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Abstract

A finite set of vectors X in the d-dimensional Euclidean space Rd is called an
s-distance set if the set of mutual distances between distinct elements of X has
cardinality exactly s. In this paper we present a combined approach of isomorph-
free exhaustive generation of graphs and Gröbner basis computation to classify the
largest 3-distance sets in R4, the largest 4-distance sets in R3, and the largest 6-
distance sets in R2. We also construct new examples of large s-distance sets in
Rd for d 6 8 and s 6 6, and independently verify several earlier results from the
literature.

Mathematics Subject Classifications: 05C30, 14N10

1 Introduction

Let d > 1 be an integer, and let Rd denote the d-dimensional Euclidean space equipped
with the standard inner product 〈., .〉 and norm induced metric µ(., .). A set of n (distinct)
vectors X := {vi : i ∈ {1, . . . , n}} ⊂ Rd forms an s-distance set, if the set of mutual
distances A(X ) := {µ(vi, vj) : i < j; i, j ∈ {1, . . . , n}} has cardinality exactly s. If the
parameter s is not specified, then, following the terminology of [5], we refer to these
objects as few-distance sets. A few-distance set X is called spherical, if 〈vi, vi〉 = 1
for every i ∈ {1, . . . , n}. The problem of determining the maximum cardinality of X
for given d and s is a long-standing open problem [6], [13], [26]. Currently there is a
renewed interest in few-distance sets due to recent breakthrough results obtained via the
polynomial method [3], [30], and because of emerging engineering applications related to
frame theory [9], [27], [42].

∗This research was supported in part by the Academy of Finland, Grant #289002.
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The case s = 2 is the most studied, where equiangular lines appear as a special case
[18], [41]. In particular, the maximum cardinality of 2-distance sets in Rd have already
been determined for d 6 8, see [10], [24], [28]. For s 6 6 the maximum cardinality of
planar s-distance sets are also known [14], [43]. However, in the case d > 3 and s > 3 the
only known result is that the set of 12 vertices of the regular icosahedron is the unique
maximum 3-distance set in R3, see [39].

We mention two fundamental properties of maximum few-distance sets: first, the
asymptotic growth of their size is well understood. In particular, if X is a maximum
s-distance set in Rd, then we have

|X | 6
(
d+ s

s

)
; and, for d > 2s− 1, |X | >

(
d+ 1

s

)
. (1)

The upper bound is from [2], [5], and the folklore constructive lower bound is mentioned
in, e.g. [7], [31]. Somewhat improved upper bounds apply to the spherical case [31].
Secondly, there is a rather strong number theoretic condition constraining the elements
of A(X ), which holds for sufficiently large d in terms of s, see [25], [34]. One reason
why studying small dimensional maximum few-distance sets is challenging is the lack of
sufficient understanding of A(X ).

In this paper we construct new s-distance sets in Rd for small parameter values, and
prove their optimality in certain cases. This complements recent efforts [3], [31] aimed
to strengthening the upper bounds on |X |. The discovery of a 16-element 3-distance set
in R4 and the proof of its uniqueness and optimality is one of the main contributions of
this paper (Theorem 14). In addition, we settle [14, Conjecture 2] by fully classifying all
planar 6-distance sets (Theorem 16), extending previous partial results on this problem
[43]. We also investigate spherical few-distance sets and discover some connections to
near-resolvable designs, generalized conference matrices, and association schemes (see
Remarks 3.2, 3.3, and 3.4). This correspondence opens up various new avenues to be
explored in search for large few-distance sets in the future.

The proofs are computational, and they involve both classical graph generation tech-
niques [29], [36], and elements of computational commutative algebra [4], in particular:
Gröbner basis calculations. The graph generation is required to gather combinatorial in-
formation on the structure of the putative few-distance set X , while studying its algebraic
properties is necessary to gain information on A(X ) and control the size of the ambient
dimension d. This approach builds upon, and considerably extends the earlier work [28],
where maximum 2-distance sets were studied by means of computers. We remark that
the use of computational commutative algebra recently led to the resolution of several
challenging problems in combinatorial geometry, such as finding a unit-distance planar
embedding of the Heawood graph [16], determining optimal packings in real projective
spaces [15], and showing the existence [17] or nonexistence of certain complex equiangular
tight frames [40].

The outline of this paper is as follows: in Section 2 we describe constructions of few-
distance sets, and establish lower bounds on the size of maximum few-distance sets for
small parameter values, see Table 1. In Section 3 we set up a computational framework
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for generating and classifying spherical few-distance sets in Rd. Then, in Section 4 we
slightly modify this approach in order to deal with general (i.e., not necessarily spherical)
few-distance sets.

In Table 1 we tabulate the exact values of (indicated by an asterisk), and best known
lower bounds on the cardinality of n-element s-distance sets in Rd for d 6 8 and s 6 6,
which reflects the new results obtained in this paper. We will comment on the entries in
the next section.

Table 1: Lower bounds on the maximum cardinality of s-distance sets in Rd

s \ d 2 3 4 5 6 7 8

2 5∗ 6∗ 10∗ 16∗ 27∗ 29∗ 45∗

3 7∗ 12∗ 16∗ 24 40 65 122
4 9∗ 13∗ 25 41 73 127 241
5 12∗ 20 35 66 112 168 252
6 13∗ 21 49 96 140 280 504

2 Constructions of few-distance sets

In this section we describe a computer-aided construction of s-distance sets X ⊂ Rd. The
construction is based on the following ansatz: it is assumed that the set of distances A(X )
is a subset of those within an s-dimensional unit cube, and in addition the vertices of a
(d − 1)-dimensional unit simplex are part of the configuration. The construction, which
is summarized in the next theorem, results in maximum s-distance sets in several small
dimensional cases. For a graph Γ we denote by ω(Γ) the size of its maximum clique, that
is, pairwise adjacent vertices.

