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Abstract

We call a quadruple W := 〈F,U,Ω,Λ〉, where U and Ω are two given non-empty
finite sets, Λ is a non-empty set and F is a map having domain U×Ω and codomain
Λ, a pairing on Ω. With this structure we associate a set operator MW by means of
which it is possible to define a preorder >W on the power set P(Ω) preserving set-
theoretical union. The main results of our paper are two representation theorems.
In the first theorem we show that for any finite lattice L there exist a finite set ΩL
and a pairing W on ΩL such that the quotient of the preordered set (P(ΩL),>W)
with respect to its symmetrization is a lattice that is order-isomorphic to L. In the
second result, we prove that when the lattice L is endowed with an order-reversing
involutory map ψ : L → L such that ψ(0̂L) = 1̂L, ψ(1̂L) = 0̂L, ψ(α) ∧ α = 0̂L and
ψ(α) ∨ α = 1̂L, there exist a finite set ΩL,ψ and a pairing on it inducing a specific
poset which is order-isomorphic to L.

Mathematics Subject Classifications: 06A07, 68R05

1 Introduction

Granular Computing (briefly GrC) is an emerging paradigm which relies on the idea
of partitioning a set of objects in some granules depending on some given criteria [29,
30, 38, 39]. Many ideas and methods of GrC have been used in order to investigate
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discrete mathematical objects, such as matroids, set partitions and ordered structures
[21, 25, 26, 36, 37].

In particular, a natural partitioning of a finite object set U is given when one uses a
corresponding finite attribute set Ω, with respect to which any ordered pair (u, a) ∈ U×Ω
takes a unique value F (u, a) in a given set Λ. The quadruple 〈F,U,Ω,Λ〉 has several
names in computer science literature: information system [28], relational data table [34],
information table [38], Chu space [20].

In this work we use some algebraic granular computing techniques on quadruples
having the aforementioned form, in order to provide two representation results concerning
finite lattices. However, due to the fact that in the present paper the above sets U , Ω and
Λ have only a formal nature, we will use the more mathematical term pairing instead of the
previous ones. Hence, in our specific mathematical viewpoint, we can speak of algebraic
GrC methods on pairings (for further results on such topics see also [13, 14, 17]).

Therefore, we shall call a quadruple W := 〈F,U,Ω,Λ〉, where U and Ω are both finite
non-empty sets, Λ is also a non-empty set and F is a map having domain U × Ω and
codomain Λ, a pairing on Ω. We may identify the pairing W with the rectangular table
with rows labelled by the elements of U , the columns by those of Ω and whose entries are
the values F (u, a).

For any A ⊆ Ω we consider the following equivalence relation ≡A on U :

u ≡A u′ :⇐⇒ F (u, a) = F (u′, a) ∀a ∈ A. (1)

for any u, u′ ∈ U . Let [u]A be the equivalence class of u with respect to ≡A and πW(A) :=
{[u]A : u ∈ U} the set partition on U induced by ≡A. When we take as pairing W a data
table having Ω as its attribute set, the equivalence relation ≡A becomes a well-known tool
of database theory and related fields [28, 34].
On the other hand, the relation ≡A becomes a type of local symmetry relation with respect
to a fixed vertex subset A ⊆ V (G) when one interprets a finite simple undirected graph
G with vertex set V (G) as a pairing 〈F, V (G), V (G), {0, 1}〉 on V (G), where F (u, a) := 1
if the vertices u, a ∈ V (G) are adjacent and F (u, a) := 0 otherwise. In [13] such a local
symmetry relation has been investigated for some basic graph families and, in particular,
a classification theorem for the Petersen graph, concerning all subgraphs induced by the
vertex subsets A that are minimal with respect to the property that ≡A agrees with
≡V (G) has been proved (these vertex subsets have been called symmetry bases of the
graph). Again, in [18] the local symmetry relation ≡A has been studied in its interrelations
with a specific type of binary operation ◦ defined on the power set P(V (G)) and whose
automorphism group is isomorphic to a subgroup of Aut(G) (for works on similar topics
see also [31, 35]).

Based on the particular graph interpretation introduced in [13], the same applies to the
general case. Therefore, we call ≡A the A-symmetry relation and πW(A) the A-symmetry
partition of the pairing W. Moreover, we also consider the equivalence relation ≈W on the
power set P(Ω) defined by

A ≈W A′ :⇐⇒ πW(A) = πW(A′), (2)
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for any A,A′ ∈ P(Ω), that is equivalent to say that

u ≡A u′ ⇐⇒ u ≡A′ u′, (3)

for all u, u′ ∈ U . We call ≈W the global symmetry relation of W. Let [A]≈P
be the

equivalence class of A with respect to ≈W. It is easy to verify that [A]≈P
is a union-

closed family (see [12] for details). Hence, the global symmetry relation for pairings yields
specific models of families in the various mathematical contexts where pairings occur.

Now, since [A]≈P
is a union closed family, it has a maximal elementMW(A), that we call

the maximum partitioner of A. Then the set operator MW : A ∈ P(Ω) 7→MW(A) ∈ P(Ω)
is a closure operator on Ω, the subset family

M(W) := {C ∈ P(Ω) : MW(C) = C} = {MW(B) : B ∈ P(Ω)}

is a closure system on Ω and M(W) := (M(W),⊆∗) a complete lattice (see [12] for
details). Moreover, given the preordered set H(W) := (P(Ω),>W), where A >W A′ if
MW(A) ⊇ MW(A′), it results that the global symmetry relation ≈W coincides with the
symmetrization of the preorder >W and that H(W)/ ≈W is a lattice order-isomorphic to
M(W) (see Proposition 14). This preorder satisfies the fundamental property

X >W Yi , ∀i ∈ I =⇒ X >W

⋃
Yi. (4)

In view of Property (4), we will use the terminology union additive relation induced by W

to indicate the preorder >W.
As a type of dual structure of M(W), the subset family N(W) :=

⋃
{min([A]≈P

) :
A ∈M(W)} has been introduced in [14] showing that it is an abstract simplicial complex
that is related with M(W) by means of several properties and results. For example, for
some types of pairings M(W) and N(W) are respectively the closed subset family and the
independent subset family of a matroid (see [14] for details).

Based on recent results obtained in the graph context [13, 14] and on other general
results linked to theoretical computer science [1, 2, 12, 15, 25, 26, 36, 37, 39], in this paper
we continue the study of the basic property of the set system M(W) and use methods
from GrC in relation to order-theory, limited to finite lattices.

To this regard, we prove a representation result for the closure system M(W) and
we insert it within a general research perspective involving the interrelations between
combinatorics, order theory and topological structures. More in detail, we prove, in a
constructive way, that the family of all closed sets of any closure system on some finite
set Ω agrees with the family of the maximum partitioners of some pairing W on Ω itself
(Theorem 5).

Through the previous result, we will provide two representation results concerning all
the preorders on a set Ω satisfying (4) (which we call union additive relations on Ω) and
another one concerning finite lattices. On the one hand, we shall show that any union
additive relation on Ω agrees with the preorder >W induced by some pairing W on Ω
itself.
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On the other hand, in order to provide a representation theorem for finite lattices
in terms of pairings, we shall use a classical result of lattice theory, according to which
any finite lattice can be represented as a closure system on the set of all join-irreducible
elements of the lattice itself [6]. This is the keypoint of our first representation theo-
rem, since we use the aforementioned result to show that for each finite lattice L there
exists a pairing WL on some finite ground set ΩL such that the lattice H(WL)/ ≈WL is
order-isomorphic to L itself (see Theorem 17). Therefore, as a consequence of such a
representation theorem, we can reinterpret the order relation in any finite lattice L as the
quotient of the preorder relation >W, for some W on ΩL. In other terms, we can consider
the order relation of any algebraic lattice as the quotient relation of a union additive
relation defined on some set ΩL. In this way, we provide an enrichment of the study of
the lattice order theory establishing new interrelationships between order and topological
properties by means of the union additive property given in (4).

Theorem 17 provides a refinement for the partial order 6L of the lattice. Indeed,
setting

γW(A,B) :=
|{u ∈ U : [u]A ⊆ [u]B}|

|U |
.

for each A,B ∈ P(Ω) and fixing two elements of the lattice x, y ∈ L, it may be easily
verified that x 6L y if and only if γW(η(x), η(y)) = 1. This fact enables us to compute
γW(η(x), η(y)) even if x and y are non-comparable with respect to the order of the lattice
L. In other terms, the function γW provides extra numerical informations for partial
dependencies of subsets, corresponding to two non-comparable nodes of the lattice L and
that are not explicit in the lattice itself. Note that each node corresponds to an equivalence
class with respect to the equivalence relation ≈W and the value of γW corresponding to a
pair of subsets belonging to the same equivalence class is clearly 1.

In general, given a pairing W on a finite set Ω with n elements, it is always possible
to put within a 2n × 2n table T (W) the values γW(X, Y ). The complete determination
of all the entries of the above table enables us to obtain the closure system M(W). In
other terms, we may consider the table T (W) as a sort of numerical completion of M(W).
The map γW and some related averages have been broadly used in [16, 33] in order to
investigate the transmission of symmetry in some basic digraph and graph families.

Eventually, in the last part of the paper we focus our attention on the link between
a specific class of lattices endowed with an involutory map and some particular subset
families induced by means of pairings. More in detail, we consider a finite lattice L
endowed with an order-reversing involutory map ψ : L → L exchanging 0̂L and 1̂L and
such that ψ(α) ∧ α = 0̂L and ψ(α) ∨ α = 1̂L. In this case we say that the pair (L, ψ)
is a complemented involutory lattice. In general, the theory of the posets endowed of an
involutory map is a well investigated research field [4, 11, 24, 32], which also has links
with complex analysis [7] and design theory [9, 23] (moreover, for some studies concerning
discrete dynamics on particular types of lattices endowed with involutory maps see [8, 10]).

