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Abstract

Let G be a graph on the vertex set V . A vertex subset W ⊆ V is a cover of G if
V \W is an independent set of G, and W is a non-cover of G if W is not a cover of G.
The non-cover complex of G is a simplicial complex on V whose faces are non-covers
of G. Then the non-cover complex of G is the combinatorial Alexander dual of the
independence complex of G. Aharoni asked if the non-cover complex of a graph G
without isolated vertices is (|V (G)|− iγ(G)−1)-collapsible where iγ(G) denotes the
independence domination number of G. Extending a result by the second author,
who verified Aharoni’s question in the affirmative for chordal graphs, we prove that
the answer to the question is yes for all graphs.
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1 Introduction

We consider only finite simple graphs. We use the common notation [n] for {1, . . . , n}.
Given a graph G, let V (G) and E(G) denote the vertex set and edge set, respectively,
of G. An independent set of a graph is a subset of the vertices that induces no edge. A
cover of G is a subset W of the vertices such that V (G) \W is an independent set of G;
in other words, W contains an endpoint of every edge of G. A subset of the vertices that
is not a cover is called a non-cover.

The independence complex I(G) of G is a simplicial complex defined as

I(G) := {I ⊆ V (G) : I is an independent set of G},

and the non-cover complex NC(G) of G, which is a simplicial complex defined as

NC(G) := {W ⊆ V (G) : W is a non-cover of G}.

These two simplicial complexes are highly related, in the sense that the non-cover complex
NC(G) is the (combinatorial) Alexander dual of I(G), where the Alexander dual D(X)
of a simplicial complex X on V is defined as

D(X) := {W ⊆ V : V \W /∈ X}.

Note that the non-cover complex of a graph with no edges is the void complex. If a
graph with an isolated vertex v has an edge, then the non-cover complex is a cone with
apex v, and thus it is contractible. However, it is not easy to determine the non-cover
complex of an arbitrary graph. Our main result connects the collapsibility of the non-
cover complex and the independence domination number of the associated graph. We
now introduce these two parameters.

For a graph G and A,D ⊆ V (G), if each v ∈ A has a neighbor in D, then we say
D dominates A. We use γ(G;A) to denote the minimum size of a set that dominates A.
The independence domination number iγ(G) of G is defined as

iγ(G) := max{γ(G; I) : I ∈ I(G)}.

By convention, we let iγ(G) =∞ when G contains an isolated vertex.

For a finite simplicial complex X, a face σ ∈ X is free if there is a unique facet of
X containing σ. An elementary d-collapse of X is the operation of deleting all faces
containing a free face of size at most d. We say X is d-collapsible if we can obtain the
void complex from X by a finite sequence of elementary d-collapses. The notion of d-
collapsibility of simplicial complexes was introduced in [16] and has been widely studied
ever since [11, 12]. An easy observation is that an elementary d-collapse does not affect
the (non-)vanishing property of homology groups of dimension at least d. See also [7, 8]
for applications regarding Helly-type theorems. In addition, the topological colorful Helly
theorem [8] tells us that given a graph G with a d-collapsible non-cover complex, for
every d+ 1 covers W1, . . . ,Wd+1 of G, there is a cover W = {wi1 , . . . , wik} of G such that
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1 6 i1 < · · · < ik 6 d + 1 and wij ∈ Wij for each j ∈ [k]; the set W is called a rainbow
cover of G for W1, . . . ,Wd+1.

The collapsibility of non-cover complexes of graphs is related to the topological connec-
tivity of independence complexes. For a simplicial complex X, let η(X) be the maximum
integer k such that H̃j(X) = 0 for all −1 6 j 6 k − 2. (We use H̃i(X) to denote the ith
reduced homology group of X over Q.) Here, H̃−1(X) = 0 if and only if X is non-empty.
In [2, 3] (see also [13, 14]), it was shown that large independence domination numbers of
graphs gives high connectivity of the independence complexes of graphs, in particular,
Theorem 1. Research in this direction was motivated by a topological version of Hall’s
marriage theorem [2].

Theorem 1 ([2, 3]). For every graph G, η(I(G)) > iγ(G).

