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Abstract

The isotropic matroid M [IAS(G)] of a looped simple graph G is a binary ma-
troid equivalent to the isotropic system of G. In general, M [IAS(G)] is not regular,
so it cannot be represented over fields of characteristic 6= 2. The ground set of
M [IAS(G)] is denoted W (G); it is partitioned into 3-element subsets correspond-
ing to the vertices of G. When the rank function of M [IAS(G)] is restricted to
subtransversals of this partition, the resulting structure is a multimatroid denoted
Z3(G). In this paper we prove that G is a circle graph if and only if for every
field F, there is an F-representable matroid with ground set W (G), which defines
Z3(G) by restriction. We connect this characterization with several other circle
graph characterizations that have appeared in the literature.

Mathematics Subject Classifications: 05C31

1 Introduction

In this paper a graph may have loops or parallel edges. A graph is simple if it has neither
loops nor parallels, and a looped simple graph has no parallels. An edge consists of two
distinct half-edges, each incident on one vertex; and an edge is directed by distinguishing
one of its half-edges as initial. (Hence a loop has two different directions, just like any
other edge.) The degree of a vertex is the number of incident half-edges, and a graph is
d-regular if its vertices are all of degree d. We use the term circuit to refer to a sequence
v1, h

′
1, h2, v2, h

′
2, . . . , h

′
k−1, hk = h1, vk = v1 of vertices and half-edges, such that: for each

i < k, hi and h′i are half-edges incident on vi; for each i < k, h′i and hi+1 are half-edges of

∗This research was performed while R.B. was a postdoctoral fellow of the Research Foundation –
Flanders (FWO).
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the same edge; and the half-edges h1, h
′
1, . . . , hk−1, h

′
k−1 are mutually distinct. We consider

two circuits to be the same if they differ only in orientation or starting point. The sets of
vertices and edges of a graph G are denoted by V (G) and E(G), respectively. We assume
that the reader is familiar with the basic concepts of matroid theory, see, e.g., [25].

If G is a connected graph whose vertices are all of even degree then G has an Euler
circuit, i.e., a circuit which includes every edge of G. In general, if the vertices of G are
all of even degree then G will have an Euler system, i.e., a set which contains precisely
one Euler circuit for each connected component of G.

Circle graphs are an interesting class of simple graphs, which have been studied by
many authors during the last 50 years, see, e.g., [2, 3, 13, 14, 15, 16, 18, 24, 26, 27, 31, 33].
Circle graphs arise from Euler systems of 4-regular graphs in the following way.

Definition 1. Let F be a 4-regular graph, with an Euler system C. Distinct vertices
v, w ∈ V (F ) are interlaced with respect to C if they appear on one of the circuits of C in
the order vwvw or wvwv.

Definition 2. Let F be a 4-regular graph, with an Euler system C. The interlacement
graph I(C) is the simple graph with V (I(C)) = V (F ), in which distinct vertices are
adjacent if and only if they are interlaced with respect to C. A simple graph that can be
realized as an interlacement graph is a circle graph.

The purpose of this paper is to present a new matroidal characterization of circle
graphs, which uses the following notion.

In this paper, for finite sets X and Y we consider X × Y matrices whose rows and
columns are not ordered, but are instead indexed by X and Y , respectively. With this
notation, the adjacency matrix A(G) of the looped simple graph G is a V (G) × V (G)-
matrix over GF (2); for u, v ∈ V (G), the entry of A(G) indexed by (u, v) is 1 if and only if
there is an edge between u and v. (In particular, loops lead to nonzero diagonal entries).

Definition 3. Let G be a looped simple graph, with adjacency matrix A(G). Then
the isotropic matroid M [IAS(G)] is the matroid represented by the matrix

IAS(G) =
(
I A(G) I + A(G)

)
over GF (2), the field with two elements.

The I in Definition 3 is the V (G)×V (G) identity matrix, and the notation IAS(G) =(
I A(G) I + A(G)

)
indicates that for each v ∈ V (G), the v rows of I, A(G), and

I + A(G) are concatenated to form the v row of IAS(G). The matroid elements cor-
responding to the v columns of I, A(G), and I + A(G) are denoted φG(v), χG(v) and
ψG(v), respectively, and the ground set of M [IAS(G)] (i.e., the set containing all these
elements corresponding to columns of IAS(G)), is denoted W (G). A subset of W (G) that
includes exactly one of φG(v), χG(v), ψG(v) for each v ∈ V (G) is a transversal of W (G); a
subset of a transversal is a subtransversal of W (G). The families of subtransversals and
transversals of W (G) are denoted S(G) and T (G), respectively.
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Isotropic matroids were introduced in [29], and have been studied further in [10, 11,
12, 30]. One of the simplest properties of isotropic matroids is this: if G has a connected
component with more than two vertices, then M [IAS(G)] is not a regular matroid [29].
Despite this simple property, it turns out that circle graphs are characterized by a special
kind of regularity associated with isotropic matroids. This special kind of regularity
involves a substructure of M [IAS(G)].

Definition 4. If G is a looped simple graph then the isotropic 3-matroid Z3(G) is the 3-
tuple (W (G),Ω, r), where Ω = {{φG(v), χG(v), ψG(v)} | v ∈ V (G)} and r is the restriction
of the rank function of M [IAS(G)] to S(G).