Theorem 1. Let d > 1, s > 2 be integers, let A := {
√

2i : i ∈ {1, . . . , s}}, let W :=
{(w1, . . . , wd)

T ∈ Rd : wi ∈ A, i ∈ {1, . . . , d}}, and for w ∈ W let Vw be the set of solution
vectors v := (v1, . . . , vd)

T ∈ Rd to the following system of d equations in d variables:

d∑
i=1

(
(w2

1 − w2
i )/2 + v1

)2
= w2

1 +2v1−1, vj = (w2
1−w2

j )/2+v1, j ∈ {2, . . . , d}. (2)

Let Γ be a graph on
∑

w∈W |Vw| vertices, where two nodes, representing the vectors x, y ∈
∪w∈WVw, are adjacent if and only if µ(x, y) ∈ A. Then for some A(X ) ⊆ A there exists
an |A(X )|-distance set X in Rd with d+ ω(Γ) elements.

Proof. LetBi ∈ Rd denote the canonical basis vector whose ith coordinate equals 1, and its
other coordinates are 0. Note that for distinct i, j ∈ {1, . . . , d}, we have µ(Bi, Bj) =

√
2,

which is the smallest element of A. For a fixed w ∈ W the system of equations (2) is
easily seen to be equivalent to the system of equations µ(v,Bi) = wi, i ∈ {1, . . . , d}. Since
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these equations are quadratic in v1, which uniquely determines vi for i ∈ {2, . . . , d}, the
graph Γ is finite, and a clique in it represents a subset of solution vectors whose mutual
distances belong to A. Since {B1, . . . , Bd} is disjoint from ∪w∈WVw, the result follows.

We use Theorem 1 to establish lower bounds on the maximum cardinality of s-distance
sets in Rd for small parameter values. Solving the quadratic equations (2) is straightfor-
ward as well as setting up the (not necessarily connected) compatibility graph Γ on at
most 2sd vertices. The clique search was carried out with the Cliquer software [33] which
is based on the algorithm described in [35]. In the following Table 2 we display our results
in the form |Γ|/ω(Γ). Entries marked by an asterisk indicate a lower bound on ω(Γ).
Note that the row and column headings shown indicate the input parameters used, both
of which are upper bounds on the parameters of the resulting few-distance sets. In par-
ticular, entries shown in row s correspond to t-distances sets with some t 6 s. For further
bounds on planar few-distance sets, see [14].

Table 2: Compatibility graph sizes and maximum clique sizes

s \ d 2 3 4 5 6 7 8

2 8/2 16/3 32/6 64/11 128/21 256/22 456/37
3 18/2 51/5 130/12 306/19 686/34 1497/58∗

4 30/5 95/10 272/21 738/36 1916/67
5 44/5 163/13 542/31 1650/61 4698/106∗

6 58/5 237/13 876/36 2982/91

For a positive integer i we denote by Si the symmetric group on i elements. For
a vector v = (v1, . . . , vd)

T ∈ Rd, and σ ∈ Sd we use the shorthand notation σ(v) :=
(vσ(1), . . . , vσ(d))

T . We point out the following notable examples.

Example 2. Here we show how a set of 120 nonantipodal vectors of a root system of
type E8 (see [12] for more details) can be extended with two additional vectors to form a
122-element 3-distance set X in R8. Explicitly, we have X := Y ∪ Z ∪W , where

Y := {σ((±1,±1, 0, 0, 0, 0, 0, 0)T ) : σ ∈ S8; first nonzero entry is positive},
Z := {(1/2,±1/2,±1/2,±1/2,±1/2,±1/2,±1/2,±1/2)T : with even negative entries},

W := {(0, 0, 0, 0, 0, 0, 0, 0)T , (2, 0, 0, 0, 0, 0, 0, 0)T},

and A(X ) = {
√

2, 2,
√

6}. Since the elements of Y ∪ Z are on a sphere of radius
√

2,
forming a 3-distance set with the noted distances, the center of this sphere (the origin)
can be further added to this set. Finally, the vector w := (2, 0, 0, 0, 0, 0, 0)T is at distance
2 from the origin, µ(z, w) = 2 for every z ∈ Z, and µ(y, w) =

√
2 or µ(y, w) =

√
6

depending on the first coordinate of y ∈ Y . We have an analogous example in R7, based
on the E7 root system, which we have discovered by an incomplete clique search (see
Table 2).

the electronic journal of combinatorics 27(1) (2020), #P1.23 4



Example 3. Here we show an example of a 49-element 6-distance set X := Y ∪Z in R4,
where Y := {σ((±1/

√
2,±1/

√
2, 0, 0)T ) : σ ∈ S4},

Z := {(±1/2,±1/2,±1/2,±1/2)T} ∪ {σ((±1, 0, 0, 0)T ) : σ ∈ S4} ∪ {(0, 0, 0, 0)T},

with A(X ) = {1,
√

2,
√

3, 2,
√

2±
√

2}. Geometrically, X is formed by the vertices of the
24-cell, its dual, and their common centerpoint.

Remark 2.1. For s = 2, d = 9 the graph Γ, coming from Theorem 1 is on 442 vertices
with ω(Γ) = 36. Therefore it is not possible to immediately improve with this construction
on the cardinality of known 2-distance sets in R9. We also note here that starting from
d > 13 the chosen set of distances {

√
2, 2} might no longer be optimal for 2-distance sets,

and instead A := {
√

2,
√

3} should be preferred [25].

Remark 2.2. There are a number of ways to generalize Theorem 1: not only the set of
distances, and the shape of the constituent vectors are subject to our choice, but also the
relative size of the constituent vectors. In particular, assuming that the (d−1)-simplex is
formed by those vectors whose mutual distance is the largest element of A(X ) could, and
it indeed does, result in different compatibility graphs having different maximum clique
sizes than of those reported in Table 2. We have not yet explored any of these research
directions.