As a consequence of Theorem 1 and the Alexander duality theorem1 (see [6, 15]) we
obtain that for every graph G with at least one edge, the reduced homology group of the
non-cover complex of G satisfies

H̃i(NC(G)) = 0 for all i > |V (G)| − iγ(G)− 1. (1)

Aharoni [1] asked the following question:

Question 2 ([1]). If G is a graph with no isolated vertices, then is it true that the
non-cover complex of G is (|V (G)| − iγ(G)− 1)-collapsible?

The verification of Question 2 for all graphs implies not only the property in (1), but
also the stronger property that for every W ⊆ V (G), the reduced homology group of the
subcomplex NC(G)[W ] induced by W satisfies

H̃i(NC(G)[W ]) = 0 for all i > |V (G)| − iγ(G)− 1.

In [10], the second author of this paper verified Question 2 for chordal graphs. We
extend this result by resolving Question 2 completely in the affirmative.

Theorem 3. For a graph G without isolated vertices, the non-cover complex of G is
(|V (G)| − iγ(G)− 1)-collapsible.

The main tool for our proof of Theorem 3 is minimal exclusion sequences [12] (see
also [11]), which we review in section 2 along with the proof of Theorem 3. We end the
paper by providing some remarks in section 3.

1Alexander duality theorem( [6,15]) Let X be a simplicial complex on the vertex set V . If V /∈ X,
then for all −1 6 i 6 |V | − 2, H̃i(D(X)) ∼= H̃|V |−i−3(X).
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2 Proof

2.1 Minimal exclusion sequences

In this subsection, we review a result in [12], which will play a key role in the proof.
For a simplicial complex X on the vertex set [n], take a linear ordering ≺F : σ1, . . . , σm

of the facets ofX. Given a face σ ofX, we define the minimal exclusion sequence mes≺F
(σ)

as follows. Let i denote the smallest index such that σ ⊆ σi. If i = 1, then mes≺F
(σ) is

the null sequence. If i > 2, then mes≺F
(σ) = (v1, . . . , vi−1) is a finite sequence of length

i− 1 such that v1 = min(σ \ σ1) and for each k ∈ {2, . . . , i− 1},

vk =

{
min({v1, . . . , vk−1} ∩ (σ \ σk)) if {v1, . . . , vk−1} ∩ (σ \ σk) 6= ∅,
min(σ \ σk) otherwise.

Let M≺F
(σ) denote the set of vertices appearing in mes≺F

(σ), and define

d≺F
(X) := max

σ∈X
|M≺F

(σ)|.

The following was proved in [12] (see also [11]).

Theorem 4 ([12]). If ≺F is a linear ordering of the facets of X, then X is d≺F
(X)-

collapsible.

2.2 Proof of Theorem 3

Let G be a graph without isolated vertices. For simplicity, assume V (G) = [n] and denote
S := [n] \S for S ⊆ [n]. Let I be an independent set of G such that γ(G; I) = iγ(G). Let
|I| = i. We may assume that I is a maximal independent set and I := [n] \ [n− i].

Note that every facet of NC(G) is the complement of an edge of G. We define a linear
ordering ≺F of the facets of NC(G) as follows. For two edges a1b1 and a2b2 where ai < bi
for i ∈ [2], let <AL be the anti-lexicographic ordering of <, that is, a1b1 <AL a2b2 if either
(i) b1 < b2 or (ii) b1 = b2 and a1 < a2. For two distinct facets σ and τ of NC(G), we
denote σ ≺F τ if σ <AL τ .

Claim 5. For σ, σ′ ∈ NC(G), if σ ∩ I = σ′ ∩ I and G[σ ∩ I] contains an edge, then
mes≺F

(σ) = mes≺F
(σ′).

Proof. Let j be the length of mes≺F
(σ). Note that an edge between I and I comes after

all the edges of G[I] in the linear ordering <AL. Since G[σ ∩ I] has an edge, for the
(j + 1)th facet σj+1, σj+1 is an edge such that σj+1 ⊆ I. By the definition of ≺F , it also
follows that for every k ∈ [j+ 1], the kth facet σk satisfies σk ⊆ I. Clearly, σ∩ I = σ′ ∩ I.
Thus, we have

σk ∩ σ = σk ∩ σ ∩ I = σk ∩ σ′ ∩ I = σk ∩ σ′.