It follows from [29, Proposition 41] that the isotropic 3-matroid of a graph is a multima-
troid, a notion introduced by Bouchet [4, 5, 6, 7]. Like ordinary matroids, multimatroids
are uniquely determined by their bases, circuits, or independent sets. An independent
set of Z3(G) is a subtransversal I ∈ S(G) with r(I) = |I|. A circuit of Z3(G) is a sub-
transversal C ∈ S(G) that is minimal (w.r.t. inclusion) with the property that it is not
an independent set. A basis of Z3(G) is an independent set of Z3(G) that is maximal
(w.r.t. inclusion) with this property. It follows from [4, Proposition 5.5] that all bases of
Z3(G) have a common cardinality equal to |Ω| = |V (G)|. Consequently, if X is the set of
bases (independent sets, circuits, resp.) of M [IAS(G)], then X ∩S(G) is the set of bases
(independent sets, circuits, resp.) of Z3(G).

Definition 5. Let F be a field. Then Z3(G) is representable over F if there is an F-matrix
B with columns indexed by W (G), such that the rank function of Z3(G) agrees with the
rank function of B when restricted to S(G).

To say the same thing in a different way: Z3(G) is representable over F if and only
if there is an F-representable matroid M on W (G), whose rank function agrees with
the rank function of M [IAS(G)] when restricted to S(G). Such a matroid M is said
to shelter Z3(G). Notice that Z3(G) is GF (2)-representable by definition; it is sheltered
by M [IAS(G)]. Our main result is that representability over other fields characterizes
circle graphs.

Theorem 6. Let G be a simple graph. Then any one of the following conditions implies
the others.

1. G is a circle graph.

2. The 3-matroid Z3(G) is representable over every field.

3. The 3-matroid Z3(G) is representable over some field of characteristic 6= 2.

Theorem 6 shows that the theory of isotropic 3-matroids is quite different from the
more familiar theory of graphic matroids: all graphic matroids are representable over all
fields, but the only isotropic 3-matroids representable over all fields are those that come
from circle graphs.
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Here is an outline of the paper. In Section 2 we provide some details about sheltering
matroids for Z3(G). In Section 3 we deduce the implication 3 ⇒ 1 of Theorem 6 from
the results of Section 2 and Bouchet’s circle graph obstructions theorem [3]. In Section 4
we summarize the signed interlacement machinery of [32], which associates matrices over
GF (2) and R with circuit partitions in 4-regular graphs. In Section 5 we use this machin-
ery to show that if G is a circle graph, then Z3(G) is representable over R. This argument
is fairly direct, and suffices to prove the implication 1 ⇒ 3 of Theorem 6. Getting Con-
dition 2 into the picture is more difficult, because the matrix machinery of [32] fails over
fields with char(F) > 2. In Section 6 we develop a special case of the signed interlacement
machinery, which works over all fields. In Section 7 we complete the proof of Theorem 6,
and in Section 8 we detail the constructions used in the proof for a small example. In
Section 9 we discuss the connection between Theorem 6 and Naji’s characterizations of
circle graphs [23, 24]. Finally, in Section 10 we formulate a more detailed form of The-
orem 6 in terms of multimatroids, and we use that to characterize the cycle matroids of
planar graphs.

2 Representations of sheltering matroids

We begin by recalling the definition of local equivalence.

Definition 7. Let G be a looped simple graph and v a vertex of G.

• The graph obtained from G by complementing the loop status of v is denoted Gv
` .

• The graph obtained from G by complementing the adjacency status of every pair of
neighbors of v is the simple local complement of G at v, denoted Gv

s .

• The graph obtained from G by complementing the adjacency status of every pair
of neighbors of v and the loop status of every neighbor of G is the non-simple local
complement of G at v, denoted Gv

ns.

• The equivalence relation on looped simple graphs generated by loop complementa-
tions and local complementations is local equivalence.

For a graph G and X ⊆ V (X), we denote the subgraph of G induced by V (G) \X by
G−X.

Definition 8. Let G and H be looped simple graphs. Then H is a vertex-minor of G if
there is a graph G′ that is locally equivalent to G, such that H = G′−X for some subset
X ⊆ V (G′).

In analogy with Definition 3, ifG is a looped simple graph with adjacency matrix A(G),
then we define the restricted isotropic matroid M [IA(G)] to be the matroid represented
by the matrix IA(G) =

(
I A(G)

)
over GF (2). That is, M [IA(G)] is the submatroid of

M [IAS(G)] that includes only the φ and χ elements. The isotropic 2-matroid Z2(G) is
the 3-tuple (U,Ω, r), where Ω = {{φG(v), χG(v)} | v ∈ V (G)}, U =

⋃
Ω, and r is the
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restriction of the rank function of M [IA(G)] to subtransversals S ∈ S(G) that involve
only φ and χ elements. A sheltering matroid for Z2(G) is a matroid with the same ground
set U , whose rank function restricts to the rank function of Z2(G). If F is a field and
Z2(G) has an F-representable sheltering matroid, then Z2(G) is F-representable.

If Z2(G) or Z3(G) has an F-representable sheltering matroid of rank |V (G)|, then
Z2(G) or Z3(G) is strictly F-representable. Both Z2(G) and Z3(G) are strictly GF (2)-
representable by definition.

Lemma 9. If G is a simple graph then Z2(G) is F-representable if and only if Z2(G) is
strictly F-representable.

Proof. For each v ∈ V (G), the transversal {χG(v)} ∪ {φG(w) | v 6= w ∈ V (G)} is
dependent in M [IAS(G)]. If M is a sheltering matroid for Z2(G), then this transversal
must be dependent in M too. Hence the φG elements span M , so the rank r(M) is no
more than the number of φG elements, which is |V (G)|. On the other hand, {φG(v) | v ∈
V (G)} is an independent transversal of M [IAS(G)], so it is an independent set of M ;
consequently r(M) > |V (G)|.

Lemma 10. If Z3(G) is (strictly) F-representable then Z2(G) is (strictly) F-representable.