Next we comment on Table 1 by comparing it with Table 2. As a result of our choice for
A(X ) the implied lower bounds on the sizes of few-distance sets coming from Theorem 1
(see Table 2) are arguably weak for d ∈ {2, 3} as we are indeed missing most of the
regular convex polygons as well as the icosahedron and the dodecahedron. These cases
were treated in [13], [14], [43]. On the other hand, for d 6 8 we were able to rediscover
the maximum 2-distance sets reported in [28]. The case d = 3, s = 3 is the regular
icosahedron, whose optimality was shown in [39], and we will see later in Section 4 that
the 3-distance sets in R4 and the 4-distance sets in R3 constructed by Theorem 1 are also
examples of maximum few-distance sets. For d = 4 the set shown in Example 3 is better
than what we have found by our clique search. For d = 5 the reported lower bounds seem
to be new. The set of 240 shortest vectors of a root system of type E8 (see [12]) gives
an example of a spherical 4-distance set in R8, and its various subconfigurations give rise
to lower bounds for d ∈ {6, 7, 8} and s ∈ {3, 4}. In some of these cases our construction,
which not necessarily results in spherical sets, is somewhat better. Finally, for s ∈ {5, 6}
and d large enough the bounds, which are rather weak, follow from configurations formed
by the vertices of variously truncated d-simplices. We mention two of these constructions
below.

Lemma 4. Let d > 4 be an integer, and let a := −1/(d+ 1). Then

X := {σ((a+ 1, a+ 1, a− 1, a, . . . , a)T ) : σ ∈ Sd+1}

with A(X ) = {
√

2, 2,
√

6, 2
√

2,
√

10} forms a (d−1)
(
d+1
2

)
-element 5-distance set embedded

in Rd.
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Proof. Tedious case-by-case analysis. To see that these vectors are embedded in Rd,
observe that they are orthogonal to (1, 1, . . . , 1)T ∈ Rd+1.

Lemma 5. Let d > 5 be an integer, and let a := −2/(d+ 1). Then

X := {σ((a+ 1, a+ 1, a+ 1, a− 1, a, . . . , a)T ) : σ ∈ Sd+1}

with A(X ) = {
√

2, 2,
√

6, 2
√

2,
√

10, 2
√

3} forms a (d − 2)
(
d+1
3

)
-element 6-distance set

embedded in Rd.

Proof. Similar to the proof of Lemma 4.

Since these two constructions result in spherical few-distance sets, it is plausible that
they can be significantly improved. Indeed, equation (1) shows that for d > 15 the
resulting sets are far from being optimal. This concludes the discussion of the numbers
shown in Table 2 and the implied bounds shown in Table 1. In the next sections we set
up a framework to show the optimality of some of the few-distance sets discovered.

3 Spherical few-distance sets and their Gram matrices

In this section we discuss spherical few-distance sets, that is, it is further assumed that
the elements of X ⊂ Rd are of unit length. Given an array of mutual distances, deciding
whether there is a corresponding spherical configuration is essentially a test of positive
semidefiniteness of certain matrices. The following result is well known, see e.g. [32] for an
equivalent characterization. We include this result along with its proof for completeness,
and for future reference.

Lemma 6. Let d > 1, n > 2 be integers. There exists n distinct unit vectors v1, . . . , vn
in Rd with mutual distances µ(vi, vj), i, j ∈ {1, . . . , n}, if and only if the matrix G :=
[1−µ(vi, vj)

2/2]ni,j=1 is positive semidefinite, rankG 6 d, and Gij < 1 for every i < j with
i, j ∈ {1, . . . , n}.

Proof. Assume that we have a set of n distinct unit vectors v1, . . . , vn with pairwise
distances µ(vi, vj), with i, j ∈ {1, . . . , n}. By simple algebra we obtain 1− µ(vi, vj)

2/2 =
〈vi, vj〉 and therefore G is a Gram matrix. It is well known that every Gram matrix
is positive semidefinite, and its rank is the maximum number of linearly independent
vectors amongst vi, i ∈ {1, . . . , n}. Therefore rankG 6 d, as claimed. Since the vectors
are distinct, we have µ(vi, vj) > 0 and consequently Gij < 1 for every i < j with i, j ∈
{1, . . . , n} as claimed.

Conversely, let G be an n × n positive semidefinite matrix with Gii = 1 and Gij < 1
for every i < j with i, j ∈ {1, . . . , n} with rankG 6 d. Then one may define a set
of
(
n
2

)
positive real numbers µij :=

√
2− 2Gij for i < j with i, j ∈ {1, . . . , n}, and

reconstruct n unit vectors with exactly these distances by the Cholesky decomposition
with complete pivoting. The procedure results in a rankG × n matrix V such that
V TV = G. Since µij > 0, the column vectors of V are distinct, and they form the unit
vectors vi, i ∈ {1, . . . , n} having the prescribed distances µ(vi, vj) = µij for every i < j
with i, j ∈ {1, . . . , n}. This reconstruction is unique up to isometry [22].
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The significance of Lemma 6 is that it shows that one may study certain positive
semidefinite matrices instead of spherical few-distance sets. This leads to a more conve-
nient computational framework, as the Gram matrices are basis independent. Therefore
from now on we will focus on the computer-aided generation of Gram matrices, which we
carry out via a two-step process. First, for fixed s and n, we generate all n×n symmetric
matrices with constant diagonal 1 satisfying a combinatorial constraint, namely that their
off-diagonal entries assume s distinct values only, say x1, x2, . . . , xs. We call these ob-
jects candidate Gram matrices, and denote them by G(x1, . . . , xs). Secondly, for a given
candidate Gram matrix and dimension d, we determine whether there exists a complex
s-tuple (α1, . . . , αs) ∈ Cs with distinct coordinates, each different from 1, for which we
have rankG(α1, . . . , αs) 6 d. If there is no such an s-tuple, then the combinatorial pattern
described by G(x1, . . . , xs) cannot lead to any spherical few-distance set in Rd. Other-
wise, we proceed by either augmenting G(x1, . . . , xs) with a further row and column, or,
when this is no longer possible, determine all real s-tuples (α1, . . . , αs) ∈ Rs with distinct
coordinates for which −1 6 αi < 1 holds for every i ∈ {1, . . . , s} and G(α1, . . . , αs) is
positive semidefinite. We discuss these two tasks in detail in the following subsections.