In the present context, given a pairing W on Ω and A ∈ P(Ω), we set KW(A) := Ω \
MW(Ac). Subsequently, we say that A ∈ P(Ω) is normally extensible if A = MW(KW(A)).
Then we show that for any finite complemented involutory lattice (L, ψ), there exist a
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finite set ΩL,ψ and a pairing W on ΩL,ψ such that MW(∅) = ∅ and for which the poset
of all normally extensible subsets with respect to set theoretical inclusion is a complete
lattice order-isomorphic to L (see Theorem 22).

Let us briefly describe the content of our paper. In Section 2 we first recall some
basic notions and results on closure systems, lattices, families of subsets and pairings. In
Section 3 we provide a constructive proof for the representation result for closure systems
on finite sets (Theorem 5) and provide some examples of how our algorithm works. In
Section 4 we introduce the notion of union additive relations and give the proof of the
representation theorem for such relations. Furthermore, we will also provide a proof for
the representation theorem of finite lattices, according to which for any finite lattice L we
can find a finite set ΩL and a pairing WL on it such that L is order-isomorphic to M(WL)
(Theorem 17). Section 5 focuses the attention on the representation of complemented
involutory lattices through a pairing W on a finite set ΩL,ψ such that the poset of all
normally extensible subsets is order-isomorphic to L itself.

2 Reviews, Notations and Basic Results

Notations. In this paper we denote by Ω a given finite arbitrary set and by P(Ω) the
power set of Ω. We use the symbol ⊆∗ to denote dual inclusion, that is A ⊆∗ B is
equivalent to say that B ⊆ A. If n is a positive integer, we denote by Ωn the cartesian
product of n copies of Ω. When X ⊆ Ω, we will use both the notations Xc and Ω \X to
indicate the complement subset of X with respect to Ω. If f : Ω→ Ω′ is a map between
sets, we denote by Im(f) the image of f . A map ψ is called an involutory map on Ω if
ψ2 = IdΩ, where IdΩ denotes the identity on Ω.

If X is a set and we have two maps ψ : X → X and f : X → P(Ω) such that
f(ψ(x)) = Ω \ f(x) for any x ∈ X, we say that f is a ψ-complementary map.

Posets and Lattices. Let P := (P,6) be a poset and X ∈ P(P ) be a non-empty subset.
If x, y ∈ P , we also write x < y if x 6 y and x 6= y. If x, y are two distinct elements of P ,
we say that y covers x, denoted by xl y if x 6 y and there exists no element z ∈ P such
that x < z < y.

Let P := (P,6) and P′ := (P ′,6′) be two posets, α, β ∈ P and f : P → P ′ a map.
We say that f is:

• order-preserving if x 6 y =⇒ f(x) 6′ f(y) for each x, y ∈ L;

• order-reversing if x 6 y =⇒ f(y) 6′ f(x) for each x, y ∈ L;

• {α, β}-preserving if the restriction map f|{α,β} : {α, β} → {f(α), f(β)} is an order
isomorphism.

Let L := (L,6L) be a lattice. For each x, y ∈ L, we denote by x ∨ y the join and
by x ∧ y the meet of x and y in L. When they exist, we denote by 0̂L and 1̂L the meet
and the join of L, respectively. If x ∈ L, we say that x is join-irreducible if x 6= 0̂L and
x = y ∨ z implies x = y or x = z for any y, z ∈ L. We denote by J(L) the subset of all

the electronic journal of combinatorics 27(1) (2020), #P1.19 5



join-irreducible elements of L. A lattice L = (L,6L) is said complete if there exist both
the join and the meet of any subset X ∈ P(L) and we denote them by

∨
X and

∧
X,

respectively.
We call a pair (L, ψ) a complemented involutory lattice if ψ : L → L is an order-

reversing involutory map such that ψ(0̂L) = 1̂L, ψ(1̂L) = 0̂L and, for any α ∈ L, it results
ψ(α) ∧ α = 0̂L and ψ(α) ∨ α = 1̂L.

The most simple example of a complemented involutory lattice is the poset (P(Ω), ⊆)
where ψ : P(Ω) → P(Ω) associates with each set its complement. More in general,
whenever we fix a set system F ∈ P(P(Ω)) and consider the lattice LF := (X,⊆), where
X consists of ∅,Ω, the members of F and their complements, we obtain a complemented
involutory lattice by taking the map ψ associating with each set of F its complement and
exchanging ∅ with Ω.

We denote by Mn the linear sum 1⊕ n⊕ 1 (see page 17 of [19] for details), where n
is the antichain on n elements {1, . . . , n}. Another simple example of a complemented
involutory lattice is given by (Mn, ψ), with n an even integer, ψ(ai) = aσ(i), where σ is a

product of disjoint transpositions without fixed elements, ψ(0̂L) = 1̂L and ψ(1̂L) = 0̂L.

Set Systems and Set Operators. We call the elements of P(P(Ω)) set systems on Ω.
A set system F on Ω is said:

• union-closed if whenever F′ ⊆ F then ∪F′ ∈ F;

• complement-closed if Ω ∈ F and Z ∈ F =⇒ Zc ∈ F;

• a closure system on Ω if Ω ∈ F and ∩F′ ∈ F whenever F′ ⊆ F.

We recall that if F is a closure system on Ω, then the poset (F,⊆) is a complete lattice
(usually called closure lattice of F) in which the meet operation is the subset intersection.

A set operator on Ω is any map σ : P(Ω) → P(Ω). For any set operator σ on Ω, the
fixed point set of σ is the following set system of Ω:

Fix(σ) := {A ∈ P(Ω) : σ(A) = A}

Moreover, if F is a given set system on Ω we will consider the induced set operator IntF
on Ω defined by

IntF(A) :=
⋂
{B ∈ F : A ⊆ B}

A set operator σ on Ω is said:

• isotone, if whenever A,B ∈ P(Ω) and A ⊆ B, then σ(A) ⊆ σ(B);

• extensive, if A ⊆ σ(A) for all A ∈ P(Ω);

• intensive, if σ(A) ⊆ A for all A ∈ P(Ω);

• idempotent, if σ(σ(A)) = σ(A) for all A ∈ P(Ω);

• a closure operator, if σ is isotone, extensive and idempotent;
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• a kernel operator, (see [22]) if σ is isotone, intensive and idempotent.

In the next theorem, we recall the well-known bijective correspondence between closure
systems and closure operators.

Theorem 1 (Thm 7.3, [19]). Let σ be a closure operator on Ω and F be a closure
system on Ω. Then Fix(σ) is a closure system on Ω. and IntF is a closure operator on
Ω. Moreover, we have that

IntFix(σ) = σ, F ix(IntF) = F

The next result, whose proof is straightforward, will be useful in what follows.

Proposition 2. Let F be a complement-closed set system on Ω. Then IntF is a closure
operator on Ω such that IntF(∅) = ∅.

Set Partitions. If π is a set partition on Ω, we usually denote by {Bi : i ∈ I} the block
family of π. If u ∈ Ω, we denote by π(u) the block of π which contains the element u.
When Ω is finite we use the standard notation π := B1| . . . |B|π|, where |π| is the number of
distinct blocks of π. We denote by Π(Ω) the set of all set-partitions of Ω. It is well-known
that on the set Π(Ω) we can consider a partial order � defined as follows: if π, π′ ∈ Π(Ω),
then

π � π′ :⇐⇒ (∀B ∈ π) (∃B′ ∈ π′) : B ⊆ B′ ⇐⇒ (∀u ∈ Ω) (π(u) ⊆ π′(u)). (5)

We will write π ≺ π′ when π � π′ and π 6= π′. The pair (Π(Ω),�) is a complete lattice
which is called partition lattice of the set Ω.

Pairings. We call a quadruple W := 〈F,U,Ω,Λ〉, where U and Ω are finite non-empty
sets, Λ is a non-empty set and F is a map having domain U × Ω and codomain Λ, a
pairing on Ω.
For each A ∈ P(Ω) we consider the following equivalence relation ≡A on U :

u ≡A u′ :⇐⇒ F (u, a) = F (u′, a) ∀a ∈ A. (6)

for any u, u′ ∈ U . Let [u]A be the equivalence class of u with respect to ≡A and

πW(A) := {[u]A : u ∈ U}

the set partition on U induced by ≡A. Let us note that, for any A′ ∈ P(Ω), we have that

A ⊆ A′ =⇒ πW(A′) � πW(A)

We set
Πsym(W) := {πW(B) : B ∈ P(Ω)}, Psym(W) := (Πsym(W),�),

so that Psym(W) is a sub-poset of the partition lattice (Π(U),�).
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In what follows, we will consider the equivalence relation ≈W on the power set P(Ω)
defined by

A ≈W A′ :⇐⇒ πW(A) = πW(A′),

for any A,A′ ∈ P(Ω), and we will denote by [A]≈P
the equivalence class of A with respect

to ≈W.
The basic properties of the relation ≈W are recalled in the following result.

Theorem 3 (Proposition 3.2, [12]). We have that:
(i) If A ≈W A′ and D ∈ P(Ω), then A ∪D ≈W A′ ∪D.
(ii) The equivalence class [A]≈W

is union-closed and, hence, it has only a maximum ele-
ment

⋃
[A]≈W

, which we denote by MW(A).
(iii) MW(A) = {b ∈ Ω : A ∪ {b} ≈W A} = {a ∈ Ω : (u, u′ ∈ Ω ∧ u ≡A u′) =⇒ F (u, a) =
F (u′, a)}.
(iv) MW(A) ⊇MW(A′) ⇐⇒ πW(A) � πW(A′).
(v) The set operator MW : B ∈ P(Ω) 7→MW(B) ∈ P(Ω) is a closure operator on Ω, whose
induced closure system is

M(W) := {MW(B) : B ∈ P(Ω)} = {C ∈ P(Ω) : MW(C) = C}

Moreover, the poset M(W) := (M(W),⊆∗) is a complete lattice such that if {Aj : j ∈
J} ⊆M(W) then ∨

j∈J

Aj =
⋂
j∈J

Aj and
∧
j∈J

Aj = MW(
⋃
j∈J

Aj)

Finally, the map πP : A ∈ M(W) 7→ πW(A) ∈ Πsym(W) induces an order isomorphism
between the closure lattice M(W) and the poset Psym(W). In particular, Psym(W) is a
lattice.

