graph, then all components of G− v are sub-j-graphs and thus are
(j, k)-galaxies. Moreover, W v = V (G) \ {v} ( V (G) = WG.

Let j = k − 1 and G be a k-blossom. For k = 1, the statement follows from the
definition of hypomatchable graphs. For k > 2, there are two cases to consider:

1. v is a tip. Let u ∈ V (IG) be the neighbor of v, and x ∈ V (IG) some neighbor
of u. Take a perfect matching N of IG − x, and let N ′ = N ∪ {ux}. Clearly,
degN ′(y) = 1 for all y ∈ V (IG) \ {u} and degN ′(u) = 2. Now consider the graph
J = (V (G), E(G)−E(IG) +E(N ′))− v. Now every component of J has maximum
degree k, so it is a perfect j-restricted k-matching of G−v. Clearly, W v = ∅ ( WG.

2. v ∈ V (IG). Denote by W ′ the tips connected to v in G. In G − v, the tips in
W ′ become singletons, and thus (j, k)-galaxies. Now take a perfect matching N
of IG − v. Consider the graph J = (V (G), E(G) − E(IG) + E(N ′)) − (W ′ + v).
Now every component of J has maximum degree k, so it is a perfect j-restricted
k-matching of G− (W ′ + v). It follows that W v ( WG.

The uniqueness of the canonical decomposition will follow from the next theorem.

Theorem 28. Every graph G has a unique perfect node set A ⊆ V (G) with k-surplus.
For this node set A, it holds that

DA = {v : U(G− v) ( U(G)} = {v : |U(G− v)| < |U(G)|}.

Proof. Let A ⊆ V (G) be perfect with k-surplus. By Lemma 26, we know that U(G) = WA.
Now we investigate the canonical decomposition of G − v for a node v ∈ V (G) in the
following three cases:

1. v ∈ CA. Denote the graph G[CA] − v by G′. Observe that in G − v the set
A′′ = A ∪ AG′ is perfect with k-surplus. Thus by Lemma 26, U(G − v) = WA′′ ⊇
WA = U(G).

2. v ∈ A. In the graph G− v the set A \ {v} is perfect with k-surplus, so by Lemma
26, U(G− v) = WA\{v} = WA = U(G).
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3. v ∈ V (H) for a (j, k)-galaxy component H of G[DA]. By Lemma 27, ∅ is perfect
and has k-surplus in the graph H − v. Let D′ = {V (K) : K is a (j, k)-galaxy
component of H− v} and C ′ = {V (K) : K is a component of H− v with a perfect
j-restricted k-matching}. Furthermore, letD′′ = (DA\V (H))∪D′ and C ′′ = CA∪C ′.
Lemma 27 implies that WA(G − v) ( WA(G). In the graph G − v, the set A is
perfect because G[C ′′] has a perfect j-restricted k-matching. Moreover, A can be
k-matched into D′′ in G − v because A has k-surplus in G. So by Lemma 26 we
have U(G− v) ⊆ WA(G− v) ( WA(G) = U(G).

We have proved that, if A ⊆ V (G) is perfect with k-surplus, then

DA = {v : U(G− v) ( U(G)} = {v : |U(G− v)| < |U(G)|}.

As here the right hand side does not depend on A, the set DA is unique across the perfect
node sets A ⊆ V (G) with k-surplus and thus equals DG. Finally we show that the
uniqueness of DA implies the uniqueness of A. By definition, Γ(DA) ⊆ A. On the other
hand, the k-surplus of A implies that A ⊆ Γ(DA). Thus A = AG.

At this point the proof of Theorem 3 is straightforward using the results of this section.

Proof of Theorem 3. By Theorem 28, D = DG, and thus A = AG and C = CG. Now the
property 1 holds by definition. AG is perfect with k-surplus, which is just tantamount to
the properties 2 and 3. The property 4 follows from Lemma 26.

We try to give an explanation why in Theorems 3 and 10 the canonical set D is defined
in an unusual way. In the classical Edmonds–Gallai decomposition theorem for matchings
[5, 6, 7]

1. D is defined as the set of nodes which are missed by a maximum matching of G.

(Maximal would also be possible here.) An alternative, rarely used definition would be
that

2. D is the set of nodes v ∈ V (G) for which def(G− v) < def(G), where the deficiency
def is defined as def(G) = max{c(G[D]) − |Γ(D)| : D ⊆ V (G), G[D] consists of
hypomatchable components}.

Both variants fail for j-restricted k-matchings (and also for k-piece packings). Definition
1. fails because a non-tip node in a (j, k)-galaxy component in G[D] is covered by every
maximum j-restricted k-matching by Theorem 26. Definition 2. fails because the analogue
of the deficiency, defj,k(G) = max{c(G[D])− k|Γ(D)| : D ⊆ V (G), G[D] consists of (j, k)-
galaxy components} may even increase. Indeed, for k = 3 and G a triangle with two
pendant edges at all three nodes (a 3-blossom) we have D = V (G) and defj,k(G) = 1,
however, defj,k(G− v) = 2 for every non-tip node v ∈ V (G). That is why we need to use
the tips in the galaxies in G[D], and define D in Theorem 3 via U(G).
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5 Matroidality and maximum weight packings

Definition 29. We say that the F -packing problem is matroidal if for all graphs G
those node sets X ⊆ V (G) which can be covered by an F -packing of G form a matroid.