3.1 Generating candidate Gram matrices

We generate the candidate Gram matrices G of order n with at most s distinct off-
diagonal entries with orderly generation [23, Section 4.2.2], [36]. Since this is a routine
task we only outline the basic ideas. Two candidate Gram matrices G1(x1, . . . , xs) and
G2(x1, . . . , xs) are called equivalent, if G2(x1, . . . , xs) = PG1(xσ(1), . . . , xσ(s))P

T for some
permutation matrix P and for some permutation σ ∈ Ss. Clearly, it is enough to generate
these matrices up to equivalence. The generation starts from the 1 × 1 matrix

[
1
]
,

and then a new row and column with the elements x1, . . . , xs is inductively appended
to it in all possible ways, maintaining symmetry and entries 1 on the main diagonal.
However, only those i×i matrices G are kept (i ∈ {2, . . . , n}) whose vectorization vecG :=
[G2,1, G3,1, G3,2, . . . , Gi,1, Gi,2, . . . , Gi,i−1] is the lexicographically smallest vector in the set
{vecPG(xσ(1), . . . , xσ(s))P

T : σ ∈ Ss, P is an i× i permutation matrix}. An alternative
approach completing this task is to employ canonical augmentation [29]. We tabulate the
number of generated matrices in Table 3.

Table 3: The number of n× n candidate Gram matrices

s \ n 2 3 4 5 6 7 8 9

2 1 2 6 18 78 522 6178 137352
3 1 3 15 142 4300 384199 98654374
4 1 3 22 513 67685 37205801
5 1 3 24 956 370438
6 1 3 25 1205

We remark that this task can be thought as what is essentially a graph generating
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problem: the candidate Gram matrices correspond to distinct colorings of the edges of
the complete graph on n vertices with at most s colors, up to permutation of the colors.
There are techniques, such as the Power Group Enumeration Theorem, which can be
used to enumerate these objects without actually being generated. These can be used to
independently verify the entries of Table 3, see [21, Chapter 6].

Since the number of candidate Gram matrices up to equivalence grows very rapidly, it
is important to discard those which cannot correspond to a desired n-element s-distance
set in Rd during early stages of the search. In the next subsection we discuss a strategy
for doing this.

3.2 Discarding candidate Gram matrices

During the generation of candidate Gram matrices, we discard those which cannot have
appropriate rank. The key observation is that the rank of the Gram matrices is a heredi-
tary property in the following sense.

Lemma 7. Let s > 1, n > 2 be integers, let x1, . . . , xs be indeterminates, let G(x1, . . . , xs)
be an n × n candidate Gram matrix, and let H(x1, . . . , xs) be an (n − 1) × (n − 1)
submatrix of G(x1, . . . , xs). Then, for every s complex numbers α1, . . . , αs, we have
rankH(α1, . . . , αs) 6 rankG(α1, . . . , αs).

Proof. Assume that rankG(α1, . . . , αs) = d for some positive integer d. If d ∈ {n− 1, n}
then the statement is obvious, therefore we may assume that d 6 n− 2. Then necessarily
every (d+1)×(d+1) submatrix of G(α1, . . . , αs) has vanishing determinant. In particular
every (d + 1) × (d + 1) submatrix of H(x1, . . . , xs) has vanishing determinant. Hence
rankH(α1, . . . , αs) 6 d = rankG(α1, . . . , αs) as claimed.

Therefore one should understand first what are the small candidate Gram matrices
with appropriate rank, and then build up the larger ones from those. In the next result
we state how to control the rank of candidate Gram matrices.

Proposition 8. Let d, s > 1, n > d + 1 be integers, let x1, . . . , xs be indeterminates,
and let G(x1, . . . , xs) be an n × n candidate Gram matrix. Let M denote the set of all
(d+ 1)× (d+ 1) submatrices of G(x1, . . . , xs). There exist s distinct complex numbers α1,
. . . , αs, each different from 1, so that rankG(α1, . . . , αs) 6 d if and only if the following

system of
(
n
d+1

)2
+ 1 polynomial equations in s+ 1 variables

detM(x1, . . . , xs) = 0, for all M ∈M, 1 + u

s∏
i=1

(xi − 1)
∏

16j<k6s

(xj − xk) = 0 (3)

has a complex solution.

Proof. The rank condition on G is equivalent to the condition on vanishing minors.
Moreover, the last equation featuring the auxiliary variable u ensures that the values
αi, i ∈ {1, . . . , s}, are necessarily distinct, and they all different from 1.
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Proposition 8 is just a necessary condition ensuring that the candidate Gram matrix
G(x1, . . . , xs) is of correct rank for certain parameter values. Indeed, a solution to (3) is
not necessarily real, and the positive semidefiniteness ofG is not guaranteed. Nevertheless,
it is a powerful condition eliminating a significant proportion of candidate Gram matrices
which cannot correspond to a spherical s-distance set for a given d. We study the system
of equations (3) in the following way: we use various computer algebra systems (such as
e.g. [1]) to compute an exact degree reverse lexicographic reduced Gröbner basis (with
respect to the variable ordering x1 > · · · > xs > u). If this happens to be {1}, then
there are no complex solutions to (3), and the matrix G(x1, . . . , xs) can be discarded, as
it cannot have appropriate rank. On the other hand, when the Gröbner basis is anything
else than {1}, then regardless of what information it conveys, we keep the matrix. For
background on computational commutative algebra, we refer the reader to [4, Chapter 5].

