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Abstract

In this note, we determine the maximum size of a {Vk,Λl}-free family in the
lattice of vector subspaces of a finite vector space both in the non-induced case as
well as the induced case, for a large range of parameters k and l. These results
generalize earlier work by Shahriari and Yu. We also prove a general LYM-type
lemma for the linear lattice which resolves a conjecture of Shahriari and Yu.

Mathematics Subject Classifications: 05D05

1 Introduction

Given partially ordered sets (posets) P and Q, we say that P is a subposet of Q if there
exists an injection φ : P → Q such that x 6P y implies φ(x) 6Q φ(y). If we also have
that φ(x) 6Q φ(y) implies x 6P y, then we say P is an induced subposet of Q. Viewing
collections of sets as posets under the inclusion relation, we have the following extremal
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functions, first introduced by Katona and Tarján [10]. For any collection of finite posets
P , let La(n,P) be the maximum size of a family of subsets of {1, 2, . . . , n} which does
not contain any P ∈ P as a subposet, and let La∗(n,P) be the maximum size of a family
of subsets of {1, 2, . . . , n} which does not contain any P ∈ P as an induced subposet. In
the case P = {P} for some poset P , we instead write simply La(n, P ) and La∗(n, P ). We
denote the sum of the k largest binomial coefficients of the form

(
n
i

)
by Σ(n, k).

Let V be an n-dimensional vector space over a finite field Fq, where q is a prime power.
The linear lattice of dimension n is the poset of subspaces of V under the inclusion relation.
We denote by

[
V
k

]
q

the set of all k-dimensional subspaces of V (this set is often referred to

as a level of the linear lattice). The number of such subspaces is denoted by the q-binomial

coefficient
[
n
k

]
q

=
∏

06i<k
qn−i−1
qk−i−1 . When k = 1, we write [n]q =

[
n
1

]
q
. Let [n]q! =

∏n
i=1[i]q.

Then, it is easy to check that [
n

k

]
q

=
[n]q!

[k]q![n− k]q!
.

The general study of forbidden poset problems in the linear lattice was initiated by
Ghassan and Shahriari [9]. For any collection of finite posets P , let Laq(n,P) be the
maximum size of a family of subspaces of V (viewed as a poset under inclusion) which
does not contain any P ∈ P as a subposet, and let La∗q(n,P) be the maximum size of
a family of subspaces of V which does not contain any P ∈ P as an induced subposet.
We write simply Laq(n, P ) and La∗q(n, P ) if P = {P} for some poset P . We denote by

Σq(n, k) the sum of the k-largest q-binomial coefficients of the form
[
n
i

]
q
.

Let V and Λ be the posets on three elements x, y, z defined by the relations x, y > z
and x, y < z, respectively. In 1983, Katona and Tarján [10] proved the following result.

Theorem 1 (Katona and Tarján [10]).

La(n, {V,Λ}) = La∗(n, {V,Λ}) = 2

(
n− 1

bn−1
2
c

)
.

Remark 2. In Theorem 1, an extremal construction is given by the family{
F : 1 /∈ F, |F | = bn− 1

2
c
}
∪
{
F ∪ {1} : 1 /∈ F, |F | = bn− 1

2
c
}
.

Shahriari and Yu [13] showed that in the linear lattice we have the following.

Theorem 3 (Shahriari and Yu [13]).

Laq(n, {V,Λ}) =

[
n

bn
2
c

]
q

.

The extremal construction is either
[
V
bn
2
c

]
q

or
[
V
dn
2
e

]
q
, except in the case n = 3 and q = 2,

in which we have two other constructions shown in Figure 2.
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We prove the following induced version of Theorem 3.

Theorem 4.

La∗q(n, {V,Λ}) =

[
n

bn
2
c

]
q

.

The extremal construction is either
[
V
bn
2
c

]
q

or
[
V
dn
2
e

]
q
, except in the case n = 3 and q = 2,

in which we have two other constructions shown in Figure 2.

Let Vk denote the poset with elements x1, x2, . . . , xk, y such that x1, x2, . . . , xk > y,
and let Λk denote the same poset but with all relations reversed. In the case when k or l
is at least 3 only asymptotic results are known for La(n, {Vk,Λl}) (see [15] and [4]).

In the linear lattice, on the other hand, one can prove exact results for larger k and l
as well. Shahriari and Yu [13] proved the following.

Theorem 5 (Shahriari and Yu [13]). Let n be an even integer, and k, l be two integers
such that k, l 6 q. Then

Laq(n, {Vk,Λl}) =

[
n
n
2

]
q

,

and the only {Vk,Λl}-free family of maximum size is
[
V
n
2

]
q
.

We extend Theorem 5 by weakening the conditions on k and l.

Theorem 6. Let n be an even integer, and k, l be two integers such that k, l 6 q
n
2 . Then

Laq(n, {Vk,Λl}) =

[
n
n
2

]
q

,

and the only {Vk,Λl}-free family of maximum size is
[
V
n
2

]
q
.

In the induced case, we have the following two results.

Theorem 7. Let n be an even integer and let k, l be two integers such that k, l 6 q, then

La∗q(n, {Vk,Λl}) =

[
n
n
2

]
q

,

and the only maximum size {Vk,Λl}-free family is
[
V
n
2

]
q
.