In what follows, we call the elements of M(W) the maximum partitioners of W, the
lattice M(W) the maximum partitioner lattice of W and Psym(W) the symmetry partition
lattice of W.

Remark 4. There is another lattice which is order isomorphic to the dual closure lattice
M(W), whose role is relevant when ones uses micro and macro granular representations
induced by information tables (see [14] for details). Such a lattice is obtained by taking
firstly the set G(W) := {[A]≈W

: A ∈ M(W)}, and next by considering the partial order
v on G(W) defined by: [A]≈W

v [A′]≈W
: ⇐⇒ A ⊆∗ A′, for any [A]≈W

, [A′]≈W
∈ G(W).

Then, by Theorem 3 one can deduce that the poset G(W) := (G(W),v) is a lattice
which is order-isomorphic to the maximum partitioner lattice M(W) (see [12] for details).
Relatively to a specific pairing, we shall visualize the lattice G(W) in Example 7.

3 Representation Theorem for Closure Systems

The main result of the present section is Theorem 5, which is a representation result for
closure systems on Ω by means of pairings on the same ground set. More specifically, for
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any closure system S on Ω we are able to find a pairing W on Ω such that the set system
M(W) of all maximum partitioners of W coincides with S.

The proof of Theorem 5 is constructive and it is based on an algorithmic construction
whose underlying idea derives by the simplest case when a closure system is a chain of
subsets, as in Example 6.

The main idea of such a proof is based on the fact that the order structure of the given
closure lattice on Ω can be entirely described by its maximal chains.

Theorem 5. The map associating with any pairing W on Ω the closure system M(W) on
Ω is surjective.

Proof. Let S be a closure system on Ω = {a1, . . . , an} and S := (S,⊆) its induced closure
lattice. Then S has maximum element 1̂S = Ω and minimum element 0̂S := E = ∩S. We
denote by l the covering relation of S.

Let C1, C2, . . . ,Ck be all the maximal chains of S. Obviously, any chain Ci has bottom
E and top Ω.

We use the following notations for the previous chains:

C1 : A1,1 = E l A1,2 l · · ·l A1,l1 = Ω,

...

Ck : Ak,1 = E l Ak,2 l · · ·l Ak,lk = Ω,

so that the positive integer li agrees with the length of the chain Ci, for any i = 1, . . . , k.
Set

m0 := 0, m1 := l1, m2 := l1 + l2, . . . , mk := l1 + · · ·+ lk,

m := mk,

and
US := {1, 2, . . . , m}

Let us note that we have the following partition of US with integer intervals:

[m0 + 1,m1], [m1 + 1,m2], . . . , [mk−1 + 1,mk]

Therefore, for any element u ∈ US there exists a unique index ιu ∈ {1, 2, . . . , k} such that

u ∈ [mιu−1 + 1,mιu ] (7)

Now we will construct a pairing

W = W(S) := 〈FS, US,Ω, N〉,

on Ω for which M(W) = S.
To this purpose, we will define recursively the map FS : US × Ω −→ N.
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Firstly, let us note that the greatest element of any maximal chain is the whole set Ω,
therefore for any 1 6 i 6 k and any a ∈ Ω there exists the following minimum integer
number:

ζi,a := min{q ∈ {1, 2, . . . , li} : a ∈ Ai,q} (8)

Now we associate with any ordered pair (u, a) ∈ US × Ω the following integer set:

Ju,a :=

{
[mιu−1 + 2, mιu − ζιu,a + 1] if mιu−1 + 2 6 mιu − ζιu,a + 1,
∅ otherwise

(9)

At this point we define FS recursively, as follows.
Firstly, for any a ∈ E, we set

FS(u, a) := 1,

for all u ∈ U .
On the other hand, for any a ∈ Ω \ E, we set

FS(1, a) := 1,

and

FS(u, a) :=

{
FS(u− 1, a) if u ∈ Ju,a,
FS(u− 1, a) + 1 if u /∈ Ju,a,

(10)

for all u = 2, . . . ,m.
Let us consider the pairing W = 〈FS, US,Ω,N〉 so constructed. We shall demonstrate

that M(W) = S.
For, let us firstly show the inclusion S ⊆ M(W). Let A ∈ S. We distinguish three

distinct cases.
(i): Let first A = Ω. In this case Ω ∈M(W) because M(W) is a closure system on Ω.
(ii): Let A = E. In such a case, it suffices to see that E = MW(∅).
In fact, by definition of FS we have that πW(E) = US = πW(∅), therefore E ∈ [∅]≈W

,
hence E ⊆MW(∅), because MW(∅) is the maximum element of [∅]≈W

.
Conversely, let a ∈MW(∅). Then, in view (iii) of Theorem 3, we have that

FS(u, a) = FS(u
′, a) ∀ u, u′ ∈ US (11)

Let us assume by contradiction that a /∈ E, and we take v = m1 ∈ US, so that ιv = 1.
Therefore

Jv,a = [2,m1 + 1− ζ1,a]

Then, it results that v /∈ Jv,a since ζ1,a > 2. So, by (10) we have that FS(v, a) 6= FS(v−1, a),
and this contradicts (11). On the other hand, the inclusion MW(∅) ⊆ E also holds. Hence
we get E = MW(∅) ∈M(W).

(iii): Let now E $ A $ Ω. In view of part (iii) of Theorem 3, it suffices to prove the
existence of two elements w,w′ of US such that

w ≡A w′ and FS(w, b) 6= FS(w
′, b) ∀b ∈ Ω \ A (12)
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In fact, if the condition (12) is satisfied for some w,w′ ∈ US, by (iii) of Theorem 3 we
have that MW(A) ⊆ A, therefore A = MW(A) ∈M(W).

Then, in order to find two specific elements w,w′ ∈ U that satisfy the condition (12),
we proceed as follows.

Since E $ A $ Ω, it follows that any maximal chain of S has length at least three.
Let then

Ci : Ai,1 = E l Ai,2 l · · ·l Ai,li = Ω

be a given maximal chain of S such that A = Ai,t, for some t ∈ {2, . . . , li − 1}. Set
w := mi − t and w′ := w + 1. Let us firstly show that w ≡A w′. Indeed, if a ∈ E, then
FS(w, a) = FS(w

′, a) = FS(w+ 1, a) = 1 in view of the definition of FS; while, if a ∈ A\E,
we get ζi,a 6 t because of the definition of ζi,a. Thus, by the latter condition and by
the definition of both t and w, we get mi−1 + 1 6 w 6 mi − ζi,a. In view of (10), since
mi−1 + 2 6 w′ = w+ 1 6 mi− ζi,a + 1, it follows that FS(w

′, a) = FS(w, a). Therefore, we
have w ≡A w′.
At this point, we shall demonstrate that for each choice of b ∈ Ω \ A, it holds FS(w, b) 6=
FS(w

′, b). First of all, notice that if b /∈ A, then b /∈ E since E $ A. Moreover, the
definition of ζi,b implies that ζi,b > t, whence w = mi − t > mi − ζi,b and w′ = w + 1 >
mi− ζi,b + 1. Thus, again by (10), it follows that FS(w

′, b) = FS(w+ 1, b) = FS(w, b) + 1 6=
FS(w, b), i.e. w 6≡A w′. This proves (12) and, hence, we conclude that A ∈M(W).

It remains to prove the inclusion M(W) ⊆ S. For, let A ∈ M(W). We claim that
A ∈ S. As above, we may distinguish three cases.

(i′): If A = MW(∅), in view of the fact that MW(∅) = E, we get A ∈ S.
(ii′): Analogously, if A = Ω, then we get A ∈ S in view of the definition of a closure

system.
(iii′): Thus, let E $ A $ Ω. Let us consider the set system

SA := {C ∈ S : A ⊆ C}.

Let us note that SA is again a closure system on Ω, because Ω ∈ SA and SA is intersection
closed. Therefore there exists a minimum element B ∈ SA.

At this point, in order to prove that A ∈ S, it suffices to show that B ⊆ A, since in
such a case we will get A = B ∈ S.

Let therefore b ∈ B. We must prove that b ∈ A, and this is equivalent to show that

b ∈MW(A) = A,

because A ∈ M(W). Moreover, by part (iii) of Theorem 3, the condition b ∈ MW(A) is
equivalent to the following:

∀ u, u′ ∈ US, u ≡A u′ =⇒ FS(u, b) = FS(u
′, b) (13)

Let us show that (13) is equivalent to the following:

∀ u ∈ US, u ≡A u− 1 =⇒ FS(u, b) = FS(u− 1, b). (14)
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To see that, it suffices to show that (14) implies (13), since the reverse implication is
obvious. To this regard, let b ∈ MW(A) and u, u′ ∈ US be such that u ≡A u′. We claim
that FS(u, b) = FS(u

′, b). Without loss of generality, we may assume u′ < u. In view of
(10), the map FS(·, a) is non-decreasing. Therefore, the condition u ≡A u′, or equivalently,
FS(u, a) = FS(u

′, a) for each a ∈ A ensures that FS(u, a) = FS(u − 1, a) for each a ∈ A,
i.e. u ≡A u − 1. Hence, FS(u, b) = FS(u − 1, b). In particular, we also have u′ ≡A u − 1,
therefore we may proceed as before to show that FS(u) = FS(u−1, b) = FS(u−2, b). Thus,
iterating the previous argument, we get FS(u, b) = FS(u

′, b). This shows the equivalence
between (13) and (14).