3.3 The search

For a fixed d and s the search for an s-distance set X proceeds in essentially the same way
as described in [28, Section 7]. First we generate the (d + 1) × (d + 1) candidate Gram
matrices with at most s distinct off-diagonal entries, as described in Section 3.1. Then we
filter these matrices with the aid of Proposition 8: those for which the system of equations
(3) has no solutions are discarded, the others are retained in a set Ld+1. Now given a set
Li (for some i > d+ 1), we inductively build up larger matrices via the orderly generating
algorithm, and we test whether (a) each of their i × i principal submatrices belong to
the set Li up to equivalence (see Lemma 7); and (b) whether they themselves satisfy the
system of equations (3) of Proposition 8. The matrices surviving both tests then form
the set Li+1. We continue doing this as long as bigger matrices are keep being discovered,
but only up to the upper bound given by equation (1). Once the search concludes, we
inspect the largest candidate Gram matrices found and investigate for what parameter
values they are positive semidefinite.

We have implemented this search in the programming language C++, and used a
computer cluster having 500 CPU cores for several weeks to obtain the results described
in Sections 3.4 and 4.1. The bottleneck in our implementation was memory consumption.
Indeed, in order to obtain the set Li+1, the preceding set Li had to be stored in memory.

Remark 3.1. A given candidate Gram matrix could actually correspond to multiple
nonisometric configurations (which is indeed the case for the two pentagonal pyramids in
R3, see [13]). However, once the distances are specified, there is an essentially unique way
to reconstruct X , as guaranteed by the Cholesky decomposition. See also [32].

3.4 Results

The search described in Section 3.3 yielded the following new classification results.

Theorem 9. The largest cardinality of a spherical 4-distance set in R3 is 12. There are
exactly two configurations realizing this up to isometry: the vertices of the cuboctahedron,
and the vertices of the truncated tetrahedron.
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Since the proof of Theorem 9 is a result of computer calculations, we could only offer
here what is merely a discussion of our findings. First we note that the vertices of the
cuboctahedron can be obtained as {σ((−1, 0, 0, 1)T ) : σ ∈ S4}, whereas the vertices of the
truncated tetrahedron can be obtained as {σ((−3,−3, 1, 5)T ) : σ ∈ S4}. It is easy to see
that both of these are 12-element 4-distance sets, embedded in R3.

The search resulted in the following largest candidate Gram matrices, denoted by
S12A(u, v, w), S12B(u, v, w, x), and S12C(u, v, w, x), respectively:

1 u u u u u v v v v v w
u 1 u u v v u u v v w v
u u 1 v u v u v u w v v
u u v 1 v u v u w u v v
u v u v 1 u v w u v u v
u v v u u 1 w v v u u v
v u u v v w 1 u u v v u
v u v u w v u 1 v u v u
v v u w u v u v 1 v u u
v v w u v u v u v 1 u u
v w v v u u v v u u 1 u
w v v v v v u u u u u 1

 ,


1 u u u v v v v w w x x
u 1 u v u v w x v x v w
u u 1 v v u x w x v w v
u v v 1 w w u u v v x x
v u v w 1 w v x u x u v
v v u w w 1 x v x u v u
v w x u v x 1 u u v v w
v x w u x v u 1 v u w v
w v x v u x u v 1 w u v
w x v v x u v u w 1 v u
x v w x u v v w u v 1 u
x w v x v u w v v u u 1

 ,


1 u u u u v v w w w w x
u 1 u v w u w u v w x w
u u 1 w v w u v u x w w
u v w 1 u u w w x u v w
u w v u 1 w u x w v u w
v u w u w 1 x u w u w v
v w u w u x 1 w u w u v
w u v w x u w 1 u v w u
w v u x w w u u 1 w v u
w w x u v u w v w 1 u u
w x w v u w u w v u 1 u
x w w w w v v u u u u 1

 . (4)

It is interesting to note that the 4-distance sets given in Theorem 9 have no more vertices
than the icosahedron, which is the largest 3-distance set in R3 and represented by the
permutation equivalent matrices S12A(±1/

√
5,∓1/

√
5,−1). This is a “shadow” solution

featuring fewer than 4 distinct off-diagonal entries, and therefore it is discarded.1 The
matrix S12B(u, v, w, x) corresponds to the truncated tetrahedron. By solving the rank-
equations coming from Proposition 8 we find that u = 7/11, v = −1/11, w = −5/11, and
x = −9/11 is the only solution for which S12B(u, v, w, x) is positive semidefinite of rank 3.
Finally, for the third case we have u = ±1/2, v = 0, w = −u, x = −1. The two algebraic
solutions S12C(1/2, 0,−1/2,−1) and S12C(−1/2, 0, 1/2,−1) are permutation equivalent,
thus represent isometric configurations. These matrices correspond to the vertices of the
cuboctahedron. In Table 4 we display the number of intermediate configurations found:
in column i ∈ {4, . . . , 13} the entry in the first row shows the number of i × i candidate
Gram matrices (CGM) found during the augmentation step, while the entry in the second
row shows the number of matrices surviving the rank condition (3). Since for i = 8 this
second round of filtering was not effective, we stopped performing it on larger matrices.
We remark that the intermediate configurations not necessarily correspond to positive
semidefinite matrices and hence they might not have any geometrical meaning in the
Euclidean space. This concludes the discussion of Theorem 9.

Table 4: Spherical n-element 4-distance sets in R3

n 4 5 6 7 8 9 10 11 12 13

#CGM 22 513 36994 404 179 67 27 3 3 0
#CGM up to (3) 22 434 1283 383 179

In [31, Theorem 3.8] it was proved, amongst other results, that the maximum cardi-
nality of spherical 3-distance sets in R4 is at most 27. It turns out that the exact answer,
presented below, is considerably smaller.

1Several authors, see e.g. [30], prefer to call a set X an s-distance set if |A(X )| 6 s.
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Theorem 10. The largest cardinality of a spherical 3-distance set in R4 is 13. There are
exactly four configurations realizing this up to isometry.