Proof. If M is a sheltering matroid for Z3(G) then the submatroid N consisting of ele-
ments of M that correspond to elements of Z2(G) is a sheltering matroid. If M is a strict
sheltering matroid then Φ(G) = {φG(v) | v ∈ V (G)} is a basis of M . As N contains
Φ(G), Φ(G) is also a basis of N ; hence r(N) = |V (G)|.

Lemma 11. If G and H are locally equivalent up to isomorphism, then Z3(G) is (strictly)
F-representable if and only if Z3(H) is (strictly) F-representable.

Proof. The 3-matroids Z3(G) and Z3(H) are isomorphic, see [29].

Lemma 12. If Z3(G) is (strictly) F-representable and H is a vertex-minor of G, then
Z3(H) is (strictly) F-representable.

Proof. Suppose M is a matroid that shelters Z3(G). If v ∈ V (G), then M ′ = (M/φG(v))−
χG(v) − ψG(v) is a matroid that shelters Z3(G − v). Moreover, the rank r(M ′) is no
more than r(M) − 1, because φG(v) has been contracted, and no less than |V (G)| − 1,
because {φG(w) | v 6= w ∈ V (G)} is an independent set of Z3(G − v). Consequently if
r(M) = |V (G)|, then r(M ′) = |V (G)| − 1 = |V (G− v)|.

The lemma follows from these observations and Lemma 11.

We remark that Lemma 12 does not hold for Z2(G): a graph G with Z2(G) strictly F-
representable may have a vertex-minorH with Z2(H) not F-representable. Some examples
are given at the end of Section 3.

Lemma 13. Suppose G is a simple graph and Z2(G) is F-representable. Then there is a
V (G)× V (G) matrix A with entries in F, with these properties.
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1. A has nonzero entries in precisely the same places where the adjacency matrix A(G)
has nonzero entries.

2.
(
I A

)
, with I an identity matrix, represents a matroid that shelters Z2(G), with

the columns of I and A corresponding to the φG and χG elements, respectively.

Proof. As Z2(G) is F-representable, for some m there is an m× 2n matrix Q with entries
in F, which represents a matroid that shelters Z2(G). We presume the columns of Q
are ordered with the φ columns first, and then the χ columns. The φG elements of
M [IAS(G)] are independent, so the first n columns of Q are linearly independent. It
follows that elementary row operations can be used to bring Q into the form

Q′ =

(
I A
0 A′

)
.

Elementary row operations have no effect on the matroid represented by a matrix, so Q′

represents a matroid that shelters Z2(G).
If any entry of A′ is not 0, then the corresponding column of Q′ is not included in the

span of the columns of I. Consequently if v ∈ V (G) is the vertex whose χG(v) element
corresponds to this column of Q′, then {χG(v)} ∪ {φG(w) | w 6= v} is an independent
set of the matroid represented by Q′. This set is a transversal of W (G), so it is also an
independent set of M [IAS(G)]. This is incorrect, however; {χG(v)} ∪ {φG(w) | w 6= v} is
dependent in M [IAS(G)], because the v entry of the χG(v) column of IAS(G) is 0. We
conclude that A′ = 0.

The fact that {χG(v)}∪{φG(w) | w 6= v} is a dependent set of M [IAS(G)] also implies
that the v entry of the χG(v) column of Q′ is 0. That is, every diagonal entry of A is 0.

Now, suppose v 6= w ∈ V (G). The subtransversal {χG(w)} ∪ {φG(x) | x /∈ {v, w}}
of W (G) is independent in M [IAS(G)] if and only if v and w are neighbors in G. By
hypothesis, this subtransversal is independent in M [IAS(G)] if and only the correspond-
ing columns of Q′ are linearly independent. As the columns of Q′ corresponding to φG
elements are columns of the identity matrix, and the w entry of the χG(w) column of Q′

is 0, it follows that the v entry of this column of Q′ is 0 if and only if the v entry of the
corresponding column of IAS(G) is 0.

Lemma 14. Let G be a simple graph with n vertices, such that Z3(G) is F-representable.
Then for some m > n, there is an m× 3n matrix

P =

(
I A B
0 0 C

)
with entries in F, which satisfies the following.

1. P represents a matroid that shelters Z3(G), with the columns of I, A and B corre-
sponding to the φG, χG and ψG elements, respectively.

2. The submatrix I is an n× n identity matrix.
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3. The submatrix A has nonzero entries in precisely the same places where the adja-
cency matrix A(G) has nonzero entries.

If Z3(G) is strictly F-representable, then there is a matrix P which moreover satisfies
the three conditions below.

4. C = 0.

5. The diagonal entries of the submatrix B are all equal to 1.

6. If v and w are neighbors in G, then BvwBwv = 1.

Proof. Let Q be an m × 3n matrix with entries in F, which represents a matroid that
shelters Z3(G). We presume the columns of Q are ordered with the φ columns first, then
the χ columns, and then the ψ columns. The φG elements of M [IAS(G)] are independent,
so the first n columns of Q are linearly independent. Elementary row operations can be
used to bring Q into the form

P =

(
I A B
0 A′ C

)
.

Elementary row operations have no effect on the matroid represented by a matrix, so P
inherits property 1 from Q.

The proof of Lemma 13 shows that A′ = 0 and A satisfies property 3.
If Z3(G) is strictly F-representable, we may start with a matrix Q of rank n. Then P

also is of rank n, so A′ = C = 0.
If v ∈ V (G) then {φG(w) | v 6= w} ∪ {ψG(v)} is a transversal of W (G), and is

independent in M [IAS(G)]. It follows that the corresponding columns of P are linearly
independent; this requires that Bvv 6= 0. We may multiply the v column of B by 1/Bvv,
without affecting the represented matroid. For simplicity we still use B and P to denote
the matrices resulting from these column multiplications.