Therefore, in order to complete the proof of the theorem, fix an arbitrary element of
u ∈ US such that u ≡A u− 1. We shall prove that

FS(u, b) = FS(u− 1, b) (15)

For each maximal chain Ci, with 1 6 i 6 k, let us consider the set system

Ci,A := {Ai,j ∈ Ci : A ⊆ Ai,j}.

Clearly, Ω ∈ Ci,A; thus, there exists a minimum element in the chain Ci containing A. In
other terms, for each i = 1, . . . , k, there exists a minimal integer si such that

2 6 si 6 li and A ⊆ Ai,si

In view of the minimality of B, we infer that B ⊆ Ai,si for each i = 1, . . . , k, whence

b ∈ B ⊆
k⋂
i=1

Ai,si (16)

Now, let us observe that
{u− 1, u} ⊆ [mιu−1 + 1,mιu ] (17)

In fact, assume by contradiction that (17) does not hold. In such a case, by (7) we must
have necessarily u = mιu−1 + 1. Moreover, since E $ A, we can choose an element
â ∈ A \E. Then, relatively to such a choice, by (9) it results that u /∈ Ju,â. Therefore, by
(10) we obtain that

FS(u, â) := FS(u− 1, â) + 1 6= FS(u− 1, â),

and this is in contrast with the hypothesis u ≡A u− 1. Hence (17) holds.
At this point, we can prove (15).
In view of (10), it suffices to show that

u ∈ Ju,b,

that is
mιu−1 + 2 6 u 6 mιu − ζιu,b + 1
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Now, the first of the previous inequality follows immediately by (17), since mιu−1 + 1 6
u− 1. Therefore, in order to conclude our proof, it remains to show that

u 6 mιu − ζιu,b + 1 (18)

Let a ∈ A \ E such that
ζιu,a := max{ζιu,a : a ∈ A \ E}

Then we have that
ζιu,a = sιu (19)

In fact, since A ⊆ Aιu,sιu , in view of the definition of the integer ζιu,a, we must necessarily
have ζιu,a 6 sιu . Furthermore, if it were ζιu,a < sιu , then we infer that

A ⊆ Aιu,t $ Aιu,sιu ,

where Aιu,t ∈ Cιu , and this contradicts the minimality of the integer sιu . Therefore, (19)
holds.

Now, since u ≡A u − 1, it results that FS(u, a) = FS(u − 1, a). By (10), this implies
that u ∈ Ju,a. Therefore, by (9) and (19) we have that

u 6 mιu − ζιu,a + 1 = mιu − sιu + 1. (20)

On the other hand, by (16) we have that b ∈ B ⊆ Aιu,sιu , and hence

ζιu,b 6 sιu , (21)

by (8).
Finally, we obtain (18) as a direct consequence of (20) and (21).

Example 6. Let us consider the set Ω4 = {a1, a2, a3, a4} and the closure system

S = {{a1}, {a1, a2}, {a1, a2, a3},Ω}

The closure S has the Hasse diagram represented in Figure 1, therefore S is a chain of
length four.

The minimum in S is E = {a1}, and in such a case we have only a maximal chain
C1, which is S itself. Therefore, by using the same notations adopted in the proof of
Theorem 5, we have that

C1 : E = A1,1 = {a1}l A1,2 = {a1, a2}l A1,3 = {a1, a2, a3}l A1,4 = Ω4,

m0 = 0, m = m1 = 4 and

U = {u1 := 1, u2 := 2, u3 := 3, u4 := 4}

Therefore
ι1 = ι2 = ι3 = ι4 = 1,
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a1

a1a2

a1a2a3

Ω4

Figure 1: The Hasse Diagram of the chain with 4 elements.

a1 a2 a3 a4

u1 1 1 ↓ 1 ↓ 1 ↓
u2 1 u2 ∈ [2, 3]→ 1 ↓ u2 ∈ [2, 2]→ 1 ↓ u2 /∈ ∅ → 1 + 1 ↓
u3 1 u3 ∈ [2, 3]→ 1 ↓ u3 /∈ [2, 2]→ 1 + 1 ↓ u3 /∈ ∅ → 2 + 1 ↓
u4 1 u4 /∈ [2, 3]→ 1 + 1 u4 /∈ [2, 2]→ 2 + 1 u4 /∈ ∅ → 3 + 1

Figure 2: A visualization of the recursive construction of the map FS for the chain with
4 elements.

and
ζ1,a1 = 1, ζ1,a2 = 2, ζ1,a3 = 3, ζ1,a4 = 4

Now, in the table represented in Figure 2, we show as acts the algorithm which defines
the map FS in the proof of Theorem 5. We start from the top of any column aj /∈ E
and we move towards below. When ui ∈ Jui,aj then we do not change the previous value,
otherwise we sum 1 to the above value. We proceed in such a way for any column aj /∈ E.
To the end of this process we obtain the pairing represented in Figure 3.

Example 7. Let us consider Ω5 := {a1, a2, a3, a4, a5} and the following closure system
on Ω5:

S := {{a2}, {a2, a5}, {a2, a3}, {a2, a3, a4}, {a1, a2, a3}, Ω5}

a1 a2 a3 a4

u1 1 1 1 1
u2 1 1 1 2
u3 1 1 2 3
u4 1 2 3 4

Figure 3: The pairing W(S) representing the chain of 4 elements.
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a2

a2a3 a2a5

a1a2a3 a2a3a4

Ω5

Figure 4: The Hasse Diagram of the closure lattice of Example 7.

The minimum in S is E = {a2}. The lattice associated with S has the Hasse diagram
represented in Figure 4.

There are three maximal chains from E to Ω:

C1 : E = A1,1 = {a2} $ A1,2 = {a2, a3} $ A1,3 = {a1, a2, a3} $ A1,4 = Ω5

C2 : E = A2,1 = {a2} $ A2,2 = {a2, a3} $ A2,3 = {a2, a3, a4} $ A2,4 = Ω5

C3 : E = A3,1 = {a2} $ A3,2 = {a2, a5} $ A3,3 = Ω5

(22)

Thus m0 = 0, m1 = 4, m2 = 8 and m = m3 = 11. Moreover ζ1,a1 = 3, ζ2,a1 = 4, ζ3,a1 = 3,
ζ1,a3 = 2, ζ2,a3 = 2, ζ3,a3 = 3, ζ1,a4 = 4, ζ2,a4 = 3, ζ3,a4 = 3, ζ1,a5 = 4, ζ2,a5 = 4 and
ζ3,a5 = 2. Then

U = {u1 := 1, u2 := 2, . . . , u11 := 11}

and,
ι1 = ι2 = ι3 = ι4 = 1, ι5 = ι6 = ι7 = ι8 = 2, ι9 = ι10 = ι11 = 3.

As has already been done in Example 6, in the table represented in Figure 5, we show as
acts the algorithm which defines the map FS given in (10) relatively to the closure system
in the present example.

At this point we can construct the pairing represented in Figure 6.
Moreover, in Figure 7 we have also drawn the Hasse diagram of G(W(S)) (we use

string notation to represent the subsets of Ω5).

Let us provide simple consequences of Theorem 5.

Corollary 8. Let S be a closure system on Ω and W be a pairing on Ω such that M(W) =
S. Then the lattices Psym(W), M(W) and the closure lattice S are order-isomorphic.

Proof. The result is a direct consequence of Theorem 5 and of part (v) of Theorem 3.

Remark 9. The algorithm provided in Theorem 5, in general, does not yield a pairing
with the cardinality of US as least as possible.
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a1 a2 a3 a4 a5

u1 1 ↓ 1 1 ↓ 1 ↓ 1 ↓
u2 u2 ∈ [2, 2]→ 1 ↓ 1 u2 ∈ [2, 3]→ 1 ↓ u2 /∈ ∅ → 1 + 1 ↓ u2 /∈ ∅ → 1 + 1 ↓
u3 u3 /∈ [2, 2]→ 1 + 1 ↓ 1 u3 ∈ [2, 3]→ 1 ↓ u3 /∈ ∅ → 2 + 1 ↓ u3 /∈ ∅ → 2 + 1 ↓
u4 u4 /∈ [2, 2]→ 2 + 1 ↓ 1 u4 /∈ [2, 3]→ 1 + 1 ↓ u4 /∈ ∅ → 3 + 1 ↓ u4 /∈ ∅ → 3 + 1 ↓
u5 u5 /∈ ∅ → 3 + 1 ↓ 1 u5 /∈ [6, 7]→ 2 + 1 ↓ u5 /∈ [6, 6]→ 4 + 1 ↓ u5 /∈ ∅ → 4 + 1 ↓
u6 u6 /∈ ∅ → 4 + 1 ↓ 1 u6 ∈ [6, 7]→ 3 ↓ u6 ∈ [6, 6]→ 5 ↓ u6 /∈ ∅ → 5 + 1 ↓
u7 u7 /∈ ∅ → 5 + 1 ↓ 1 u7 ∈ [6, 7]→ 3 ↓ u7 /∈ [6, 6]→ 5 + 1 ↓ u7 /∈ ∅ → 6 + 1 ↓
u8 u8 /∈ ∅ → 6 + 1 ↓ 1 u8 /∈ [6, 7]→ 3 + 1 ↓ u8 /∈ [6, 6]→ 6 + 1 ↓ u8 /∈ ∅ → 7 + 1 ↓
u9 u9 /∈ ∅ → 7 + 1 ↓ 1 u9 /∈ ∅ → 4 + 1 ↓ u9 /∈ ∅ → 7 + 1 ↓ u9 /∈ [10, 10]→ 8 + 1 ↓
u10 u10 /∈ ∅ → 8 + 1 ↓ 1 u10 /∈ ∅ → 5 + 1 ↓ u10 /∈ ∅ → 8 + 1 ↓ u10 ∈ [10, 10]→ 9 ↓
u11 u11 /∈ ∅ → 9 + 1 1 u11 /∈ [6, 7]→ 6 + 1 u11 /∈ ∅ → 9 + 1 u11 /∈ [10, 10]→ 9 + 1