In what follows we discuss the configurations arising in Theorem 10. The largest
candidate Gram matrices found by the search are:

S13A(u, v, w) :=
[
S12A(u,v,w) wJ

wJT 1

]
, S13B(u, v, w) :=

[
1 uJT

uJ S12A(u,v,w)

]
, and

S13C(u, v, w) :=



1 u u u u v v v v w w w w
u 1 v v w u u v w u v w w
u v 1 w v u w u v v w u w
u v w 1 v v u w u w u w v
u w v v 1 w v u u w w v u
v u u v w 1 w w u v u v w
v u w u v w 1 u w v v w u
v v u w u w u 1 w u w v v
v w v u u u w w 1 w v u v
w u v w w v v u w 1 u u v
w v w u w u v w v u 1 v u
w w u w v v w v u u v 1 u
w w w v u w u v v v u u 1

 , J := (1, 1, . . . , 1)T ∈ R12,

where S12A(u, v, w) is the first matrix shown in (4). Once again, we solve the system
of equations (3) coming from Proposition 8 to ascertain that the rank of these matrices
is 4. In the first case we have u = (5 ± 3

√
5)/20, v = 1/2 − u, w = −1/2. These two

algebraic solutions are permutation equivalent. In the second case we have u = (1±
√

5)/4,
v = 1/2, w = u− 1/2. These latter two are nonisometric realizations, which can be seen
by observing that the distances u, v, w, appear a different number of times, and v plays
the role of the shortest distance in one of these two realizations, but not in the other.
In the third case we have 64u3 + 16u2 − 16u + 1 = 0, and v = (16u2 + 4u − 3)/4,
w = (−8u2 − 4u + 1)/2. Let α > β > γ denote the three real roots of the polynomial
64u3 + 16u2 − 16u + 1. Then S13C(α, β, γ), S13C(β, γ, α), and S13C(γ, α, β) are the three
permutation equivalent solutions. Each of these four matrices are positive semidefinite, as
required. Refer to Table 5 for the number of intermediate objects found. This concludes
the discussion of Theorem 10.

Table 5: Spherical n-element 3-distance sets in R4

n 5 6 7 8 9 10 11 12 13 14

#CGM 142 4300 205646 891 396 173 62 19 3 0
#CGM up to (3) 142 3816 1748 889 396

Remark 3.2. Let I13 be the 13×13 identity matrix, and let M(u, v, w) := S13C(u, v, w)−
I13. Then one may consider the union of the set of columns of the matrices M(1, 0, 0),
M(0, 1, 0), M(0, 0, 1), and then concatenate these to form a (0, 1)-matrix of size 13× 39:
a near-resolvable design NRB(13, 4, 3), see [11, Chapter 7.2] and [19].

Remark 3.3. Let I13 be the 13× 13 identity matrix, let J13 ∈ R13 be the column vector
with all entries 1, and let ζ be a primitive complex third root of unity. Then the matrix

C :=
[

0 JT
13

J13 S13C(1,ζ,ζ2)−I13

]
is a symmetric generalized conference matrix GC(C3; 4) over the

(multiplicatively written) cyclic group C3 = {1, ζ, ζ2}, see [11, Chapter 6.2].
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Remark 3.4. The candidate Gram matrix S13C(u, v, w) was discovered earlier in the
context of 3-class association schemes. See [20] and the accompanying website2.

The vertices of the 24-cell, given by the set {σ((±1/
√

2,±1/
√

2, 0, 0)T ) : σ ∈ S4} is a
spherical 4-distance set in R4. We do not know whether this is the best possible.

4 General few-distance sets

Now we turn to the discussion of the general case, where the elements of X are not
necessarily unit vectors. The following classical result is presented in various equivalent
forms within the cited references. Here we recall it in a form which is the most useful for
our purposes. The proof is once again included for the reader’s convenience.

Theorem 11 ([27, Theorem 2.2], [28, Theorem 7.1], [30], [32], [37]). Let d > 1, n > 2 be
integers. There exists n distinct vectors v1, . . . , vn in Rd with mutual distances µ(vi, vj),
i, j ∈ {1, . . . , n}, if and only if the matrix C := [µ(vi, vn)2 + µ(vj, vn)2 − µ(vi, vj)

2]n−1i,j=1

is positive semidefinite, rankC 6 d, Cii > 0 for every i ∈ {1, . . . , n − 1}, and Cij <
(Cii + Cjj)/2 for every i < j with i, j ∈ {1, . . . , n− 1}.

Proof. Assume that we have a set of n distinct vectors v1, . . . , vn with pairwise distances
µ(vi, vj) > 0 for every i < j and i, j ∈ {1, . . . , n}. By the polarization identity, we have
µ(vi, vn)2 +µ(vj, vn)2−µ(vi, vj)

2 = 2 〈vi − vn, vj − vn〉 and therefore C is a Gram matrix.
Once again, C is positive semidefinite, and rankC is the maximum number of linearly
independent vectors amongst vi−vn, i ∈ {1, . . . , n−1}. Therefore rankC 6 d, as claimed.
Finally, the conditions Cii > 0 and Cij < (Cii + Cjj)/2 follow as the vectors are distinct,
and therefore µ(vi, vj) > 0 for every i < j with i, j ∈ {1, . . . , n}.

Conversely, let C be an (n−1)×(n−1) positive semidefinite matrix with the conditions
stated. Then one may define a set of

(
n
2

)
positive real numbers µin :=

√
Cii/2, i ∈

{1, . . . , n− 1}, and µij :=
√
Cii/2 + Cjj/2− Cij for every i < j with i, j ∈ {1, . . . , n− 1},

and reconstruct n−1 vectors by the Cholesky decomposition with complete pivoting. The
procedure results in a rankC × (n − 1) matrix V such that V TV = C. Since µij > 0,
the column vectors of V are distinct, which, together with vn := (0, . . . , 0)T ∈ RrankC ,
form the vectors vi, i ∈ {1, . . . , n} having the prescribed distances µ(vi, vj) = µij for every
i < j with i, j ∈ {1, . . . , n}. The reconstruction is unique up to isometry [22].

Remark 4.1. In Rd an n-element spherical s-distance set with its center point (see
Section 3) forms an (n+ 1)-element general t-distance set for some t ∈ {s, s+ 1}.