It remains to verify property 6. If v and w are neighbors in G then {φG(x) | x /∈
{v, w}}∪{ψG(v), ψG(w)} is a transversal of W (G), which is dependent in M [IAS(G)]. It
follows that the corresponding columns of P are linearly dependent, so(

1 Bvw

Bwv 1

)
is a singular matrix.

Notice that property 3 of Lemma 14 specifies the locations of nonzero entries in the
submatrix A. We do not have such specific information about B, however. Properties
5 and 6 guarantee nonzero entries on the diagonal, and in locations that correspond to
edges of G; but there may be nonzero entries in other places, and these locations may
vary from one sheltering matroid to another.
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3 Bouchet’s obstructions

In this section we prove the implication 3⇒ 1 of Theorem 6: if Z3(G) is F-representable
over some field with char(F) 6= 2, then G is a circle graph. The crucial ingredient of the
proof is the following well-known result.

Theorem 15. (Bouchet’s circle graph obstructions theorem [3]) A simple graph is not a
circle graph if and only if it has one of the graphs pictured in Figure 1 as a vertex-minor.

Bouchet’s theorem is useful in proving Theorem 6 because of the following result. This
result is closely related to a statement given (without proof) in [16, page 36] in the context
of delta-matroids.

Proposition 16. If F is a field with char(F) 6= 2 and G ∈ {W5, BW3,W7}, then Z2(G)
is not representable over F.

Proof. There is a transversal T of W (BW3) which includes only φ and χ elements, such
that the restriction of M [IAS(BW3)] to T is isomorphic to the Fano matroid F7. The Fano
matroid is not representable over F, so no F-representable matroid can shelter Z2(BW3).

The proposition is a bit harder to verify for W5. To establish notation, we set V (W5) =
{1, 2, 3, 4, 5, 6} and E(W5) = {1i, (i− 1)i | 2 6 i 6 6} ∪ {26}. Suppose A satisfies Lemma
13 with G = W5. If we multiply a column of A by a nonzero element of F, then we do not
change the matroid represented by

(
I A

)
. Consequently we may presume that in each

column of A, the first nonzero entry is 1. Property 1 of Lemma 13 now tells us that

A =


0 1 1 1 1 1
a 0 b 0 0 b′

c d 0 d′ 0 0
e 0 f 0 f ′ 0
g 0 0 h 0 h′

i j 0 0 j′ 0

 ,

where the entries represented by letters are nonzero elements of F.
The submatrix of IAS(W5) corresponding to the subtransversal {φW5(4), φW5(5),

χW5(3), χW5(6)} is represented by the rank 3 matrix
0 0 1 1
0 0 1 1
0 0 0 0
1 0 1 0
0 1 0 1
0 0 0 0

 .
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Figure 1: W5, BW3 and W7.

Property 2 of Lemma 13 tells us that the corresponding submatrix of
(
I A

)
,

0 0 1 1
0 0 b b′

0 0 0 0
1 0 f 0
0 1 0 h′

0 0 0 0

 ,

is also of rank 3. We deduce that b = b′. Similar arguments tell us that d = d′, f = f ′,
h = h′ and j = j′.

Now, consider the transversal T = {φW5(1), χW5(2), χW5(3), χW5(4), χW5(5), χW5(6)}
of W (W5). The corresponding submatrix of

(
I A

)
is

1 1 1 1 1 1
0 0 b 0 0 b
0 d 0 d 0 0
0 0 f 0 f 0
0 0 0 h 0 h
0 j 0 0 j 0

 .

A direct calculation shows that the determinant of this matrix is 2bdfhj, which is nonzero
in F but 0 in GF (2). It follows that the transversal T is independent in M [

(
I A

)
] and

dependent in M [IAS(G)]; this contradicts property 2 of Lemma 13.
The proposition may be verified for W7 by a closely analogous argument.

We deduce the contrapositive of the implication 3⇒ 1 of Theorem 6.

Corollary 17. If Z3(G) is representable over some field F with char(F) 6= 2, then G is a
circle graph.

Proof. Suppose Z3(G) is representable over a field F with char(F) 6= 2. Lemmas 10 and 12
tell us that for every vertex-minor H of G, Z2(H) is also representable over F. According
to Proposition 16, it follows that no vertex-minor of G is isomorphic to W5, BW3 or W7.
Theorem 15 now tells us that G is a circle graph.
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G2 G1 

Figure 2: Fundamental graphs of M(K5) and M(K3,3).

Before proceeding we take a moment to observe that in general, Lemma 12 and Corol-
lary 17 do not hold for Z2(G). Let G be a bipartite graph which is a fundamental graph
for the cycle or cocycle matroid of some nonplanar graph. Then M [IA(G)] is isomorphic
to the direct sum M ⊕M∗, where M is the cycle matroid of the nonplanar graph. It fol-
lows that M ⊕M∗ is a strict sheltering matroid for Z2(G). It is well known that graphic
and cographic matroids are representable over all fields [25, Lemma 5.1.3 and Corollary
5.1.6], so M ⊕M∗ is representable over all fields. Hence Z2(G) is strictly representable
over all fields. However a theorem of deFraysseix [14] asserts that G cannot be a circle
graph.

Two such examples were discussed in [11, Section 8]. They are pictured in Figure 2;
G1 is a fundamental graph for M(K5) and G2 is a fundamental graph for M(K3,3). It
is not hard to directly confirm deFraysseix’s assertion that neither G1 nor G2 is a circle
graph [14]; G1 has BW3 as a vertex-minor, and G2 has W5 as a vertex-minor.