Figure 5: A visualization of the recursive construction of the map FS for the closure
system of Example 7.

a1 a2 a3 a4 a5

u1 1 1 1 1 1
u2 1 1 1 2 2
u3 2 1 1 3 3
u4 3 1 2 4 4
u5 4 1 3 5 5
u6 5 1 3 5 6
u7 6 1 3 6 7
u8 7 1 4 7 8
u9 8 1 5 8 9
u10 9 1 6 9 9
u11 10 1 7 10 10

Figure 6: The Pairing W(S) associated with the closure lattice of Example 3.3.
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Figure 7: Hasse Diagram of G(W(S)) relative to Example 3.3.
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Remark 10. A very natural question related to the algorithm introduced in Theorem 5 is
about its complexity. It is a hard computational problem and it will not be analyzed in
this paper. In order to face it, we could divide it into smaller problems and solve each one
of them separately. The first of this problem is known as the Moore problem, in honour to
E. H. Moore for its work on closure systems (see [27]). It consists of the computation of
the number of closure systems on a given finite set Ω with n elements. Already for n = 7,
this number becomes too large and difficult to be found by an enumeration algorithm. By

the way, as proved by Alekseev in [3] its asymptotic size is O

(
2
(nn

2
)
)

. The second part

of the problem consists of the computation of all chains in any of the previous closure
systems. Therefore, in each case, we have to compute the cost of the implementation of
the algorithm and, next, to analyze the average complexity or, at least, an estimation of
it.

Relatively to a given pairing W on Ω, we now consider three set operators

φW, KW, NW : P(Ω) −→ P(Ω),

defined by:

φW(A) := MW(Ac), KW(A) := (φW(A))c and NW(A) := MW(KW(A)),

and the poset E(W) := (E(W),⊆), where

E(W) := {A ∈ P(Ω) : A = NW(A)} = Fix(NW)

The members of the latter set system will be called normally extensible subsets of the
pairing W and will be relevant in the proof of Theorem 22. In the next result, we shall
describe some basic properties of the poset E(W) and of the set operator KW which we
shall use in the last theorem of the paper. In what follows, we say that a pairing W on Ω
is regular if MW(∅) = ∅.

Proposition 11. Let A,B,C ∈ P(Ω) and W be a pairing on Ω. Then:
(i) KW is a kernel operator on Ω and KW(A) = max{Z ⊆ A : Ω \ Z ∈M(W)};
(ii) if C is the complement of some maximum partitioner, then MW(C) ∈ E(W);
(iii) if A and Ac both belong to M(W) then A ∈ E(W);
Assume now that W is a regular pairing on Ω. Then:
(iv) E(W) is a complete lattice with 0̂E(W) = ∅ and 1̂E(W) = Ω;
(v) φW(E(W)) ⊆ E(W);
(vi) if A ⊆ B, then φW(A) >W φW(B);
(vii) φW is an involutory map on E(W) such that φW(A) ∧ A = ∅ and φW(A) ∨ A = Ω.

Proof. (i): The set operator KW is clearly intensive and isotone. Furthermore, the idem-
potence of KW follows by the equalities:

KW(KW(A)) = Ω\MW(Ω\KW(A)) = Ω\MW(Ω\(Ω\MW(Ac))) = Ω\MW(Ac) = KW(A).
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To prove the second part of the claim, take Z ⊆ A such that Zc ∈ M(W) and assume
that Z = Ω \ MW(B) for some B ∈ P(Ω). We claim that Z ⊆ KW(A). In fact, the
condition Z = Ω \MW(B) ⊆ A implies that MW(B) ⊇ Ac, i.e. MW(B) ⊇ MW(Ac), so
Z ⊆ Ω \MW(Ac) = KW(A).
(ii): Let C = Ω \ MW(B) for some B ∈ P(Ω). By the above part (i), we get C ⊆
KW(MW(C)) ⊆MW(C), whence

NW(MW(C)) = MW(KW(MW(C))) = MW(C),

i.e. MW(C) ∈ E(W).
(iii): As A,Ac ∈ M(W), we get KW(A) = (MW(Ac))c = A, whence NW(A) = A, i.e.
A ∈ E(W).
(iv): As W is regular, then ∅,Ω ∈ E(W). Let now L ⊆ E(W). Using the above part (ii)
and the properties of KW and MW, it may be easily shown that∧

L = MW(KW(
⋂

L)) = NW(
⋂

L) and
∨

L = MW(
⋃
{KW(B) : B ∈ L}). (23)

(v): Let A ∈ E(W). Since A ∈M(W), then, by part (ii), we get MW(Ac) ∈ E(W).
(vi): The map φW is order-reversing, in fact if A ⊆ B, then Ω\B ⊆ Ω\A, i.e. MW(Ω\B) ⊆
MW(Ω \ A) or, in terms of union additive relations, MW(Ω \ A) >W MW(Ω \ B), i.e.
φW(A) >W φW(B).
(vii): Let A ∈ E(W). The fact that φW is an involutory map follows by the equalities
φW(φW(A)) = φW(MW(Ac)) = MW(Ω \MW(Ac)) = NW(A) = A.
Let us prove that φW(A) ∧ A = ∅. Using the first relation in (23), we get

φW(A) ∧ A = NW(φW(A) ∩ A) = NW(MW(Ac) ∩ A).

We now prove that the empty set is the only subset contained in MW(Ac)∩A and whose
complement is a maximum partitioner. As a matter of fact, let Z ⊆ MW(Ac) ∩ A, then
Z ⊆ A and, in particular, in view of part (i), we get Z ⊆ KW(A) = Ω \MW(Ac). But
it happens if and only if Z = ∅. Thus, KW(MW(Ac) ∩ A) = ∅ and, since MW(∅) = ∅, we
conclude that φW(A) ∧ A = MW(∅) = ∅.
On the other hand, let us compute φW(A) ∨A. Using the second relation in (23), we get

φW(A) ∨ A = MW(KW(φW(A)) ∪KW(A)) ⊇

⊇MW(KW(φW(A))) ∪MW(KW(A)) = NW(φW(A)) ∪NW(A).

Now, as A, φW(A) ∈ E(W), we conclude that

φW(A) ∨ A ⊇ φW(A) ∪ A ⊇ Ω.

This shows that φW(A) ∨ A = Ω and the proof concludes here.

We close this section with another consequence of Theorem 5. We shall see that given
a complement-closed set system on Ω, we can find a regular pairing whose maximum
partitioners agree with the fixed points of IntF.
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Proposition 12. Let F be a complement-closed set system on Ω. Then there exists a
regular pairing W on Ω such that:

• M(W) = Fix(IntF);

• F ⊆M(W);

• KW(A) = A for each A ∈ F.

Proof. Let F be a complement-closed set system on Ω. In view of Proposition 2, we
have that the set operator IntF is a closure operator on Ω and, hence, Fix(IntF) is a
closure system on Ω by Theorem 1. Now, Theorem 5 ensures the existence of a pairing
W on Ω such that M(W) agrees with the family of all the fixed subsets of IntF, i.e.
M(W) = Fix(IntF).
At this point, take A ∈ F. In view of the definition of IntF, it results that A = IntF(A) =
MW(A), i.e. F ⊆ M(W). In particular, ∅ = IntF(∅) = MW(∅), whence the regularity of
the pairing W.
Finally, we must show that KW(A) = A. To this regard, notice first that Ac ∈ F since F is
a complement-closed family. Thus, MW(Ac) = IntF(Ac) = Ac and (Ac)c = A. Therefore
KW(A) = (MW(Ac))c = A, as wanted.

4 Union Additive Relations and a Related Lattice Representa-
tion Theorem

In this section we will introduce the notion of a union additive relation on an arbitrary
set Ω, namely a preorder relation > on P(Ω) satisfying property (4). We will see that a
pairing induces a union additive relation and that, in general, any union additive relation
on Ω agrees with the preorder >W induced by some pairing W on Ω. We will obtain
such a result as a consequence of Theorem 5. Another consequence of the aforementioned
theorem consists of the possibility of representing any finite lattice L as the maximum
partitioner lattice of some pairing WL on a specific finite ground set ΩL.
First of all, we introduce the following basic notion.

Definition 13. We call a binary relation > on P(Ω) such that:

(D1) if X ⊇ Y , then X > Y ;

(D2) if X > Yi ∀i ∈ I, then X >
⋃
Yi;

(D3) if X > Y and Y > Z, then X > Z.

a union additive relation on Ω.

Theorem 3 enables us to find a union additive relation in the context of pairings. As
a matter of fact, we can set:

A >W A′ :⇐⇒ MW(A) ⊇MW(A′).
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and it may be easily verified that >W is a union additive relation on Ω, which we call
the W-union additive relation on Ω. Moreover, we may interpret the relation ≈W as the
equivalence relation induced by the preorder >W, i.e.

A ≈W A′ ⇐⇒ A >W A′ and A′ >W A. (24)

Consequently, if we consider the preordered set H(W) := (P(Ω),>W), we immediately
obtain the following order isomorphisms.

Proposition 14. We have that H(W)/ ≈W
∼= M(W) ∼= Psym(W).

A consequence of Theorem 5 consists of the possibility to represent any union additive
relation on Ω as the preorder relation >W induced by some pairing on Ω itself.

Theorem 15. Let > be a union additive relation on Ω. Then there exists a pairing W

on Ω such that > coincides with >W.

Proof. Let > be a given union additive relation on Ω. Consider the set operator σ> defined
as follows:

σ>(A) :=
⋃
{B ∈ P(Ω) : A > B}

for each A ∈ P(Ω). It may be easily verified that σ> is a closure operator on Ω. At
this point, Theorem 1 ensures that the set system of fixed points of σ> forms a closure
system S on Ω. Therefore, in view of Theorem 5, there exists a pairing W on Ω such that
M(W) = S and, in particular, by Theorem 1, we also infer that MW agrees with σ>.
Finally, since A >W B if and only if MW(B) ⊆ MW(A) = σ>(A), we must necessarily
have A > B if and only if A >W B.