Thus the length of mes≺F
(σ′) is also j and for every k ∈ [j], the kth entry of mes≺F

(σ) is
equal to that of mes≺F

(σ′).
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Claim 6. For every S ⊆ I,

|S| − |N(S) ∩ I| > iγ(G)− |I|,

where N(S) = {v ∈ V (G) : uv ∈ E(G) for some u ∈ S}.

Proof. Since G has no isolated vertex, for each v ∈ I \ (N(S)∩ I), we can take a neighbor
uv ∈ I \ S of v. Let T = {uv : v ∈ I \ (N(S) ∩ I)}. Note that |T | 6 |I| − |N(S) ∩ I| and
S ∪ T dominates I. Thus we obtain

|S|+ |I| − |N(S) ∩ I| > |S|+ |T | > iγ(G).

By Theorem 4, it is sufficient to show that

|M≺F
(σ)| 6 |V (G)| − iγ(G)− 1 for every σ ∈ NC(G). (2)

For a face σ ∈ NC(G), let β(σ) = |N(σ ∩ I) ∩ σ ∩ I|. Suppose that β(σ) = 0. Then
G[σ ∩ I] must have an edge. Consider σ′ = σ ∩ I. Then σ ∩ I = σ′ ∩ I. By Claim 5,
mes≺F

(σ) = mes≺F
(σ′) and therefore, M≺F

(σ) = M≺F
(σ′). On the other hand, we know

β(σ′) > 1 by the definition of σ′. Thus, it is sufficient to check (2) under the assumption
β(σ) > 1.

We claim that for v ∈ σ ∩ I, if v ∈ M≺F
(σ), then v is a neighbor of some vertex in

σ ∩ I. Let k be the first index such that the kth entry of mes≺F
(σ) is v. Then v ∈ σ \ σk,

which means that v is in the edge σk. Let σk = wv for some vertex w ∈ I. Since w < v
and v is the kth entry of mes≺F

(σ), we obtain w /∈ σ. Thus v is a neighbor of w ∈ σ ∩ I.
Thus,

|M≺F
(σ)| 6 |σ ∩ I|+ |N(σ ∩ I) ∩ (σ ∩ I)|

= |I| − |σ ∩ I|+ |N(σ ∩ I) ∩ I| − β(σ)

6 |I| − iγ(G) + |I| − β(σ)

= |V (G)| − iγ(G)− β(σ),

where the last inequality holds by applying Claim 6 to the set σ ∩ I. As we assumed that
β(σ) > 1, (2) follows, and this concludes the proof of Theorem 3.

3 Concluding remarks

For a graph G and A,W ⊆ V (G), if each w ∈ A has a neighbor in W or w ∈ W , then we
say W weakly dominates A. We use γw(G;A) to denote the minimum size of a set that
weakly dominates A. The weak independence domination number iγw(G) of G is defined
as

iγw(G) := max{γw(G; I) : I is an independent set of G}.

The following is a straightforward application of Theorem 3.
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Corollary 7. For a graph G, the non-cover complex of G is (|V (G)| − iγw(G) − 1)-
collapsible.

Proof. If G has no isolated vertex, then iγw(G) = iγ(G) and we are done by Theorem 3.
Assume G has k isolated vertices for some integer k > 1. Let W be the set of isolated
vertices of G, and let G′ be the graph obtained from G by removing all vertices in W .

Recall that NC(G) is a cone with apex v if v is an isolated vertex of G. Thus NC(G) is
d-collapsible if and only if the subcomplex ofNC(G) induced by V (G)\{v} is d-collapsible.
Moreover, since the subcomplex of NC(G) induced by V (G) \W is equal to NC(G′), it
follows that NC(G) is d-collapsible if and only if NC(G′) is d-collapsible. Thus, it is
sufficient to show NC(G′) is (|V (G)| − iγw(G)− 1)-collapsible. By Theorem 3, NC(G′) is
(|V (G′)| − iγ(G′)− 1)-collapsible. Since |V (G′)| = |V (G)| − k and iγw(G) = iγ(G′) + k,
we obtain |V (G′)| − iγ(G′)− 1 = |V (G)| − iγw(G)− 1.

We finish the section by stating a direct consequence of the topological colorful Helly
theorem [8] from our main result.