Loebl and Poljak [15] express their belief that for graph sets F with K2 ∈ F the
F -packing problem is polynomial if and only if it is matroidal. This question is still open.
That the condition K2 ∈ F is indeed required was shown in [8], where it was proved that
the k-piece packing problem for k > 2 is polynomial but not matroidal. This applies to
the j-restricted k-matching problem for 0 6 j < k as well, which is polynomial by [14],
but not matroidal for j > 0, as shown by Theorem 4.

Proof of Theorem 4. Lemma 26 implies that the following considerations hold. Let

π = {{v} : v /∈ WA} ∪ {V (T ) : T is a tip of a (j, k)-galaxy component of G[D]} .

To create matroid P , we make use of matroid M in the proof of Theorem 23. First, for
each component H of G[D], replace H in M with

πH = {V (T ) : T is a tip of H} ⊆ π,

such that the elements of πH are in series with each other. Second, add as a direct sum
the elements {v} as bridges for v /∈ WA. The resulting matroid is P .

Let def(G) = c(G[D]) − k|A|. The co-rank of M is def(G) thus the co-rank of P is
def(G), too. Note that by Lemma 26 for each maximal j-restricted k-matching M of G,
every node set of π is either fully covered or fully missed by M and the number of the
fully missed node sets is def(G). In the case j = 0, a tip has exactly one node so π is the
partition into singletons. A special case is the classical matching problem for j = 0, k = 1.
For j > 0, a tip has at most j nodes so the node sets of π are of size at most j.

Because the ground set of the matroid P is a partition into different size sets, in the
j-restricted k-matching problem a maximal packing is not necessarily maximum, as it is
the case in the known polynomial packing problems with K2 ∈ F .

Theorem 6 on the characterization of the maximum weight j-restricted k-matchings
was first proved in [14]. It can be deduced from the properties of matroid P as follows.

Proof of Theorem 6. Let us take the maximum weight bases of P with the weight function
X 7→

∑
{w(v) : v ∈ X} for X ∈ π. Now the maximum weight bases of P correspond

to the maximum weight j-restricted k-matchings. So one can apply the greedy algorithm
to find the maximum weight j-restricted k-matchings, which yields the formula in the
statement.

Clearly, A1 in Theorem 6 can be chosen to be the barrier A in the canonical decom-
position. In the case k = 1 we get the Berge-theorem on maximum matchings [1].

We remark that our approach provides an alternative polynomial time algorithm to
find a maximum weight j-restricted k-matching. First, the Edmonds–Gallai-type de-
composition V (G) = Dk∪̇Ak∪̇Ck for the k-piece packing problem can be determined in
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polynomial time [8, 10]. Theorem 28 and the construction in Theorem 23 shows that the
canonical decomposition V (G) = D∪̇A∪̇C for the j-restricted k-matching problem can
be determined in polynomial time as well. With the greedy algorithm in the proof of
Theorem 6 above these provide a polynomial time algorithm to find a maximum weight
j-restricted k-matching for 0 6 j < k. As a counterpart, [14] proved that this problem is
NP-complete for j > k.

One can construct the maximum weight packings in other ways as well. In [14] min-
imum cost flows are applied in the polynomial time alternating tree algorithm, while in
[8] a direct argument is given for the k-piece packing problem.

6 Conclusions

An important relation between k-piece packings and j-restricted k-matchings is that every
k-piece is a j-restricted k-matching for every 0 6 j < k. Using this connection, in
this paper we gave an alternative proof to Theorem 6 of Li [14], and we proved two
new results on the j-restricted k-matching problem. Theorem 3 is an Edmonds–Gallai-
type decomposition, and Theorem 4 is a characterization of the maximal j-restricted
k-matchings.

We may consider a generalization of j-restricted k-matchings inspired by the (l, u)-
piece packings defined in [8], where l and u are assumed to be constant functions on
the nodes satisfying 0 6 l 6 u. This generalization is called j-restricted (l, u)-piece
packing, where l, j and u are constants such that 0 6 l 6 j < u. A connected graph
G is called a j-restricted (l, u)-piece if l 6 ∆(G) 6 u and |E(G)| > j. It is easy to see
that a j-restricted k-matching (0 6 j < k) is just a j-restricted (0, k)-piece packing. One
can probably establish an Edmonds–Gallai-type decomposition for j-restricted (l, u)-piece
packings with 0 6 l 6 j < u.

Another question is, given a graph and not necessarily non-negative node weights,
whether one can solve the maximum node weight j-restricted k-matching problem (1 6
j < k) in polynomial time. The same question is open for k-piece packings (k > 2).
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[16] László Lovász and Michael D. Plummer. Matching theory, volume 367. American
Mathematical Soc., 2009.

[17] R. Rado. A theorem on independence relations. Quart. J. Math., Oxford Ser., 13:83–
89, 1942.

the electronic journal of combinatorics 27(1) (2020), #P1.15 17


	Introduction
	Main results
	k-piece packings
	Proof of Theorem 3
	(j,k)-galaxies and k-solar systems
	Tools from matroid theory
	The structure of maximal j-restricted k-matchings
	Uniqueness of the canonical decomposition

	Matroidality and maximum weight packings
	Conclusions