By means of Theorem 5, in what follows we will be able to show that any finite lattice is
order-isomorphic to the maximum partitioner lattice of some pairing on a specific ground
set, and, moreover, that any union additive relation on Ω can be represented by the
preorder >W induced by some pairing W on Ω. To this regard, we firstly recall some
classical notions of database theory that are used to understand the degree of dependency
of two attribute subsets of a relational database (see [34] for details).

If A, B ∈ P(Ω), we set

ΓW(A,B) := {u ∈ U : [u]A ⊆ [u]B}, (25)

and, if U is finite,

γW(A,B) :=
|ΓW(A,B)|
|U |

. (26)

Some basic properties of the set operator ΓW are described in the next proposition,
whose proof is straightforward.
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Proposition 16. Let A, A′, B, B′ ∈ P(Ω). Then the following hold:
(i) A >W A′ ⇐⇒ πW(A) � πW(A′) ⇐⇒ ΓW(A,A′) = U ⇐⇒ γW(A,A′) = 1;
(ii) If A ⊆ A′ and B ⊆ B′, then

ΓW(A,B) ⊆ ΓW(A′, B) and ΓW(A,B) ⊇ ΓW(A,B′);

(iii) MW(A) = {b ∈ Ω : ΓW(A, {b}) = U}.

At this point, based on a classical representation theorem of lattice theory (see [6]),
we can establish the following pairing representation theorem for finite lattices.

Theorem 17. Let L = (L,6L) be a finite lattice. Then there exist a finite set ΩL and a
pairing W on ΩL such that the lattices L, H(W)/ ≈W and M(W) are order-isomorphic.
Therefore, if x, x′ ∈ L and ηW : L→M(W) is the map that induces such an isomorphism
between L and M(W), the following conditions are equivalent:

• x 6L x
′;

• ηW(x) ⊆∗ ηW(x′);

• πW(ηW(x)) � πW(ηW(x′));

• γW(ηW(x), ηW(x′)) = 1.

Proof. Before tackling the proof, let us recall that any finite lattice L is order-isomorphic
to a closure lattice induced by a specific closure system on the set ΩL := J(L), where J(L)
is the set of all join-irreducible elements of L (see [6]). Such a closure system consists of
the set system of the fixed points of the closure operator φ : P(ΩL) → P(ΩL) defined as
follows:

φ(A) := {x ∈ ΩL : x 6
∨

A}.

Therefore, we set ΩL := J(L). We also denote by SL the resulting closure system and by η :
L→ SL the order isomorphism between the dual lattice L∗ and the lattice (SL,⊆). Then,
by Theorem 5, we can construct a pairing W on ΩL such that M(W) = SL. Therefore
ηW := η is an order isomorphism between L and M(W), and the wanted equivalences
become a direct consequence of part (i) of Proposition 16.

The equivalences established in Theorem 17 has some theoretical consequences: it says
us that the study of union additive relations between subsets of finite sets is equivalent to
the study of order relations on finite lattices. Therefore in the next part of this work we
try to investigate the basic theoretical properties of the notion of union additive relations
between subsets of finite sets and the direct interrelation of this notion with other classical
notions of lattice theory.

We call pairing characteristic of the lattice L, denoted by pc(L), the minimum allow-
able cardinality of the set ΩL obtained from the thesis of Theorem 17.

Let N := pc(L). We denote by PL(L) the collection of all pairings on ΩN such that
M(W) ∼= L. Now, if W ∈ PL(L), with the same notations introduced in the statement
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of Theorem 17, we can consider the inverse order isomorphism η−1
W : M(W)→ L and the

closure map MW : P(ΩN)→M(W), so that we obtain the surjective map

ξW := η−1
W ◦MW : P(ΩN)→ L.

Let us note that the map ξW is not canonically determined. In fact, it depends from the
order isomorphism ηW, which in turn depends on the not uniquely determined closure
system S given in the proof of Theorem 17. However, by means of the map ξW we can
formally describe the following equivalences.

Theorem 18. Let L = (L,6L) be a finite lattice, N = pc(L) and X, Y ∈ P(ΩN). Then
the following conditions are equivalent:
(i) ξW(X) 6L ξW(Y );
(ii) for any W ∈ PL(L) we have γW(X, Y ) = 1;
(iii) there exists W ∈ PL(L) such that γW(X, Y ) = 1.

Proof. (i) =⇒ (ii): Let x := ξW(X) 6L y := ξW(Y ). Let W′ ∈ PL(L) and ηW′ : L →
M(W′). In view of the equivalences given in Theorem 17, we get ηW′(x) ⊆∗ ηW′(y), i.e.

πW′(ηW′(x)) � πW′(ηW′(x′)) ⇐⇒ γW′(ηW′(x), ηW′(x′)) = 1

and the claim has been shown.
(ii) =⇒ (iii): Obvious.
(iii) =⇒ (i): In view of the equivalences given in Theorem 17 we have that γW(X, Y ) =
γW(MW(X),MW(Y )) = 1 if and only if πW(X) � πW(Y ) or, equivalently, MW(Y ) ⊆
MW(X), that is equivalent to η−1

W (MW(X)) � η−1
W (MW(Y )), i.e. ξW(X) 6L ξW(Y ).

Example 19. Let us consider the lattice M3 (whose definition has been provided in Sec-
tion 2, page 4) and let a1, a2, a3 be the elements of the lattice that are different from 0̂ and
1̂. Then, M3 is order-isomorphic to the lattice S = (S,⊆) induced by the closure system
S on Ω3 := {a1, a2, a3}, where S := {∅, {a1}, {a2}, {a3},Ω3}. By means of Theorem 5, we
can represent the aforementioned closure system S through a pairing, that we denote by
W(M3). In order to build such a pairing and using the notations of Theorem 5, we get
m0 = 0, m1 = 3, m2 = 6 and m3 = 9. Set U := {u1 := 1, . . . , u9 := 9}.
Moreover, we also obtain ζ1,a1 = 2, ζ2,a1 = 3, ζ3,a1 = 3, ζ1,a2 = 3, ζ2,a2 = 2, ζ3,a2 = 3,
ζ1,a3 = 3, ζ2,a3 = 3 and ζ3,a3 = 2. So, we represent the pairing W(M3) as a table in Figure
8.

A quick computation of the symmetry partitions gives the following result:

πW(∅) = U ; πW({a1}) = u1u2|u3|u4|u5|u6|u7|u8|u9;

πW({a2}) = u1|u2|u3|u4u5|u6|u7|u8|u9; πW({a3}) = u1|u2|u3|u4|u5|u6|u7u8|u9;

πW(Ω3) = u1|u2|u3|u4|u5|u6|u7|u8|u9.

Moreover, let us provide the table whose entries are the values of γW(X, Y ) for both
X, Y varying over P(Ω3).
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a1 a2 a3

u1 1 1 1
u2 1 2 2
u3 2 3 3
u4 3 4 4
u5 4 4 5
u6 5 5 6
u7 6 6 7
u8 7 7 7
u9 8 8 8

Figure 8: The pairing W(M3).

∅ {a1} {a2} {a3} {a1, a2} {a1, a3} {a2, a3} Ω3

∅ 1 0 0 0 0 0 0 0
{a1} 1 1 7/9 7/9 7/9 7/9 7/9 7/9
{a2} 1 7/9 1 7/9 7/9 7/9 7/9 7/9
{a3} 1 7/9 7/9 1 7/9 7/9 7/9 7/9
{a1, a2} 1 1 1 1 1 1 1 1
{a1, a3} 1 1 1 1 1 1 1 1
{a2, a3} 1 1 1 1 1 1 1 1
Ω3 1 1 1 1 1 1 1 1

Remark 20. Let us consider the following equivalence relation on the family of all pairings
on Ω: two pairings W and W′ are equivalent whenever their symmetry partition lattices
are order-isomorphic. Hence, Theorem 17 ensures that any finite lattice is the symmetry
partition lattice of a pairing. In particular, any finite lattice identifies an equivalence class
of pairings. Let us note that we have a constructive way in order to associate with a finite
lattice a pairing on a suitable set Ω. At this point, by means of Theorem 5, we represent
(again in a constructive way) the closure system as a pairing on Ω. However, for pairings,
we have defined the set ΓW(A,B) and its numerical counterpart γW(A,B) in the finite
case. Hence, through the equivalences given in Theorem 17, it is possible to see that,
whenever we take a finite lattice L with N = pc(L) and W ∈ PL(L), then γW refines the
partial order 6L of the lattice. In fact, let x, y ∈ L be two elements of the lattice. Then
it results that x 6L y if and only if γW(ηW(x), ηW(y)) = 1, hence we can always compute
γW(ηW(x), ηW(y)) even if x and y are non-comparable. In other terms, the function γW
provides extra numerical informations for partial dependencies of subsets, corresponding
to two non-comparable nodes of the lattice L and that are not explicit in the lattice itself.
Note that each node corresponds to an equivalence class with respect to the equivalence
relation ≈W and the value of γW corresponding to a pair of subsets belonging to the same
equivalence class is clearly 1.
In general, given a pairing W on a finite set Ω with n elements, it is always possible to
put within a 2n × 2n table T (W) the values γW(X, Y ). This table is a source of useful
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informations about the properties of the pairing. Indeed, the complete knowledge of
all the entries of the table allows us to reconstruct the closure system M(W), so T (W)
represents a numerical completion of M(W).