Theorem 8. Let n be an odd integer and let k, l be two integers such that k, l 6 (1−
√
2
2

)q,
then

La∗q(n, {Vk,Λl}) =

[
n
n−1
2

]
q

,

and any maximum size {Vk,Λl}-free family is either
[
V

n−1
2

]
q

or
[
V

n+1
2

]
q
.
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The butterfly poset, B, is defined by 4 elements a, b, c, d with a, b < c, d. De Bonis,
Katona and Swanepoel [5] proved the following theorem.

Theorem 9 (De Bonis, Katona and Swanepoel [5]).

La(n,B) = Σ(n, 2).

Equality occurs only for a family consisting of the union of two consecutive levels in the
Boolean lattice of largest size.

We denote by Yk the poset with elements x1, x2, . . . , xk, y, z such that x1 6 x2 6
· · · 6 xk 6 y, z and Y ′k the same poset but with all relations reversed. In the proof
of Theorem 9, De Bonis, Katona and Swanepoel actually proved a stronger result by
determining La(n, {Y2, Y ′2}). Later pairs of posets {Yk, Y ′k} were investigated for their
own sake. Methuku and Tompkins [12] obtained the following theorem.

Theorem 10 (Methuku and Tompkins [12]). Let k > 2 and n > k + 1, then

La(n, {Yk, Y ′k}) = Σ(n, k).

Martin et al. [11] and Tompkins and Wang [16] (these results were strengthened in
Gerbner et al. [7]) proved the induced version of Theorem 10 independently.

Theorem 11 (Martin et al. [11], Tompkins and Wang [16], Gerbner et al. [7]). Let k > 2
and n > k + 1, then

La∗(n, {Yk, Y ′k}) = Σ(n, k).

In the vector space setting, Shahriari and Yu [13] proved a version of Theorem 9 holds.
Namely, they proved the following.

Theorem 12 (Shahriari and Yu [13]). Let n > 3 be an integer and q be a power of a
prime, then

Laq(n,B) = Laq(n, {Y2, Y ′2}) = Σq(n, 2).

Equality occurs only for a family consisting of the union of two consecutive levels in the
linear lattice of maximum size.

Furthermore, they posed a conjecture for the case when {Yk, Y ′k} is forbidden.
For any poset P , let |P | be the size of P and h(P ) be the length of the largest chain

in P . Burcsi and Nagy [1] and Grósz, Methuku and Tompkins [8] proved the following
theorems for any poset P (another result in this direction was obtain by Chen and Li [2]).

Theorem 13 (Burcsi and Nagy [1]). For any poset P , when n is sufficiently large, we
have

La(n, P ) 6

(
|P |+ h(P )

2
− 1

)(
n

bn
2
c

)
.
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Theorem 14 (Grósz, Methuku and Tompkins [8]). For any poset P , when n is sufficiently
large, we have

La(n, P ) 6
1

2k−1
(
|P |+ (3k − 5)2k−2(h(P )− 1)− 1

)( n

bn
2
c

)
,

for any fixed k.

We will prove that a version of these theorems holds in the vector space case as well.
The rest of this paper is organized as follows. In the next section, we present some

preliminary results. Then we will prove Theorems 4, 7 and 8 in Section 3. In the last
section, we prove a general LYM-type lemma and use this lemma to prove the vector
space analogues of Theorems 10, 11, 13 and 14. We note that a recent manuscript of
Gerbner [6] independently initiates a general study of LYM-type properties of the linear
lattice and implies some similar results.

2 Preliminary results

In this section, let F be a {Vk,Λl}-free family of subspaces of V , and let Fs = F ∩
[
V
s

]
q
.

Now, we define the bipartite graph
(
Fs ∪

([
V
s−1

]
q
\ Fs−1

)
, E
)

, where

E =

{(
A ∈ Fs, B ∈

([
V

s− 1

]
q

\ Fs−1

))
: B ⊂ A

}
.

Let F ′s be any subset of Fs, and

Ns−1(F ′s) =

{
B ∈

([
V

s− 1

]
q

\ Fs−1

)
: (A,B) ∈ E for some A ∈ F ′s

}
.

Before beginning the proof, we need some preliminary results. Lemma 15 and Corol-
lary 16 are motivated by an idea from [10].

Lemma 15. Let n be an even integer, and let k, l be two integers such that k, l 6 q
n
2 .

Then, Laq(n, {Vk,Λl}) can be realized with a family G of subspaces G satisfying dim(G) 6
n
2
.