Recall that in Section 3 we have classified what we called the candidate Gram matrices
having constant diagonal 1 and at most s distinct off-diagonal elements representing the
combinatorial properties of a spherical s-distance set. These objects will be used once
again during the treatment of the general case. The analogue statement to Lemma 7
also applies here, and the analogue of Proposition 8 is the following Proposition 12. One

2http://math.shinshu-u.ac.jp/~hanaki/as/data/as13
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key difference compared with the spherical case is that here one of the distances can be
normalized to 1 up to a global isometry.

Proposition 12. Let d, s > 1, n > d + 2 be integers, let x1, . . . , xs be indeterminates,
and let G(x1, . . . , xs) be an n × n candidate Gram matrix. Let M denote the set of all
(d + 1) × (d + 1) submatrices of the matrix C := [Gin + Gjn − Gij + δij]

n−1
i,j=1, where δij

is the Kronecker symbol. There exist s − 1 distinct complex numbers α2, . . . , αs, each
different from 0 and 1, so that rankC(1, α2, . . . , αs) 6 d if and only if the following system

of
(
n−1
d+1

)2
+ 1 polynomial equations in s variables

detM(1, x2, . . . , xs) = 0, for all M ∈M, 1+u
s∏
i=2

xi(xi−1)
∏

26j<k6s

(xj−xk) = 0 (5)

has a complex solution.

Proof. This is once again just a reformulation of the rank condition in terms of vanishing
minors. Moreover, it is assumed that x1 = 1 up to a global isometry. The auxiliary
variable u ensures that the other variables take up distinct values, each different from 0
and 1.

Remark 4.2. Using the notation of Proposition 12, one may observe that the determinan-
tal ideal [8] generated by the polynomial equations detM(x1, . . . , xs) = 0, M(x1, . . . , xs) ∈
M is homogenous of degree d+ 1. Therefore, if these equations have a common solution
(x1, . . . , xs) = (α1, . . . , αs), where

∏s
i=1 αi 6= 0, then (α1/αt, α2/αt, . . . , αs/αt) is also a

solution for any t ∈ {1, . . . , s}. This justifies the normalization of one of the variables.

The search in the general case is analogous to what is described in Section 3.3, with
the only difference that it starts with the (d+ 2)× (d+ 2) candidate Gram matrices, and
then it uses Proposition 12 for pruning.

4.1 Results

Now we turn to the discussion of the following new classification results.

Theorem 13. The largest cardinality of a 4-distance set in R3 is 13. There are exactly
two configurations realizing this up to isometry: the vertices of the icosahedron with its
center point, and the vertices of the cuboctahedron with its center point.

The search revealed two configurations, which can be described with the following
candidate Gram matrices:

G13A(u, v, w, x) :=
[
S12A(u,v,w) xJ

xJT 1

]
, G13B(u, v, w, x) :=

[
1 uJT

uJ S12C(u,v,w,x)

]
,

where the submatrices S12A(u, v, w) and S12C(u, v, w, x) were discussed in Section 3.4, see
(4). Recall that the rank condition applies to certain 12×12 transformed matrices as stated
in Theorem 11. We assume that x := 1 due to a global isometry. In the first case the rank
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condition implies that u = 2(5±
√

5)/5, v = 4− u, w = 4. These two algebraic solutions
are permutation equivalent. In the second case we find that u = (2 ± 1)/4, v = 1/2,
w = 1 − u. These two solutions are also permutation equivalent. Thus, altogether two
nonisometric solutions are found. It is not too hard to see that these correspond to the
claimed sets in Theorem 13. Refer to Table 6 for the number of intermediate objects
found.

Table 6: General n-element 4-distance sets in R3

n 5 6 7 8 9 10 11 12 13 14

#CGM 513 67669 24617591 1093 277 59 12 5 2 0
#CGM up to (5) 512 62095 4499 1093

We regard the following as the main result of this manuscript.

Theorem 14. The largest cardinality of a 3-distance set in R4 is 16. There is a unique
configuration X realizing this up to isometry, which may be taken as the following subset
of the 4-dimensional integer lattice:

X = {(0, 0, 0, 0)T , (0, 0, 0, 2)T , (0, 0, 2, 0)T , (0, 0, 2, 2)T , (0, 2, 0, 0)T , (0, 2, 0, 2)T ,

(0, 2, 2, 0)T , (0, 2, 2, 2)T , (1, 1, 1, 1)T , (−1,−1, 1, 1)T , (−1, 1,−1, 1)T , (−1, 1, 1,−1)T ,

(−1, 1, 1, 1)T , (1,−1, 1, 1)T , (1, 1,−1, 1)T , (1, 1, 1,−1)T}.

The following is the largest candidate Gram matrix found by the search:

G16(u, v, w) :=



1 u u v u v v w u u u u u u u u
u 1 v u v u w v u u u w u u u w
u v 1 u v w u v u u w u u u w u
v u u 1 w v v u u u w w u u w w
u v v w 1 u u v u w u u u w u u
v u w v u 1 v u u w u w u w u w
v w u v u v 1 u u w w u u w w u
w v v u v u u 1 u w w w u w w w
u u u u u u u u 1 v v v u u u u
u u u u w w w w v 1 v v u u w w
u u w w u u w w v v 1 v u w u w
u w u w u w u w v v v 1 u w w u
u u u u u u u u u u u u 1 v v v
u u u u w w w w u u w w v 1 v v
u u w w u u w w u w u w v v 1 v
u w u w u w u w u w w u v v v 1


.