4 Circuit partitions in 4-regular graphs

In this section we summarize some ideas and results from [32]; we refer to that paper for
a more detailed discussion.

If F is a 4-regular graph, then at each vertex v ∈ V (F ) there are three different tran-
sitions, i.e., partitions of the four incident half-edges into two pairs. We use T(F ) to
denote the set of transitions in F . We refer to a pair of half-edges incident at v as a single
transition. A single transition {h, h′} at v corresponds to two passages through v: h, v, h′

and h′, v, h. If C is an Euler system of F , then C can be used to label the elements
of T(F ) in the following way. First, orient each circuit of C. Then the transition at v
that pairs together half-edges which appear consecutively on the incident circuit of C is
denoted φC(v); the other transition that is consistent with the edge directions defined by
the incident circuit of C is denoted χC(v); and the third transition, which is inconsistent
with the edge directions defined by the incident circuit of C, is denoted ψC(v). These
transition labels are not changed if the orientations of some circuits of C are reversed.

The reappearance of the φ, χ, ψ symbols used to label elements of isotropic matroids is
no coincidence. If C is an Euler system of F , then there is a bijection W (I(C))↔ T(F )
given by φI(C)(v) ↔ φC(v), χI(C)(v) ↔ χC(v) and ψI(C)(v) ↔ ψC(v) for all v ∈ V (F ).
This bijection relates each transversal T ∈ T (I(C)) to a partition of E(F ) into edge-

the electronic journal of combinatorics 27(1) (2020), #P1.25 10



 Figure 3: Two circuit partitions and their touch-graphs.

disjoint circuits, and it turns out that the 3-matroid Z3(I(C)) is determined by these
partitions. Before giving details we should emphasize that according to the definition
given in the introduction, for us a “circuit” is a closed trail. In particular a circuit in a
4-regular graph must not visit any half-edge more than once, but it may visit a vertex
twice.

Definition 18. Let F be a 4-regular graph. A circuit partition of F is a partition of
E(F ) into edge-disjoint circuits.

A circuit partition P is determined by choosing one transition P (v) at each vertex v
of F . There are three transitions at each vertex, so there are 3|V (F )| circuit partitions.

Definition 19. Let P be a circuit partition in a 4-regular graph F . Then the touch-graph
Tch(P ) is the graph with a vertex vγ for each γ ∈ P and an edge ev for each v ∈ V (F ),
such that ev is incident on vγ in Tch(P ) if and only if γ is incident on v in F .

Examples of Definition 19 appear in Figure 3. On the left we see two circuit partitions
P and P ′ in a 4-regular graph F . To follow a circuit of P or P ′ walk along the edges
of F , making sure to maintain the line status (plain, heavy, or dashed) when traversing
a vertex. (The line status may change in the middle of an edge.) On the right we see
Tch(P ) and Tch(P ′).

If P is a circuit partition in F , then every half-edge h in F has a “shadow” half-edge
πP (h) in Tch(P ), defined in the following way. If h is incident on a vertex v, γ is the
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circuit of P that includes h, and {h, h′} is the single transition of P that includes h, then
πP (h) = πP (h′) is a half-edge of Tch(P ) that is contained in ev and incident on vγ. For
simplicity we use the notation πP (h) = h when P is clear from the context.

Also, every walk W = v1, e1, v2, . . . , ek−1, vk in F has a “shadow” πP (W ) = W , which
is a walk in Tch(P ). If γ1 is the circuit of P that includes e1, then vγ1 is the first vertex
of W . As we follow W in F , each time we pass through a vertex vi we traverse two
half-edges incident on vi; say h before vi, and h′ after vi. If the transition determined by
{h, h′} is not a transition of P , then the edge {h, h′} of Tch(P ) is added to W . If the
transition determined by {h, h′} is a transition of P , then no edge is added to W . (In this
instance we are walking along a circuit of P as we pass through v on W , so the “shadow”
is standing still on a vertex of Tch(P ).)

If W is a closed walk in F then W is a closed walk in Tch(P ). Of course W may be
much shorter than W ; for instance if W ∈ P then W is just vW .

Let D be a directed version of Tch(P ). Let F be a field, and for each directed walk W
in Tch(P ) let zD(W ) be the vector in FE(Tch(P )) obtained by tallying +1 in the e coordinate
each time W traverses e in accordance with the D direction, and −1 in the e coordinate
each time W traverses e against the D direction. Then the subspace of FE(Tch(P )) spanned
by {zD(W ) | W is a closed walk in Tch(P )} is the cycle space of Tch(P ) over F, denoted
ZD(Tch(P )). We refer to standard texts in graph theory, like [1], for detailed discussions
of cycle spaces.

Definition 20. Let F be a 4-regular graph with an Euler system C. For each v ∈
V (F ), there are two circuits obtained by following a circuit of C from v to v. These are
the induced circuits of C at v.

Theorem 21. ([32, Section 2]) Let C be an Euler system of a 4-regular graph F , and
let Γ be a set that includes one induced circuit of C at each v ∈ V (F ), along with an
orientation for that circuit. Then for every circuit partition P of F and every directed
version D of Tch(P ), {zD(γ) | γ ∈ Γ} spans ZD(Tch(P )) over both GF (2) and R.

We think of Theorem 21 as a surprising result because the touch-graphs of circuit
partitions in F are quite varied. There are touch-graphs in which all edges are loops (the
touch-graphs of the smallest circuit partitions, the Euler systems), touch-graphs in which
no edges are loops (the touch-graphs of the maximal circuit partitions), and many other
touch-graphs between these extremes. Despite this variation, Theorem 21 allows us to
describe spanning sets in the cycle spaces of all touch-graphs in a consistent way.