Proof: We first prove that for s > n
2

+ 1, the bipartite graph
(
Fs ∪ (

[
V
s−1

]
\ Fs−1), E

)
contains a matching such that every element of Fs is contained in some edge. To prove
this, it is enough to check the condition of Hall’s theorem, that is

|Ns−1(F ′s)| > |F ′s|,

for any F ′s ⊆ Fs.
Since F is Λl-free, every s-dimensional subspace in F ′s has at most (l − 1) subspaces

in Fs−1. Hence, every s-dimensional subspace in F ′s has at least [s]q − l + 1 subspaces
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in Ns−1(F ′s). On the other hand, every (s − 1)-dimensional subspace in Ns−1(F ′s) has at
most [n− s+ 1]q superspaces in F ′s. We have

|Ns−1(F ′s)|
|F ′s|

>
[s]q − l + 1

[n− s+ 1]q
>

qs−1
q−1 − l + 1

qn−s+1−1
q−1

>
q

n
2
+1 − 1− (q

n
2 − 1)(q − 1)

q
n
2 − 1

>
q

n
2 + q − 2

q
n
2 − 1

> 1,

since s > n
2

+ 1, l 6 q
n
2 and q > 2. Applying Hall’s theorem, let M be a matching which

saturates every vertex in Fs, and let F∗s−1 be the set of neighbors of Fs contained in edges
of M . Clearly, F∗s−1 ∩ Fs−1 = ∅, and |F∗s−1| = |Fs|.

Now, let t = t(F) be the largest integer s satisfying Fs 6= ∅ in the family F . We
iteratively replace F with (F \ Ft) ∪ F∗t−1 until t 6 n

2
. Call the resulting family G.

Clearly, |G| = |F|, and G is {Vk,Λl}-free since F is {Vk,Λl}-free. 2

Since linear lattices are symmetric, one can use the same idea to prove the following
corollary.

Corollary 16. Let n be an even integer, and k, l be two integers such that k, l 6 q
n
2 . Then,

Laq(n, {Vk,Λl}) can be realized with a family G of subspaces G satisfying dim(G) > n
2
.

The next technical lemma will be needed for determining the structure of the extremal
families.

Lemma 17. Let F be a family such that dim(F ) = dn
2
e or dn

2
e + 1 for every F ∈ F . If

|F| =
[
n
dn
2
e

]
q

and Fdn
2
e+1 6= ∅, then F contains a copy of Λ

qd
n
2 e.

Proof: Any F ∈ Fdn
2
e+1 has [dn

2
e + 1]q subspaces in

[
V
dn
2
e

]
q
, and any F ′ ∈

[
V
dn
2
e

]
q

has

[bn
2
c]q superspaces in

[
V

dn
2
e+1

]
q
. We may now show by a simple averaging argument that

there exists an F ∈ Fdn
2
e+1 such that F has at least qd

n
2
e subspaces in Fdn

2
e. Indeed, by

the assumption that |F| =
[
n
dn
2
e

]
q
, the number of relations between Fdn

2
e+1 and Fdn

2
e is at

least

[dn
2
e+ 1]q

∣∣∣Fdn
2
e+1

∣∣∣− [bn
2
c]q

∣∣∣∣∣
[
V

dn
2
e

]
q

\ Fdn
2
e

∣∣∣∣∣
=
∣∣∣Fdn

2
e+1

∣∣∣ ([dn
2
e+ 1]q − [bn

2
c]q)

=
∣∣∣Fdn

2
e+1

∣∣∣ qdn2 e+1 − qbn2 c

q − 1

>
∣∣∣Fdn

2
e+1

∣∣∣ qdn2 e.
Thus, on average an element of Fdn

2
e+1 contains at least qd

n
2
e subspaces in Fdn

2
e. 2

In the same way one can show the following.
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Lemma 18. Let F be a family such that dim(F ) = bn
2
c or bn

2
c − 1 for every F ∈ F . If

|F| =
[
n
bn
2
c

]
q

and Fbn
2
c−1 6= ∅, then F contains a copy of V

qd
n
2 e.

Now, we can prove Theorem 6.
Proof: Combining Lemma 15 and Corollary 16, it is easy to see that

Laq(n, {Vk,Λl}) =

[
n
n
2

]
q

.

Now we prove that if F is a {Vk,Λl}-free family of maximum size, then F =
[
V
n
2

]
q
.

Suppose not. If there is a subspace F ∈ F of dimension larger than n
2
, then we may

assume, without loss of generality, that |F| =
[
n
n
2

]
q

and for every F ∈ F , n
2
6 dim(F ) 6

n
2

+ 1 and Fn
2
+1 6= ∅. By Lemma 17, F contains a copy of Λl, a contradiction. The

case when F contains only subspaces of dimension at most n
2

is handled similarly by
Lemma 18. 2

3 Proofs of Theorems 4, 7 and 8

In this section, let F be an induced {Vk,Λl}-free family, and let Fs =
[
V
s

]
q
∩ F . We

call a subspace F ∈ F small if for any other F ′ ∈ F , F ′ 6⊆ F . For every A ∈ Fs, let
F1, F2, . . . , Fr be r small proper subspaces of A in F . We note that the Fi’s enumerate all
of the proper small subspaces of A. Clearly, 0 6 r 6 l−1 since F is induced Λl-free (r = 0
if A is small). Let f1 ⊆ F1, f2 ⊆ F2,. . . , fr ⊆ Fr be r one dimensional subspaces (note
that f1, f2, . . . , fr are not necessarily distinct). Then, we have the following proposition.

Proposition 19. If F is a subspace of A and F ∈ F , then fi ⊆ F for some i ∈ [r].

Proof: The subspace F is either small (suppose F = Fi in this case) or contains some
small subspace Fi. In both cases we have fi ⊆ Fi ⊆ F . 2

Now, we define a family M(A) collecting all (s − 1)-subspaces of A which do not
contain any of the fi.