Recall that the rank condition applies to the 15 × 15 transformed matrix C(u, v, w)
as stated in Proposition 12. One readily verifies that the only possibility to ensure
rankC(u, v, w) = 4 with u := 1 normalization is the choice v = 2 and w = 3. In
this case the nonzero eigenvalues of the matrix C(1, 2, 3) are 8, and the three roots of
λ3−52λ2 +500λ−1312. Since the coefficients of this polynomial alternate in sign, clearly
its roots are positive (recall that C(1, 2, 3) is symmetric), and therefore C(1, 2, 3) is positive
semidefinite. From the matrix C(1, 2, 3) one may recover the coordinates of the vectors
in R4 with the aid of Theorem 11 (up to a change of basis). Since this configuration is
unique, it is isometric to the 4-dimensional 3-distance set X given in Theorem 14. Table 7
displays the number of intermediate objects found during the search. This concludes the
discussion of Theorem 14.

Finally, we independently obtain the following result from the literature.

the electronic journal of combinatorics 27(1) (2020), #P1.23 14



Table 7: General n-element 3-distance sets in R4

n 6 7 8 9 10 11 12 13 14 15 16 17

#CGM 4300 384183 6939 2496 1473 765 341 113 31 8 1 0
#CGM up to (5) 4299 16481 5043 2496

Theorem 15 ([38], [39, Theorem 1.2]). The largest cardinality of a 3-distance set in R3

is 12. There is a unique configuration realizing this up to isometry: the vertices of the
icosahedron.

This result is an (almost) immediate corollary of Theorem 13. Indeed, Table 6 shows
that there are 5 candidate Gram matrices of size 12 with at most 4 distinct off-diagonal
entries, and inspection reveals that only one of them has 3 distinct off-diagonal entries.

Nevertheless, we did an independent search so that to document the number of in-
termediate configurations found (see Table 8). As expected, the largest candidate Gram
matrix found by the search is S12A(u, v, w), see (4). We find that the system of equations
(5) has the following normalized solutions: u = (5 ±

√
5)/10, v = (5 ∓

√
5)/10, w = 1.

These two solutions are permutation equivalent.

Table 8: General n-element 3-distance sets in R3

n 5 6 7 8 9 10 11 12 13

#CGM 142 4288 106 19 5 2 1 1 0
#CGM up to (5) 141 434 90 19

The following result settles [14, Conjecture 2]. See also [43, Theorem 19] for previous
partial results.

Theorem 16. The largest cardinality of a 6-distance set in R2 is 13. There are exactly
three configurations realizing this up to isometry: the regular convex 13-gon, the regular
convex 12-gon with its center point, and a regular hexagram with its center point (as shown
on [14, p. 116]).

The search found the following three candidate Gram matrices G13C(u, v, w, x, y, z),
G13D(u, v, w, x, y, z), and G13E(u, v, w, x, y, z):

1 u u u u u u u u u u u u
u 1 u u v v w x x y y z z
u u 1 v u w v x y x z y z
u u v 1 w u v y x z x z y
u v u w 1 v u y z x z x y
u v w u v 1 u z y z x y x
u w v v u u 1 z z y y x x
u x x y y z z 1 u u v v w
u x y x z y z u 1 v u w v
u y x z x z y u v 1 w u v
u y z x z x y v u w 1 v u
u z y z x y x v w u v 1 u
u z z y y x x w v v u u 1


,



1 u u v v w w x x y y z z
u 1 v u w v x w y x z y z
u v 1 w u x v y w z x z y
v u w 1 x u y v z w z x y
v w u x 1 y u z v z w y x
w v x u y 1 z u z v y w x
w x v y u z 1 z u y v x w
x w y v z u z 1 y u x v w
x y w z v z u y 1 x u w v
y x z w z v y u x 1 w u v
y z x z w y v x u w 1 v u
z y z x y w x v w u v 1 u
z z y y x x w w v v u u 1


,



1 u u u u u u v v v v v v
u 1 u u v v w u u w w x x
u u 1 v u w v u w u x w x
u u v 1 w u v w u x u x w
u v u w 1 v u w x u x u w
u v w u v 1 u x w x u w u
u w v v u u 1 x x w w u u
v u u w w x x 1 v v y y z
v u w u x w x v 1 y v z y
v w u x u x w v y 1 z v y
v w x u x u w y v z 1 y v
v x w x u w u y z v y 1 v
v x x w w u u z y y v v 1


.
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We use the normalization u := 1 up to a global isometry. In the first case we find that
v = 3, w = 4, x = 2 ±

√
3, y = 2, z = 4 − x are the only solutions corresponding

to a planar configuration. The two solutions are permutation equivalent, thus represent
isometric configurations: the regular convex 12-gon with its center point. In the second
case, after discarding the meaningless complex solutions satisfying v2 − v + 1 = 0, we
get v6 − 11v5 + 45v4 − 84v3 + 70v2 − 21v + 1 = 0, which is the minimal polynomial
of sin2(π/13)/ sin2(6π/13). Any choice for v then uniquely determines the remaining
parameter values as follows: w = v2−2v+1, x = v3−4v2+4v, y = v4−6v3+11v2−6v+1,
z = v5 − 8v4 + 22v3 − 24v2 + 9v. All these solutions correspond to the regular convex
13-gon. In the third case we get v = 3, w = 4, x = 7, y = 9, z = 12, which corresponds to
the hexagram. Refer to Table 9 for the number of intermediate objects found. We note
that due to the (relatively) large number of distinct distances the classification of this case
required considerable amount of computational efforts. This concludes the discussion of
Theorem 16.

Table 9: General n-element 6-distance sets in R2

n 4 5 6 7 8 9 10 11 12 13 14

#CGM 25 1193 537230 14732 1565 635 228 62 15 3 0
#CGM up to (5) 24 922 20229 4667 1565

We believe that our approach described in this paper has further potential. In particu-
lar, one may analyze in a similar fashion the non-maximum candidate Gram matrices, and
proceed with the classification of few-distance sets of a given cardinality. Furthermore,
it seems that the classification of maximum 3-distance sets in R5, and maximum planar
7-distance sets will be doable in the near-term future.
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[41] F. Szöllősi, P.R.J. Österg̊ard: Enumeration of Seidel matrices, European J.
Combin., 69 169–184 (2018).

[42] S.F.D. Waldron: An Introduction to Finite Tight Frames, Birkhäuser (2018).
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