When citing Theorem 21, we use the notation Γ = {CΓ(v) | v ∈ V (F )}. Let
MR,Γ(C,P,D) be the V (F )×V (F ) matrix whose v row vector is obtained from zD(CΓ(v))
by relabelling according to the bijection ew ↔ w. Then the cycle space ZD(Tch(P )) over
R corresponds to the row space of MR,Γ(C,P,D). Over GF (2), ZD(Tch(P )) corresponds
to the row space of the matrix M(C,P ) obtained from MR,Γ(C,P,D) by reducing all
entries modulo 2. We can use the simple M(C,P ) notation when we work over GF (2)
because the value of MR,Γ(C,P,D)vw modulo 2 is independent of both D and Γ.

Theorem 21 implies that the matroid defined by MR,Γ(C,P,D) over R is the same as
the matroid defined by M(C,P ) over GF (2):
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Corollary 22. Let S be a subset of V (F ). Let MR(S) be the submatrix of MR,Γ(C,P,D)
consisting of columns corresponding to elements of S, and let M(S) be the matrix obtained
from MR(S) by reducing its entries modulo 2. Then the rank of M(S) over GF (2) is the
same as the rank of MR(S) over R.

Proof. Suppose that S is minimal among subsets of V (F ) for which the rank of M(S)
over GF (2) is not the same as the rank of MR(S) over R. If the rank of M(S) over GF (2)
is strictly larger than the rank of MR(S) over R, then the columns of M(S) are linearly
independent over GF (2) but the columns of MR(S) are linearly dependent over R, and
hence also over Q. That is, there are rational numbers rs, s ∈ S, not all 0, such that if
we multiply the s column of MR(S) by rs for each s ∈ S, then the sum of the resulting
column vectors is 0. Eliminating common factors and multiplying by denominators, we
may presume that the numbers rs are relatively prime integers. Then not all of the rs are
divisible by 2, so they define a linear dependence of the columns of M(S) over GF (2),
contradicting the hypothesis that the columns of M(S) are independent over GF (2). We
conclude that the rank of M(S) over GF (2) is strictly smaller than the rank of MR(S)
over R.

Thus the minimality of S guarantees that the columns of MR(S) are linearly inde-
pendent over R, but linearly dependent when their entries are reduced modulo 2, and no
proper subset of the columns of M(S) is dependent. Let κ(S) ∈ GF (2)V (F ) be the vector
whose v entry is 1 if and only if v ∈ S. Then κ(S) is an element of the orthogonal comple-
ment of the row space of M(C,P ) over GF (2), so Theorem 21 tells us that {es | s ∈ S}
is a cocycle of Tch(P ). That is, there is a proper subset P0 of P such that S is the set
of vertices of F incident on both a circuit from P0 and a circuit from P \ P0. Let κR(S)
be the vector in ZV (F ) whose v coordinate is nonzero if and only if v ∈ S, with the v
coordinate equal to 1 if ev is directed in D from a circuit in P0 to a circuit in P \P0, and
the v coordinate equal to −1 if ev is directed in D from a circuit in P \ P0 to a circuit in
P0. Then κR(S) is a cocycle of D, so κR(S) is an element of the orthogonal complement of
ZD(Tch(P )) over R. But according to Theorem 21, this contradicts the hypothesis that
the columns of MR(S) are linearly independent over R.

It is not difficult to describe the matrix MR,Γ(C,P,D) explicitly. Given a vertex v, the
v row of MR,Γ(C,P,D) is obtained by following CΓ(v) in F , and tallying contributions to
the “shadow” of CΓ(v) in Tch(P ). At a vertex w 6= v, the φC(w) transition of F appears
in CΓ(v), so the contribution of a passage of CΓ(v) through w is 0 if P (w) = φC(w),
and ±1 if P (w) 6= φC(w). Considering that CΓ(v) may pass through w twice, we see
that MR,Γ(C,P,D)vw ∈ {−2,−1, 0, 1, 2}. At v itself, the χC(v) transition of F appears
in CΓ(v), so the contribution of a passage of CΓ(v) through v is 0 if P (v) = χC(v),
and ±1 if P (v) 6= χC(v). Considering that CΓ(v) passes through v once, we see that
MR,Γ(C,P,D)vv ∈ {−1, 0, 1}.

Notice that if Γ is changed by reversing the orientation of CΓ(v), then the v row of
MR,Γ(C,P,D) is multiplied by −1. Also, if D is changed by reversing the direction of ew,
then the w column of MR,Γ(C,P,D) is multiplied by −1.
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The purpose of the subindex R in MR,Γ(C,P,D) is to remind us that in general,
Theorem 21 fails over fields F with char(F) > 2. As an example, consider the 4-
regular graph F with V (F ) = {a, b, c}, which has two edges connecting each pair of
vertices. We index the edges of F as e1, . . . , e6 in such a way that an Euler circuit C
is a, e1, b, e2, c, e3, a, e4, b, e5, c, e6. Let P be the circuit partition given by the transitions
χC(a), χC(b), and ψC(c). Then P has only one element, the Euler circuit a, e1, b, e5, c, e2, b,
e4, a, e6, c, e3. Choose a directed version D of Tch(P ) so that the initial half-edge of ea
involves the single transition {e1, e3}, the initial half-edge of eb involves the single tran-
sition {e1, e5} and the initial half-edge of ec involves the single transition {e2, e5}. If
Γ = {e1e2e3, e5e6e1, e3e4e5} then

detMR,Γ(C,P,D) = det

 0 1 1
−1 0 1
1 −1 1

 = 3.

The fact that the determinant of MR,Γ(C,P,D) is 0 (mod 3) indicates that the row space
of MR,Γ(C,P,D) is a proper subspace of ZD(Tch(P )) over GF (3).