M(A) = {B : dim(B) = s− 1, f1 6⊆ B, f2 6⊆ B, · · · , fr 6⊆ B and B ⊆ A} .

By Proposition 19, we have that the following properties of M(A) hold.

Proposition 20. (i) For any B ∈M(A) and F ∈ F such that dim(F ) 6 s−2, F 6⊆ B.

(ii) M(A) ∩ Fs−1 = ∅.

(iii) |M(A)| > [s]q − (l − 1)[s− 1]q.

Proof: (i) If F 6⊆ A, then F 6⊆ B since B ⊆ A. Let F ⊆ A, then by Proposition 19,
fi ⊆ F for some i ∈ [r]. However, by the definition of M(A), fi 6⊆ B, and so F 6⊆ B.
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(ii) Suppose not. Let B ∈M(A) ∩ Fs−1. We have that B contains a one dimensional
subspace fi by Proposition 19, but fi 6⊆ B by the definition of M(A), a contradiction.

(iii) For an s-dimensional subspace A, there are [s]q (s− 1)-dimensional subspaces of
A. At most [s− 1]q among them contain fi for each fi. So

|M(A)| > [s]q − r[s− 1]q > [s]q − (l − 1)[s− 1]q,

as required. 2

Now, we define the bipartite graph
(
Fs ∪

([
V
s−1

]
q
\ Fs−1

)
, E
)

, where

E = {(A,B) : A ∈ Fs, B ∈M(A)} .

Let F ′s be any subset of Fs, and

Ns−1(F ′s) = {B : (A,B) ∈ E for some A ∈ F ′s}.

Lemma 21. Let n be an odd integer, and k, l be two integers such that k, l 6 q. Then,
La∗q(n, {Vk,Λl}) can be realized with a family G of subspaces G satisfying dim(G) 6 n+1

2
.

Proof: We first show that for s > n+3
2

, the bipartite graph
(
Fs ∪

([
V
s−1

]
q
\ Fs−1

)
, E
)

contains a matching such that every element of Fs is contained in some edge. By Hall’s
theorem, it is enough to prove

|Ns−1(F ′s)| > |F ′s|,

for any F ′s ⊆ Fs.
On the one hand, by (ii) from Proposition 20, M(A) ∩ Fs−1 = ∅, then every s-

dimensional subspace A in F ′s has |M(A)| subspaces in Ns−1(F ′s). On the other hand,
every (s − 1)-dimensional subspace in Ns−1(F ′s) has at most [n − s + 1]q superspaces in
F ′s. Then, by (iii) from Proposition 20, we have

|Ns−1(F ′s)|
|F ′s|

>
[s]q − (l − 1)[s− 1]q

[n− s+ 1]q
>

qs−1
q−1 −

(l−1)(qs−1−1)
q−1

qn−s+1−1
q−1

>
qs−1 + q − 2

qn−s+1 − 1
>
q

n+1
2 + q − 2

q
n−1
2 − 1

> 1,

since s > n+3
2

, l 6 q and q > 2. Let M be a matching which saturates every vertex in Fs,
and F∗s−1 be matched under M . Clearly, |F∗s−1| = |Fs|, and F∗s−1 ∩ Fs−1 = ∅ by (ii) from
Proposition 20. Now, let t = t(F) be the largest integer s satisfying Fs 6= ∅ in our family
F . We repeatedly replace F by (F \ Ft) ∪ F∗t−1 until t 6 n+1

2
. Call the resulting family

G. Clearly, |G| = |F|. Then it is enough to show that F is induced {Vk,Λl}-free in every
step.

By contradiction, assume that at some step F is {Vk,Λl}-free but (F \ Ft) ∪ F∗t−1
contains Vk or Λl. We distinguish two cases.

Case 3.1. (F \ Ft) ∪ F∗t−1 contains an induced Λl.
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Let F1, F2, F3, . . . , Fl ⊂ F be l+ 1 subspaces in (F \Ft)∪F∗t−1 which form an induced
Λl. Then, F ∈ F∗t−1, since F is induced Λl-free. Let A be matched with F under M , then
A together with F1, F2, F3, . . . , Fl form an induced Λl in F , a contradiction.

Case 3.2. (F \ Ft) ∪ F∗t−1 contains an induced Vk.

Let F ⊂ F1, F2, F3, . . . , Fk be k+1 subspaces in (F \Ft)∪F∗t−1 which form an induced
Vk. Since F is induced Vk-free, we may suppose F1 ∈ F∗t−1. Let A be matched with
F1 under M . Then F1 ∈ M(A). Note that F ∈ F and dim(F ) 6 t − 2. By (i) from
Proposition 20, F 6⊆ F1, a contradiction. 2

Using the same ideas from Section 2, one can prove the following corollaries similarly.

Corollary 22. Let n be an odd integer, and k, l be two integers such that k, l 6 q. Then,
La∗q(n, {Vk,Λl}) can be realized with a family G of subspaces G satisfying n−1

2
6 dim(G) 6

n+1
2

.

Corollary 23. Let n be an even integer, and k, l be two integers such that k, l 6 q. Then,
La∗q(n, {Vk,Λl}) can be realized with a family G of subspaces G satisfying dim(G) = n

2
.