5 Pairing Representation of Finite Complemented Involutory
Lattices

In this section, we prove a second representation theorem for particular types of lattices.
To be more detailed, we will consider finite lattices endowed with an order-reversing
involutory map ψ : L → L exchanging 0̂L and 1̂L and such that ψ(α) ∧ α = 0̂L and
ψ(α) ∨ α = 1̂L and, next, we show that they are represented by pairings W on some
finite ground set ΩL,ψ so that the poset of the normally extensible subsets of W is order-
isomorphic to the starting lattice L.
In Theorem 21 we shall see that starting from a finite complemented involutory lattice, a
finite set Ωn, a complement-closed family on Ωn and an order-preserving ψ-complementary
map f : L→ (F,⊆), we may construct a new finite set, a complement-closed family on it
and an order-preserving ψ-complementary map from L to such a family with some specific
properties of preservation of pairs of elements of the lattice.

Theorem 21. Let (L, ψ) be a finite complemented involutory lattice, Ωn = {x1, . . . , xn}
a fixed finite set, F a complement-closed family on Ωn and f : L → (F,⊆) an order-
preserving ψ-complementary map. Then, for any α, β ∈ L, there exist:

• a finite set Ω,

• a complement-closed family G on Ω,

• a map g : L → (G,⊆) which is order-preserving, ψ-complementary and {α, β}-
preserving,

such that:

(A) if λ, µ ∈ L and f is {λ, µ}-preserving, then g is also {λ, µ}-preserving;

(B) G = Im(g).

Proof. Let us firstly assume that f is {α, β}-preserving. In such a case, we take Ω = Ωn

and g = f . Moreover, since the image of a finite complemented involutory lattice by an
order-preserving ψ-complementary map is a complement-closed family, we can also take
G = Im(g). Thus, the claim holds when f is {α, β}-preserving.
Therefore, we may assume that f is not {α, β}-preserving. Then, five possible cases may
occur:
(C1) α <L β and f(α) = f(β);
(C2) β <L α and f(α) = f(β);
(C3) α‖β and f(α) = f(β);
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(C4) α‖β and f(α) $ f(β);
(C5) α‖β and f(β) $ f(α).
We now examine separately the aforementioned cases.
(C1): Let us first extend the set Ωn by taking a new formal element xn+1 /∈ Ωn, and we
set

Ωn+1 := Ωn ∪ {xn+1}, h0 := f, β0 := β

Then we define a map h1 : L→ P(Ωn+1) as follows:

h1(γ) :=

{
h0(γ) ∪ {xn+1} if β 6L γ
h0(γ) otherwise,

(27)

for any γ ∈ L.
First of all, we observe that h1 is an order-preserving map since the starting map h0 is
order-preserving. Moreover, we get h1(α) $ h1(β0).

Let us prove now that, whenever h0 is {λ, µ}-preserving for some λ, µ ∈ L, then also
h1 satisfies the same property. In other terms, we must prove that the restriction of h1 to
{λ, µ} is an order-isomorphism. First of all, let us note that the condition h1(λ) = h1(µ)
implies f(λ) = f(µ), whence λ = µ. At this point, we shall show that the condition λ‖µ
implies h1(λ)‖h1(µ). One of the following situations may occur:

• β0 6L λ and β0 6L µ. In such a case, we get h1(λ) = h0(λ) ∪ {xn+1} and h1(µ) =
h0(µ) ∪ {xn+1}, so h1(λ) and h1(µ) are non-comparable since h0(λ) and h0(µ) are
also non-comparable.

• β0 66L λ and β0 66L µ. In such a case, similarly to the previous situation, the non-
comparability of h0(λ) and h0(µ) implies that h1(λ) and h1(µ) are non-comparable
since h1(λ) = h0(λ) and h1(µ) = h0(µ).

• β0 6L λ and β0 66L µ (or β0 66L λ and β0 6L µ). Without loss of generality, assume
that β0 6L λ and β0 66L µ. Then h1(λ) = h0(λ) ∪ {xn+1} and h1(µ) = h0(µ). Also
in this case, since h0(λ) and h0(µ) are non-comparable, also h1(λ) and h1(µ) are.
This proves that h1 is {λ, µ}-preserving.

Now, we prove that h1 is a ψ-complementary map. As α <L β0, we must have that
β0 6= 0̂L and that β0 66L γ or β0 66L ψ(γ). To prove that h1 is a ψ-complementary map,
we shall demonstrate that:
(i) h1(γ) = Ωn+1 \ h1(ψ(γ)) if either β0 6L γ or β0 6L ψ(γ);
(ii) h1(γ) $ Ωn+1 \ h1(ψ(γ)) if β0 66L γ and β0 66L ψ(γ).
To show (i), assume firstly that β0 6L γ. Then β0 66L ψ(γ) and

h1(γ) = h0(γ) ∪ {xn+1} = (Ωn \ h0(ψ(γ))) ∪ {xn+1} = Ωn+1 \ h1(ψ(γ)).

Similarly, assume that β0 6L ψ(γ). Then β0 66L γ and

h1(γ) = h0(γ) = Ωn \ h0(ψ(γ)) = Ωn+1 \ h1(ψ(γ)).
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In case (ii), if we take γ such that β0 66L γ and β0 66L ψ(γ), then

h1(γ) = h0(γ) = Ωn \ h0(ψ(γ)) $ Ωn+1 \ h1(ψ(γ)).

Therefore, set
Γ1 := {γ ∈ L : β0 66L γ, β0 66L ψ(γ)}.

If Γ1 = ∅, we set g := h1, Ω := Ωn+1 and G := Im(g). Then, G is a complement-closed set
system on Ω. Moreover, g(α) $ g(β), i.e. g is {α, β}-preserving. Hence the set Ω, the set
system G and the map g satisfy the conditions of the statement and the proof concludes
here.
Otherwise, if Γ1 6= ∅, we fix an arbitrary element β1 ∈ Γ1 and we consider the map
γ2 : L→ P(Ωn+1) given by

h2(γ) :=

{
h1(γ) ∪ {xn+1} if β1 6L γ
h1(γ) otherwise,

(28)

for any γ ∈ L.
Then, reasoning as for the map h1, it may be easily proved that h2 is order-preserving and
that if h1 is {λ, µ}-preserving, then also h2 is {λ, µ}-preserving. Moreover h2(α) $ h2(β).
Set

Γ2 := {γ ∈ Γ1 : β1 66L γ, β1 66L ψ(γ)}.
As before, note that if γ /∈ Γ2, then

h2(γ) = Ωn+1 \ h2(ψ(γ));

while if γ ∈ Γ2, then we get

h2(γ) $ Ωn+1 \ h2(ψ(γ)).

Furthermore, note that Γ2 $ Γ1 because β1 ∈ Γ1 \ Γ2. At this point, we can reiterate the
previous construction in order to obtain a sequence of functions hi and of subsets Γi of L
such that each hi is order-preserving and {α, β}-preserving and Γi $ Γi−1 for any index
i > 2.
As L is finite, there must be some index k, and hence a subset Γk which must be empty.
In other terms, for each γ ∈ L, it must be

hk(γ) = Ωn+1 \ hk(ψ(γ)).

At this point, we get the thesis taking g := hk, Ω := Ωn+1 and G := Im(g) ⊆ P(Ω).
(C2): The proof is the same as that given in (C1), after reversing the role of α and β.
(C3): Also in this case, we take Ωn+1, h0, β0 and h1 as in the case (C1). Then, as α‖β, we
easily prove as in (C1) that h1 is a ψ-complementary map. Therefore, also in the present
case we can define the sequence of subsets Γi and the sequence of functions hi as in (C1).
Again, let k be the minimum integer for which Γk = ∅, so that

hk(γ) = Ωn+1 \ hk(ψ(γ)).
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Then, in this case we obtain hk(α) $ hk(β). Thus, hk is not {α, β}-preserving. Consider
an element xn+2 /∈ Ωn+1 and set Ωn+2 := Ωn+1 ∪ {xn+2}. We set h0 := hk, α0 := α and
consider the map h1 : L→ P(Ωn+2) given by

h1(γ) :=

{
h0(γ) ∪ {xn+2} if α0 6L γ

h0(γ) otherwise,
(29)

for any γ ∈ L.
Note that the map h1 is {α, β}-preserving. Furthermore, it results that α0 6= 0̂L since
α0‖β. Moreover, since ψ(δ) ∧ δ = 0̂L for any δ ∈ L, we get α 66L γ or α 66L ψ(γ) for any
γ ∈ L.
At this point, we claim that if α0 6L γ or α0 6L ψ(γ), then

h1(γ) = Ωn+2 \ h1(ψ(γ)).

To this regard, let α0 6L γ. Then α0 66L ψ(γ) and

h1(γ) =h0(γ) ∪ {xn+2} = hk(γ) ∪ {xn+2} = (Ωn+1 \ hk(ψ(γ))) ∪ {xn+2} =

= Ωn+2 \ hk(ψ(γ)) = Ωn+2 \ h0(ψ(γ)) = Ωn+2 \ h1(ψ(γ)),
(30)

as hk(γ) = Ωn+1 \ hk(ψ(γ)) for each γ ∈ L. Similarly, if α0 6L ψ(γ)) and α0 66L γ, then

h1(γ) = h0(γ) = hk(γ) = Ωn+1 \ hk(ψ(γ)) =

= Ωn+1 \ h0(ψ(γ)) = Ωn+2 \ h1(ψ(γ)).
(31)

Finally, assume that α0 66L γ and α0 66L ψ(γ). In such a case, we get

h1(γ) =h0(γ) = hk(γ) = Ωn+1 \ hk(ψ(γ)) =

= Ωn+1 \ h0(ψ(γ)) $ Ωn+2 \ h1(ψ(γ))
(32)

At this point, set
Γ1 := {γ ∈ L : α0 66L γ, α0 66L ψ(γ)}.