A weak version of Theorem 21 does hold over all fields:

Proposition 23. Let C be an Euler system of a 4-regular graph F , let Γ be a set of
oriented induced circuits of C, and let F be a field. Then for every circuit partition P
of F and every directed version D of Tch(P ), {zD(γ) | γ ∈ Γ} is contained in the cycle
space of Tch(P ) over F.

Proof. If γ ∈ Γ, then γ is a closed walk in Tch(P ), so zD(γ) is an element of ZD(Tch(P )).

5 Theorem 6 over R

In this section we show that if F is a 4-regular graph with an Euler system C, then the
machinery of Section 4 provides an R-representable sheltering matroid for Z3(I(C)). The
basic idea is to construct a single matrix which contains MR,Γ(C,P,D) matrices for all
circuit partitions of F . In order to do this we need a systematic way to choose oriented
versions of touch-graphs. The approach we use is not the only possible one, but it is
convenient because it is easy to describe and it is connected with signed interlacement
systems that have been discussed by several authors [2, 19, 21, 22, 31, 32].

Let C be an oriented Euler system of a 4-regular graph F , i.e., each circuit of C is
given with an orientation. Let Γo be a set of consistently oriented induced circuits of C,
i.e., each CΓo(v) ∈ Γo is oriented consistently with the circuit of C that contains it. For
each v ∈ V (F ), we index the four half-edges incident on v as hv1, h

v
2, h

v
3, h

v
4 so that CΓo(v) is

v, hv2, . . . , h
v
3, v, and the oriented circuit of C incident at v is . . . , hv1, v, h

v
2, . . . , h

v
3, v, h

v
4, . . ..

Definition 24. Define an integer matrix

IASΓo(C) =
(
I A B

)
as follows.
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1. I is the V (F )× V (F ) identity matrix.

2. A is the V (F )× V (F ) matrix given by:

Avw =


1, if CΓo(v) includes hw3 and hw4 , but neither hw1 nor hw2
−1, if CΓo(v) includes hw1 and hw2 , but neither hw3 nor hw4
0, otherwise

3. B is the V (F )× V (F ) matrix given by:

Bvw =


0, if CΓo(v) includes none of hw1 , h

w
2 , h

w
3 , h

w
4

1, if CΓo(v) includes precisely two of hw1 , h
w
2 , h

w
3 , h

w
4

2, if CΓo(v) includes all four of hw1 , h
w
2 , h

w
3 , h

w
4

In particular, every v ∈ V (F ) has Avv = 0 and Bvv = 1.
The columns of IASΓo(C) are indexed by elements of T(F ) in the following way: for

each w ∈ V (F ) the w column of I corresponds to φC(w), the w column of A corresponds
to χC(w), and the w column of B corresponds to ψC(w).

Definition 25. Let C be an oriented Euler system of F , Γo a set of consistently oriented
induced circuits of C, and P a circuit partition of F . Then DΓo denotes the directed
version of Tch(P ) in which for each v ∈ V (F ), the initial half-edge of ev is πP (hv3) = hv3.

Proposition 26. Let C be an oriented Euler system of F , Γo a set of consistently oriented
induced circuits of C, and P a circuit partition of F . Then MR,Γo(C,P,DΓo) is identical
to the V (F )× V (F ) submatrix of IASΓo(C) whose columns correspond to the transitions
in P .

Proof. Let w ∈ V (F ).
Suppose P (w) = φC(w). For v 6= w, a passage of CΓo(v) through w is hw1 , w, h

w
2 or

hw3 , w, h
w
4 . Either way, CΓo(v) follows a circuit of P through w, so MR,Γo(C,P,DΓo)vw = 0.

On the other hand, the passage of CΓo(w) through w is hw3 , w, h
w
2 . This passage agrees

with the direction of ew in DΓo , so MR,Γo(C,P,DΓo)ww = 1. We see that the w column of
the identity matrix is the same as the w column of MR,Γo(C,P,DΓo).

If P (w) = χC(w) then {hw1 , hw4 } and {hw2 , hw3 } are the single transitions of P at w.
The initial half-edge of ew in DΓo is hw3 = hw2 , and the terminal half-edge is hw1 = hw4 .
The passage of CΓo(w) through w is hw3 , w, h

w
2 , so MR,Γo(C,P,DΓo)ww = 0. Suppose

v 6= w ∈ V (F ). If CΓo(v) includes the passage hw1 , w, h
w
2 through w then as this passage

does not agree with the direction of ew in DΓo , it contributes −1 to MR,Γo(C,P,DΓo)vw.
On the other hand, if CΓo(v) includes the passage hw3 , w, h

w
4 through w then this passage

contributes 1 to MR,Γo(C,P,DΓo)vw. We see that the w column of A is the same as the w
column of MR,Γo(C,P,DΓo).

If P (w) = ψC(w) then {hw1 , hw3 } and {hw2 , hw4 } are the single transitions of P at w.
The initial half-edge of ew in DΓo is hw3 = hw1 , and the terminal half-edge is hw2 = hw4 .
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The passage of CΓo(w) through w is hw3 , w, h
w
2 , so MR,Γo(C,P,DΓo)ww = 1. Suppose

v 6= w ∈ V (F ). If CΓo(v) includes the passage hw1 , w, h
w
2 through w, then this passage

contributes 1 to MR,Γo(C,P,DΓo)vw. If CΓo(v) includes the passage hw3 , w, h
w
4 through w,

then this passage also contributes 1 to MR,Γo(C,P,DΓo)vw. We see that the w column of
B is the same as the w column of MR,Γo(C,P,DΓo).