Theorem 7 follows from Corollary 23 and the equality cases are again settled by ap-
plying Lemmas 17 and 18. (Once a family is contained in two levels there is no distinction
between an induced and noninduced copy of Vk or Λl.)

Now, we turn to prove Theorem 8. Before beginning the proof, we need the following
lemma.

Lemma 24. Let V3 be a 3-dimensional vector space over Fq. If F ⊆ (
[
V3
1

]
q
∪
[
V3
2

]
q
) is

{Vk,Λl}-free, where k, l 6 q −
√
2
2
q, then

|F| 6 q2 + q + 1,

and the only families which attain equality are
[
V3
1

]
q

and
[
V3
2

]
q
.

Proof: Let F = A ∪ B, where A ⊆
[
V3
2

]
q

and B ⊆
[
V3
1

]
q
, and let A′ =

[
V3
2

]
q
\ A and

B′ =
[
V3
1

]
q
\ B.

We prove the inequality by contradiction. Suppose that |F| = |A|+ |B| > q2 + q + 2.

Note that
∣∣∣[V31 ]q∣∣∣ =

∣∣∣[V32 ]q∣∣∣ = q2 + q + 1, so we have |A| > |B′| and |B| > |A′|. Since F
is Λl-free, for every A ∈ A, the number of subspaces of A in B is at most l − 1, thus the
number of subspaces of A in B′ is at least (q + 1)− (l − 1) = q + 2− l. Since |A| > |B′|,
there exists a subspace B ∈ B′ with at least q+ 3− l superspaces A1, A2, . . . , Aq+3−l in A
by the pigeonhole principle.

For 1 6 i, j 6 q + 3− l, Ai and Aj have only one common subspace B, since there is
no butterfly in two consecutive levels of a linear lattice. So we have

|B′| > (q + 3− l)(q + 1− l) + 1,

and similarly, we have

|B| > |A′| > (q + 3− k)(q + 1− k) + 1,
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A1

B

A2 Aq+3−l· · ·

· · ·· · ·︸︷︷︸
q + 1− l

· · ·︸︷︷︸
q + 1− l

· · ·︸︷︷︸
q + 1− l

q + 3− l︷ ︸︸ ︷[
V3
2

]
q

A A′︷ ︸︸ ︷︷ ︸︸ ︷

[
V3
1

]
q

B′ B
︸ ︷︷ ︸︸ ︷︷ ︸

Figure 1:
[
V3
1

]
q
∪
[
V3
2

]
q
.

since F is Vk-free. Then,

q2 + q + 1 =

∣∣∣∣∣
[
V

1

]
q

∣∣∣∣∣ = |B′|+ |B| > (q + 3− l)(q + 1− l) + (q + 3− k)(q + 1− k) + 2,

a contradiction when k, l 6 q−
√
2
2
q. This completes the proof of the inequality. Further-

more, if |F| = q2 + q+ 1 and A,B 6= ∅, we will have |A| = |B′| instead of |A| > |B′|. Then
there exists a subspace B ∈ B′ with at least q + 2− l superspaces in A, and so

q2 + q + 1 = |F| > (q + 2− l)(q + 1− l) + (q + 2− k)(q + 1− k) + 2,

but this contradicts the condition k, l 6 q −
√
2
2
q. 2

Remark 25. In Lemma 24, the upper bound of |F| is true when the weaker condition
q2+q+1 < (q+3−l)(q+1−l)+(q+3−k)(q+1−k)+2 holds, and the extremal structure of
F holds when the weaker condition q2+q+1 < (q+2−l)(q+1−l)+(q+2−k)(q+1−k)+2
is satisfied.

Now, we are ready to prove Theorem 8.
Proof of Theorem 8: A maximal chain in a linear lattice of dimension n is a sequence
of subspaces V0, V1, . . . , Vn where {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V . We denote by C the
set of all maximal chains in a linear lattice. Now, we double count the number of pairs
(F,C), where F ∈ F , C ∈ C such that F is in the chain C.

For every F ∈ F , there are [dim(F )]q![n−dim(F )]q! maximal chains though F . On the
other hand, by Corollary 22, we may assume that for every F ∈ F , (n−1)/2 6 dim(F ) 6
(n + 1)/2. Then, we consider a pair of subspaces (G1, G2) such that dim(G1) = n+3

2
,

dim(G2) = n−3
2

and G2 ⊆ G1. The subfamily of F between G1 and G2 satisfies the
condition of Lemma 24. Hence, the size of the subfamily can be bounded as q2 + q + 1,
and the number of chains between G1 and G2 though some F in the subfamily is (q2 +
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q + 1)(q + 1). Clearly, the number of maximal chains between {0} and G2 (G1 and V ) is

[n−3
2

]q!, and the number of such pairs (G1, G2) is
[
n

n+3
2

]
q

[n+3
2

n−3
2

]
q
. Then, we have

∑
F∈F

[dim(F )]q![n− dim(F )]q! 6

[
n
n+3
2

]
q

[n+3
2

n−3
2

]
q

([
n− 3

2
]q!)

2(q2 + q + 1)(q + 1) = [n]q!. (1)

It follows that
|F|[
n

n+1
2

]
q

6
∑
F∈F

1[
n

dim(F )

]
q

6 1,

hence,

|F| 6
[
n
n+1
2

]
q

.