Corollary 8. Let G be a graph on n vertices and let W1, . . . ,Wn−iγ(G) ⊆ V (G). Assume
that every set A ⊆ V (G) satisfying the following two conditions is a cover of G:

(i) A ∩Wi 6= ∅ for i ∈ [n− iγ(G)].

(ii) Wj ⊆ A for some j ∈ [n− iγ(G)].

Then there is a coverW of G whereW = {wi1 , . . . , wik} with 1 6 i1 < · · · < ik 6 n−iγ(G)
and wij ∈ Wij for each j ∈ [k].

Dao and Schweig [4] showed a weaker version of Theorem 3 concerning a topological
property known as “Lerayness” via an algebraic approach. Let us briefly introduce their
result. For a simplicial complex X, we say X is d-Leray if H̃i(Y ) = 0 for all induced
subcomplexes Y of X and all integers i > d. Wegner showed that d-collapsiblity implies
d-Lerayness [16], yet the converse is not always true [12]. Hochster [5] proved the relation
between the Leray number2 and the Castelnuovo-Mumford regularity of the Stanley-
Reisner ideal of a simplicial complex. From this relationship and the result in [4], it was
shown that for a graph G, the non-cover complex NC(G) is (|V (G)| − iγ(G)− 1)-Leray.
There is an active line of research in this direction, see [9,17] for more details. By applying
the topological colorful Helly theorem of the Lerayness version, we obtain the following:

Corollary 9. Let G be a graph on n vertices. For every n−iγ(G) coversW1, . . . ,Wn−iγ(G)

of G, there is a coverW of G whereW = {wi1 , . . . , wik} with 1 6 i1 < · · · < ik 6 n−iγ(G)
and wij ∈ Wij for each j ∈ [k].

Note that Corollary 9 is weaker than Corollary 8, since if we have n − iγ(G) covers
for a graph G, then a set A ⊆ V (G) satisfying (ii) is a cover of G. As mentioned in the
introduction, the set W in Corollary 8 and 9 is also known as a rainbow cover of G for
W1, . . . ,Wn−iγ(G). The following example demonstrates that Corollaries 8 and 9 are tight.

2For a simplicial complex X, the Leray number of X is the minimum integer k such that X is k-Leray.
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Example 10. Let C3k be a cycle of length 3k for an integer k > 2. It is easy to verify
iγ(C3k) = k and so |V (C3k)| − iγ(C3k) = 2k. Consider M ⊆ V (C3k) that induces a
matching of size k, so that M is a cover of C3k. Let Wi = M for all i ∈ [2k − 1]. It is
again easy to verify that there is no rainbow cover with respect to W1, . . . ,W2k−1.

Acknowledgements

The authors thank professor Ron Aharoni for introducing the problem to the second
author. They also thank the anonymous reviewer for helpful comments. This work was
done during the 4th Korean Early Career Researcher Workshop in Combinatorics.

References

[1] R. Aharoni. personal communication.

[2] R. Aharoni and P. Haxell. Hall’s theorem for hypergraphs. J. Graph Theory, 35(2):83–
88, 2000.

[3] M. Chudnovsky. Systems of disjoint representatives. M.Sc. Thesis, Technion, Haifa,
2000.

[4] H. Dao and J. Schweig. Projective dimension, graph domination parameters, and
independence complex homology. J. Combin. Theory Ser. A, 120(2):453–469, 2013.

[5] M. Hochster. Cohen-Macaulay rings, combinatorics, and simplicial complexes, in
Ring theory, II. Lecture Notes in Pure and Appl. Math., 26:171–223, 1977.

[6] G. Kalai. Enumeration of Q-acyclic simplicial complexes. Israel J. Math., 45:337–351,
1983.

[7] G. Kalai. Intersection patterns of convex sets. Israel J. Math., 48(2-3):161–174, 1984.

[8] G. Kalai and R. Meshulam. A topological colorful Helly theorem. Adv. Math.,
191(2):305–311, 2005.

[9] G. Kalai and R. Meshulam. Intersections of Leray complexes and regularity of mono-
mial ideals. J. Combin. Theory Ser. A, 113(7):1586–1592, 2006.

[10] J. Kim. Collapsibility of noncover complexes of chordal graphs. arXiv:1904.04519,
Apr 2019.

[11] A. Lew. Collapsibility of simplicial complexes of hypergraphs. Electron. J. Combin.,
26(4):#P4.10, 2019.
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