If Γ1 = ∅, just set g := h1, Ω := Ωn+2 and G := Im(g). Clearly, G is complement-closed
on Ω and the theorem is proved.
Otherwise, let α1 ∈ Γ1 and set

h2(γ) :=

{
h1(γ) ∪ {xn+2} if α1 6L γ

h1(γ) otherwise,
(33)

for any γ ∈ L. The map h2 is clearly order-preserving as h1 is and it is also {α, β}-
preserving. Set

Γ2 := {γ ∈ Γ : α1 66L γ, α1 66L ψ(γ)}.
Note that if γ /∈ Γ2, then it may be easily shown that

h2(γ) = Ωn+2 \ h(ψ(γ)),
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while if γ ∈ Γ2, we have that

h2(γ) $ Ωn+2 \ h(ψ(γ)).

Furthermore, notice that Γ2 $ Γ1 since α1 ∈ Γ1 \ Γ2. Iterating the above construction,
we obtain a sequence of maps hi and of subsets Γi of L such that each hi is an order-
preserving map and also an {α, β}-preserving map and Γi $ Γi−1 for each index i > 2.
As L is finite, we will find an index s for which Γs = ∅. We get the thesis taking g := hs,
Ω := Ωn+2 and G = Im(g) ⊆ P(Ω).
(C4): Just set h0 := f and repeat the construction given in (C3).
(C5): Taking both the cases (C3) and (C4), we showed that the thesis follows when
α‖β and f(α) ⊆ f(β). Therefore, if α‖β and f(β) $ f(α), we may proceed as in (C4)
reversing the role α of β.

In the next result, we prove that for any finite complemented involutory lattice there
exists a pairing on a certain finite set ΩL,ψ whose normally extensible family is isomorphic
to L itself.

Theorem 22. Let (L, ψ) be a finite complemented involutory lattice. Then there exist a
finite set ΩL,ψ and a regular pairing W on ΩL,ψ such that E(W) is order-isomorphic to L.

Proof. The idea of the proof is the following: first of all, we want to show the existence
of a finite set ΩL,ψ and of a complement-closed family F on ΩL,ψ such that L is order-
isomorphic to (F,⊆); secondly, we want to show the existence of some regular pairing W

on ΩL,ψ such that F = E(W). To this regard, we will divide our proof in two steps:
(i): We shall construct a finite set ΩL,ψ and a complement-closed family F on ΩL,ψ such
that an isomorphism f : L→ (F,⊆) exists. Firstly, set Λ0 := ∅, F0 := {∅} and f0 : L→ F0

is the constant map on L such that f(γ) = ∅ for each γ ∈ L. Note that F0 is a complement-
closed family on Λ0 and that f0 is trivially an order-preserving map from L onto (F0,⊆).
If |L| = 1, the thesis has been proved just taking ΩL,ψ := Λ0 and G := {∅} and g := f0 as
our isomorphism. Therefore, in what follows, we may assume that l := |L| > 2. Let us
consider the following subset of pairs of L:

H0 := {(α, β) ∈ L2 : α 6= β, f0 is not {α, β}-preserving}.

Clearly, the number of elements of H0 is finite and equals
(
l
2

)
. Fix now (α0, β0) ∈ H0. In

view of Theorem 21 there exist a finite set Ω, a complement-closed family G on Ω and an
order-preserving, ψ-complementary and {α0, β0}-preserving map g : L→ (G,⊆).
Set Λ1 := Ω, F1 := G and f1 := g and define the following subset of pairs of L:

H1 := {(α, β) ∈ H0 : α 6= β, f1 is not {α, β}-preserving}.

Notice that H1 $ H0 as (α0, β0) ∈ H0 \H1. At this point, fix (α1, β1) ∈ H1. In view of
Theorem 21 there exist a finite set Ω, a complement-closed family G on Ω and an order-
preserving, ψ-complementary and {α1, β1}-preserving map g : L→ (G,⊆).
Set Λ2 := Ω, F2 := G and f2 := g and define the following subset of pairs of L:

H2 := {(α, β) ∈ H1 : α 6= β, f2 is not {α, β}-preserving}.
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Notice that H2 $ H1 as (α1, β2) ∈ H2 \H1. Furthermore, let us notice that if (λ, µ) ∈
L2 \H2 and λ 6= µ, then the map f1 is {λ, µ}-preserving and Theorem 21 ensures that f2

is also {λ, µ}-preserving.
Therefore, we may iterate the above construction to obtain a strictly decreasing sequence

H0 % H1 % · · · % Hi % . . .

of subsets of L2 which, in view of the finiteness of L2, must terminate with Hk = ∅ for
some integer k. Take ΩL,ψ := Λk, F := Fk and f := fk. Clearly, in view of Theorem 21,
it follows that f is order-preserving and that F = Im(f). Moreover, f is both injective
and surjective, since it is {α, β}-preserving for each α, β ∈ L.
The fact that f is an {α, β}-preserving map also ensures that f−1 is also order-preserving,
i.e. f is an isomorphism between the posets L and (F,⊆). Thus, the isomorphism
f : L→ (F,⊆) induces on (F,⊆) a natural lattice structure.
(ii): At this point, we want to show the existence of a regular pairing W on ΩL,ψ such
that F = E(W).
Let us consider the set operator IntF : P(ΩL,ψ) → P(ΩL,ψ). In view of Proposition 2, it
results that IntF is a closure operator such that IntF(∅) = ∅ and, hence, Proposition 12
ensures the existence of a regular pairing W on ΩL,ψ such that M(W) = Fix(IntF).
Furthermore, it results that IntF = MW in view of Theorem 1. We must prove that
F = E(W). We shall firstly show the inclusion F ⊆ E(W). To this regard fix Z ∈ F.
Proposition 12 ensures that KW(Z) = Z, so we get

Z = NW(Z),

i.e. Z ∈ E(W).
On the other hand, we shall demonstrate that E(W) ⊆ F. So, let Z ∈ E(W). Clearly,
Z ∈M(W). Now, since F is a complete lattice, it follows that

Z∗ :=
∧
{Y ∈ F : Z ⊆ Y } ∈ F. (34)

Furthermore, we have that

Z∗ ⊆
⋂
{Y ∈ F : Z ⊆ Y } = IntF(Z) = MW(Z) = Z.

We claim that Z = Z∗. In view of Proposition 12, we easily note that (Z∗)c ∈ M(W).
Furthermore, let A ⊆ Z be such that Ac ∈M(W). We claim that

A =
⋃
{Y ∈ F : Y ⊆ A}. (35)

To this regard, just notice that Ac = MW(Ac) = IntF(Ac) =
⋂
{Y ∈ F : Ac ⊆ Y },

whence, passing to the complements, we infer the validity of (35), as wanted.
Clearly, in view of (34), we easily deduce that Y ⊆ Z∗ for each subset Y ∈ F which is
also contained in A. In particular, this implies that A ⊆ Z∗. In other terms, we proved
that Z∗ is the greatest subset of Z whose complement is a maximum partitioner. So,
KW(Z) = Z∗ in view of (i) of Proposition 11. As KW(Z) = Z∗ ∈ F, we get the following
identities:

Z = NW(Z) = MW(Z∗) = Z∗

whence we deduce that Z ∈ F. So, F = E(W) and the proof concludes here.
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6 Conclusions

In this paper we continued the investigations of some links between granular computing
(GrC), closure systems and algebraic order theory. To this regard, the notion of pairing
becomes a basic tool of our analysis.

In the perspective of the present work, a pairing W = 〈F,U,Ω,Λ〉 has been considered
as a purely mathematical interpretation of the classical notions of information system
[28] and relational data table [34]. We used the set partitions induced by the map F :
U×Ω −→ Λ in order to define a specific closure system M(W) (whose members are called
maximum partitioners), and a related closure operator MW on the set Ω. By means of
such an operator, one can describe the classical functional dependency between attribute
subsets of Ω, when this set is interpreted as an attribute set of some information system.
Now, since several constructions used in database theory have a natural lattice structure
(see [34] for details), it is natural to investigate the links between lattices and the above
closure system induced by pairings. These links may be obtained by means of a binary
relation > between subsets of Ω, which we called union additive relation. Any > can be
represented as a preorder >W induced by some pairing W on the same ground set Ω. This
implies that pairings are concrete models describing the union additive relations. Then,
in this paper we proved three main representation results.

The first of such results is Theorem 5. In this theorem we showed that any closure
system S on the set Ω can be described as the family of all maximum partitioners M(W)
of some pairing W on Ω. The proof given in Theorem 5 is constructive, and by means of
it we can explicitly provide a pairing W on Ω such that M(W) = S.

The second representation result is Theorem 17, which concerns finite lattices and
that is proved by means of Theorem 5. In such a theorem we showed that any finite
lattice L coincides with the maximum partitioner lattice of some pairing on the set ΩL of
all join-irreducible elements of L. As a direct consequence, we see that the partial order
of any finite lattice can be refined by means of a numerical map γW associated with the
closure system M(W). In fact, by means of the map γW we can also establish a partial
dependency level between non-comparable nodes of the lattice.

Eventually, in Section 5 we studied a specific class of finite lattices, which we called
complemented involutory lattices, i.e. lattices L = (L,6L) endowed with an order-
reversing involutory map ψ : L → L exchanging 0̂L and 1̂L and such that ψ(α) ∧ α = 0̂L
and ψ(α) ∨ α = 1̂L. Also for such types of lattices we provided a representation result in
terms of pairings, which is Theorem 22. In this theorem we found a finite set ΩL,ψ and a
pairing W on ΩL,ψ such that the poset induced by the set system E(W) = Fix(MW ◦KW)
(where KW is the set operator defined by KW(A) := Ω \ MW(Ac)) is order-isomorphic
to L.

As a future research perspective, we can start from the observation that there is not a
uniquely determined way to associate a pairing with a given closure system S. Therefore
one could study the relations between all pairings W on Ω for which M(W) = S, in terms
of their corresponding maps γP. Closely related to the previous question is the problem
of determing a sort of canonical pairing associated with the lattice L.
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By the way, we think that the aforementioned theorems represent a useful starting
point to frame in an unifying perspective the abstract analysis of lattices with motivations
related to the functional dependency in database theory.
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