This completes the proof of La∗q(n, {Vk,Λl}) =
[
n

n+1
2

]
q
. Since equality must hold in the

first inequality of (1) when |F| =
[
n

n+1
2

]
q
, we have the following.

Fact 26. If n−1
2

6 dim(F ) 6 n+1
2

for every F ∈ F and |F| =
[
n

n+1
2

]
q
, then the size of the

subfamily between G1 and G2 is q2 + q+ 1 for any pair (G1, G2) such that dim(G1) = n+3
2

,
dim(G2) = n−3

2
and G2 ⊆ G1.

We will also make use of the following simple lemma.

Lemma 27. Let G be a connected, regular, bipartite graph with parts A and B. If for
some A′ ⊂ A we have |N(A′)| = |A|, then either A′ = ∅ or A′ = A.

Now, we show the largest induced {Vk,Λl}-free family is either
[
V

n+1
2

]
q

or
[
V

n−1
2

]
q

by

considering three cases. Assume F is an induced {Vk,Λl}-free family of size
[
n

n+1
2

]
q
.

Case 3.3. For all F ∈ F , dim(F ) > n+1
2

.

We will show that F contains only subspaces of dimension n+1
2

. Suppose not, then we
may find an induced {Vk,Λl}-free family F ′ of size

[
n

n+1
2

]
q

containing only subspaces of

dimension n+1
2

and n+3
2

such that F ′n+3
2

6= ∅. However, by Lemma 17, F contains a copy

of Λl, since l 6 q −
√
2
2
q 6 q

n+1
2 , a contradiction. The following case can be proved by a

similar argument.

Case 3.4. For all F ∈ F , dim(F ) 6 n−1
2

.

Case 3.5. There exist two subspaces F1 and F2 in F such that dim(F1) > n+1
2

and
dim(F2) 6 n−1

2
.

We will show this case is impossible. By Corollary 22, there is an induced {Vk,Λl}-
free family F ′ of the same size as F such that n−1

2
6 dim(F ′) 6 n+1

2
for every F ′ ∈ F ′.
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Clearly,
∣∣∣F ′n+1

2

∣∣∣+ ∣∣∣F ′n−1
2

∣∣∣ =
[
n

n−1
2

]
q
. Then, by the assumption on the dimensions of F1 and

F2, we have F ′n+1
2

6= ∅ and F ′n−1
2

6= ∅.
Let N(F ′n+1

2

) be the collection of subspaces of dimension n−1
2

contained in subspaces

in F ′. Double counting the pairs of subspaces (A,B) where B ∈ F ′n+1
2

and A is a n−1
2

dimensional subspace of B we have |N(F ′n+1
2

)| > |F ′n+1
2

|.

Suppose |N(F ′n+1
2

)| >
∣∣∣F ′n+1

2

∣∣∣, then we must have a pair of subspaces in the family

related by containment (by our assumption that F ′ has size
[
n

n+1
2

]
q
), but this contradicts

Fact 26 and Lemma 24.
Now suppose |N(F ′n+1

2

)| =
∣∣∣F ′n+1

2

∣∣∣, then it follows from Lemma 27 that F ′n+1
2

is either

empty or the complete level. This completes the proof of Theorem 8. 2

Remark 28. Remark 25 also holds for Theorem 8.

Now we turn to the proof of Theorem 4. Clearly, the even case follows from Theorem 7.
So we need to prove the case when n is odd.
Proof of Theorem 4: By Remark 28, when k = l = 2, the weaker condition for
upper bound on |F| is q2 − q − 1 > 0. This is true for q > 2, and this completes the
proof of La∗q(n, {V,Λ}) =

[
n

n+1
2

]
q
. Furthermore, the weaker condition for structure of F is

q2 − 3q + 1 > 0, and this inequality is true for q > 3.

A B C D E F G E EE ′ E ′′

a b c d e f g b e g b e g

Q

P

Q′ Q′′

Figure 2: Small examples and illustration of the proof of Theorem 4.

For q = 2, we can list all the cases for n = 3, and there are two constructions which
are not levels. (See Figure 2: {A,B,C, d, e, f, g} (solid vertices) and {a, b, c,D,E, F,G}
(hollow vertices) are the two examples.)

Note that in this structure, there is a matching with 3 edges connecting 6 subspaces
and a single isolated subspace. In Figure 2, {A, d}, {B, e} and {C, f} form the matching
with 3 edges, and g is the single isolated subspace. (Similarly, {D, a}, {E, b} and {F, c}
form the matching with 3 edges, and G is the single isolated subspace.)

However, these constructions do not extend beyond the case n > 3 for q = 2. Similarly,
we will prove the only induced {V,Λ}-free family of maximum size is either

[
V

n+1
2

]
q

or
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[
V

n−1
2

]
q

by three cases when n > 3 and q = 2. The first two cases dim(F ) > n+1
2

for

all F ∈ F or dim(F ) 6 n−1
2

for all F ∈ F can be proved by Lemmas 17 and 18, since

qd
n
2
e > 2. Again for the third case, by Corollary 22, we may suppose that for every

F ∈ F , n−1
2

6 dim(F ) 6 n+1
2

, and Fn−1
2
6= ∅ and Fn+1

2
6= ∅. Then, again by Lemma 27

and the assumption that |F| =
[
n

n+1
2

]
q
, we can find two subspaces (say d ⊂ A) in F , where

dim(d) = n−1
2

and dim(A) = n+1
2

.
Instead of using Lemma 24 to derive a contradiction, we must consider a more detailed

argument. Suppose dim(Q) = n+3
2

and dim(P ) = n−3
2

such that P ⊂ d ⊂ A ⊂ Q. We
apply Fact 26 for the pair (Q,P ). Then we have 7 (that is, q2 + q + 1) subspaces in F
between P and Q. Since d and A are not in the same level, without loss of generality, we
can suppose that A,B,C, d, e, f, g ∈ F and a, b, c,D,E, F,G /∈ F (as in Figure 2).

Since n > 5, we have [n−1
2

]q > 3 superspaces of dimension n+3
2

for every subspace of
dimension n+1

2
.

Thus, E has two other n+3
2

-dimensional superspaces: Q′ and Q′′. Now, we apply
Fact 26 for the pairs (Q′, P ) and (Q′′, P ). Then we have 7 subspaces in F between P
and Q′ (P and Q′′). (When we consider a (V,Λ)-free family of size 7 between P and Q′

(P and Q′′), the same argument applies as in the n = 3 case above.) Clearly, there are
only 3 subspaces b, e and g of E containing P . (See Figure 2.) So these 3 subspaces b, e
and g are also among the 7 total (n−1

2
)-dimensional subspaces between P and Q′ (P and

Q′′). Since there are 7 total (n−1
2

)-dimensional subspaces and 7 total (n+1
2

)-dimensional
subspaces between P and Q′ (P and Q′′), by the assumption b /∈ F and e, g ∈ F , all 7
subspaces in F between P and Q′ (P and Q′′) cannot form a level, and so they form a
matching of 3 edges and a single isolated subspace.

Now, we will show that e is the single isolated subspace. Suppose not, say B′ is the
superspace of e in F between P and Q′ (P and Q′′). We have B 6= B′, since otherwise
B,E,Q and Q′ (Q′′) form a butterfly. However, by the assumption B ∈ F , we have that
B′, e and B will form an induced V, since dim(B) = dim(B′) and B 6= B′. Note that
e is the single isolated subspace implies that g is in an edge of the matching formed by
subspaces in F between P and Q′ (P and Q′′). Thus, there exist E ′ ⊂ Q′ and E ′′ ⊂ Q′′

in F such that g ⊂ E ′, E ′′. Note that E ′ 6= E ′′, otherwise E,E ′, Q′ and Q′′ would form a
butterfly. It follows that g, E ′ and E ′′ form an induced V in F , a contradiction. 2

4 General LYM-type lemma

Let V be an n-dimensional vector space over a finite field Fq, where q is a prime power. Let
H be a family of subspaces of V . We say that H is simple if there is a basis {v1, v2, . . . , vn}
of V such that H ⊆ {span(S) : S ∈ 2{v1,v2,...,vn}}, where span(S) is the subspace spanned
by the basis vectors in S. For any poset P , let α(H, P ) denote the maximum size of a
P -free subfamily of H. We denote by Ni(H) the number of i-dimensional subspaces in H.

We now present a general LYM-type lemma. The proof comes from adopting the
methods from [8] to a vector space setting.
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Theorem 29. Let F be a P -free family of subspaces of V , and let H be a simple family
of subspaces of V , then ∑

F∈F

Ndim(F )(H)[
n

dim(F )

]
q

6 α(H, P ).

In particular, if Nk(H) = N for a given integer N and all k, then∑
F∈F

1[
n

dim(F )

]
q

6
α(H, P )

N
.

Proof: Consider a set H ∈ H, and without loss of generality assume

H = span({v1, v2, . . . , vr}).

Let F be a subspace of V of dimension r. Consider maps π which replace the basis
{v1, v2, . . . , vn} of V with an arbitrary basis {w1, w2, . . . , wn} of V and assign π(vi) = wi
for i ∈ [n]. For a set H = span({vi1 , vi2 , . . . , vir}) ∈ H, let

Hπ = span({π(vi1), π(vi2), . . . , π(vir)}),

and set Hπ = {Hπ : H ∈ H}.
We will double count pairs (F, π) such that F ∈ F and F ∈ Hπ. Suppose F ∈ F and

H ∈ Hπ both have dimension r. The number of π such that F ∈ Hπ is

(qr − 1)(qr − q) . . . (qr − qr−1)(qn−r − 1)(qn−r − q) . . . (qn−r − qn−r−1).

Observe that if for two distinct H1, H2 ∈ H we have F = Hπ1
1 and F = Hπ2

2 , then
π1 6= π2. It follows that for each F ∈ F , there are

(qr − 1)(qr − q) . . . (qr − qr−1)(qn−r − 1)(qn−r − q) . . . (qn−r − qn−r−1)Ndim(F )(H)

mappings π such that F ∈ Hπ. Thus, on the one hand, the number of pairs (F, π) is∑
F∈F

(qr − 1)(qr − q) . . . (qr − qr−1)(qn−r − 1)(qn−r − q) . . . (qn−r − qn−r−1)Ndim(F )(H),

or equivalently, ∑
F∈F

[dim(F )]q![n− dim(F )]q!(q − 1)nNdim(F )(H). (2)

Now suppose we fix a mapping π. Since H and Hπ are isomorphic as posets with respect
to the subspace relation, we have at most α(H, P ) many F ∈ F such that F ∈ Hπ. Since
the total number of mappings π is

(qn − 1)(qn − q) . . . (qn − qn−1),
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we have an upper bound on the number of pairs (F, π) of

(qn − 1)(qn − q) . . . (qn − qn−1)α(H, P ),

or equivalently,
[n]q!(q − 1)nα(H, P ). (3)

Combining (2) and (3), we have∑
F∈F

[dim(F )]q![n− dim(F )]q!Ndim(F )(H) 6 [n]q!α(H, P ),

and rearranging yields the desired inequality.

Remark 30. The exact same arguments can be carried out to prove the analogous result
when we forbid P as an induced subposet.

Now, we use Lemma 29 to prove vector space versions of Theorems 10, 11, 13 and 14.
We remark that the vector space of Theorem 10 was conjectured by Shahriari and Yu.

Conjecture 31 (Shahriari and Yu [13]). Let k > 1 and n > k + 1, then

Laq(n, {Yk, Y ′k}) = Σq(n, k).

We will show that even the induced version of this conjecture holds.

Theorem 32. Let k > 1 and n > k + 1, then

La∗q(n, {Yk, Y ′k}) = Σq(n, k).

Let {v1, v2, . . . , vn} be a basis of V and In be the family of subspaces formed by
arranging the basis {v1, v2, . . . , vn} in order around a circle and taking those subspaces
(excluding {0} and V ) which are spanned by vectors along this cyclic arrangement.

Lemma 33 (Tompkins and Wang [16]). Let α∗(In, Yk, Y ′k) be the maximum size of an
induced {Yk, Y ′k}-free subfamily of In, then

α∗(In, Yk, Y ′k) = kn.

Proof of Theorem 32: Clearly, Ni(In) = n for all i. If F is an induced {Yk, Y ′k}-free
family such that {0}, V /∈ F , it follows from Remark 30 that∑

F∈F

1[
n

dim(F )

]
q

6 k,

and so
|F| 6 Σq(n, k).
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Otherwise, if {0}, V ∈ F , we can assume the result is true for k − 1. Note that the base
case k = 1 is proved by Theorem 4. Then it follows that

|F| 6 Σq(n, k − 1) + 2 6 Σq(n, k),

since F is induced {Yk−1, Y ′k−1}-free.
Now we may assume that {0} ∈ F and V /∈ F . Let G = F\{{0}}. If |G| 6 Σq(n, k)−1,

then |F| 6 Σq(n, k). So we may assume |G| = Σq(n, k), and G is a subfamily of the k (or
k+1) largest levels in the linear lattice. If n 6= k modulo 2, then G is uniquely determined
(i.e., the largest k levels), and it is easy to find an induced Yk in F . Indeed, we can find
an induced Yk−1 in G, which together with {0} form an induced Yk. If n = k modulo 2,
then G is a subfamily of the k + 1 largest levels L1,L2, . . . ,Lk+1. If G ∩ L1 = ∅, then we
can find an induced Yk as in the previous case. Otherwise, let L1 ∈ G ∩ L1, then find an
induced Yk−2 in L2 ∪ · · · Lk+1 such that L1 is a subspace of every subspace in this Yk−2.
It is easy to see that {0}, L1 together with this Yk−2 form an induced Yk in F . 2

We now recall some other structures which have been used in double counting argu-
ments for forbidden poset problems.

Definition 34. Let ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An−1 ⊂ An = [n] be a maximal chain in the
n-element Boolean lattice. Then the k-interval chain defined from this maximal chain is
given by [A0, Ak]∪ [A1, Ak+1]∪· · ·∪ [An−k, An]. A 2-interval chain is called a double chain.

Lemma 35 (Burcsi and Nagy [1]). Given a double chain D, we have Ni(D) = 2 for every
i and

α(D, P ) = |P |+ h(P )− 2.

Lemma 36 (Grósz, Methuku and Tompkins [8]). Given a k-interval chain Ck, we have
Ni(Ck) = k for every i and

α(Ck, P ) =
k

2k−1
(
|P |+ (3k − 5)2k−2(h(P )− 1)− 1

)
.

By Lemma 29, the vector space versions of Theorems 13 and 14 follows from the above
two lemmas, respectively.

Remark 37. In proving the vector space version of Theorem 14 from the Lemma 36, we
proceed exactly as in the corresponding proof in [8] replacing each binomial coefficient
with the corresponding q-binomial, and verify that all the estimates still hold.)

Theorem 38. For any poset P , when n is sufficiently large, we have

Laq(n, P ) 6

(
|P |+ h(P )

2
− 1

)[
n

bn
2
c

]
q

.

Theorem 39. For any poset P , when n is sufficiently large, we have

Laq(n, P ) 6
1

2k−1
(
|P |+ (3k − 5)2k−2(h(P )− 1)− 1

)[ n

bn
2
c

]
q

,

for any fixed k.
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