Corollary 27. Let C be an oriented Euler system of F , and Γo a set of consistently
oriented induced circuits of C. Let MR[IASΓo(C)] be the matroid represented over R by
IASΓo(C). Then MR[IASΓo(C)] is a strict 3-sheltering matroid for Z3(I(C)).

Proof. If T is a transversal of W (G) then F has a circuit partition P , determined by the
transitions corresponding to elements of T . The submatrix of IASΓo(C) corresponding
to T is formed by using the columns of IASΓo(C) corresponding to these transitions, so
Proposition 26 tells us that this submatrix is MR,Γo(C,P,DΓo). Corollary 22 tells us that
the rank of each set S ⊆ T of columns of this matrix is the same over GF (2) and R.

It is clear from Definition 24 that when we reduce IASΓo(C) modulo 2, the resulting
matrix is IAS(I(C)); hence the last sentence of the preceding paragraph tells us that
MR[IASΓo(C)] is a 3-sheltering matroid for Z3(I(C)). It is also clear from Definition 24
that the rank of IASΓo(C) is n, so MR[IASΓo(C)] is a strict sheltering matroid.

Corollary 27 gives us the implication 1 ⇒ 3 of Theorem 6. The implication 3 ⇒ 1
was verified in Section 3, so we have demonstrated that conditions 1 and 3 are equivalent.
The implication 2⇒ 3 is obvious, but 1⇒ 2 is difficult; as noted at the end of Section 4,
Theorem 21 does not hold over fields of odd characteristic, because the determinant of
MR,Γo(C,P,D) may be an odd integer not in {−1, 1}. (Theorem 21 does guarantee that
the determinant of MR,Γo(C,P,D) cannot be an even integer other than 0.) The key
to our proof of Theorem 6 is the fact that for certain special sets of induced circuits,
detMR,Γo(C,P,D) ∈ {−1, 0, 1} is always true. We verify this fact in Section 6.

6 Based sets of induced circuits

Let F be a 4-regular graph, with an Euler system C and an edge e. Definition 20 implies
that for each vertex v in the same connected component of F as e, one induced circuit of
C at v includes e, and the other excludes e.

Definition 28. Let E be a set that contains one edge from each component of F , and C
an Euler system of F . A set of oriented induced circuits of C that exclude every element
of E is said to be based on E. If Γ is based on E then we also say that the elements of
E are base edges for Γ.

We use the notation ΓE to indicate that Γ is based on E. Notice that if we are given
C and E then there are 2|E| different sets denoted ΓE, distinguished by the orientations
of the induced circuits.

The usefulness of based induced circuits stems from Lemma 31. Before stating the
lemma, we take a moment to recall Kotzig’s theorem regarding Euler systems of 4-regular
graphs [20].
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Definition 29. Let F be a 4-regular graph, with an Euler system C and a vertex v.
Suppose the circuit of C incident at v is

. . . , hv1, v, h
v
2, h
′
1, w1, h

′
2, . . . , h

′
2k−1, wk, h

′
2k, h

v
3, v, h

v
4, . . . ,

where h′1, . . . , h
′
2k are half-edges and w1, . . . , wk are vertices. Then the κ-transform C ∗ v

is the Euler system obtained from C by replacing the circuit incident at v with

. . . , hv1, v, h
v
3, h
′
2k, wk, h

′
2k−1, . . . , h

′
2, w1, h

′
1, h

v
2, v, h

v
4, . . . .

That is to say, C ∗ v is obtained from C by changing the Euler circuit incident at
v, so that one of the induced circuits at v is reversed. As C and C ∗ v are unoriented
Euler systems, it does not matter which of the two induced circuits is reversed; C ∗ v is
determined by C and v. Kotzig’s theorem is that the Euler systems of a 4-regular graph
are all connected to each other by κ-transformations:

Theorem 30. ([20]) Let F be a 4-regular graph with Euler systems C and C ′. Then there
is a list v1, . . . , vr of vertices of F with C ′ = (· · · ((C ∗ v1) ∗ v2) ∗ · · · ∗ vr−1) ∗ vr.

Lemma 31. Let E be a set of base edges in a 4-regular graph F , let C and C̃ be Euler
systems of F , and let ΓE and Γ̃E be based sets of oriented induced circuits of C and C̃
(respectively). Then these two properties hold.

I. For every circuit partition P and every directed version D of Tch(P ), the matrices

MR,ΓE
(C,P,D) and MR,Γ̃E

(C̃, P,D) are row equivalent over Z. That is, one matrix
can be obtained from the other using the operations “multiply a row by −1” and “add
an integer multiple of one row to a different row”.

II. There is a single sequence of row operations which transforms MR,ΓE
(C,P,D) into

MR,Γ̃E
(C̃, P,D) for every choice of P and D.

Proof. According to Theorem 30, it suffices to verify properties I and II when C̃ = C ∗ v.
It is easy to see that this partial reversal affects some transition labels at vertices that
appear precisely once on CΓE

(v): φC(v) = ψC̃(v), ψC(v) = φC̃(v), and if w 6= v appears
precisely once on CΓE

(v) then χC(w) = ψC̃(w) and ψC(w) = χC̃(w). Otherwise, transition

labels with respect to C and C̃ are the same.
In order to avoid proliferation of subcases we assume that the Euler circuits included

in C and C̃ are given with orientations, the induced circuits included in ΓE and Γ̃E respect
the orientations of the circuits of C and C̃, the circuits of C ∩ C̃ are oriented the same
way in C and C̃, and the one circuit of C̃ \C is oriented as in Definition 29. As mentioned
before the example at the end of Section 4, these assumptions do not involve a significant
loss of generality, because the effect of reversing the orientation of an induced circuit is
simply to multiply the corresponding row of MR,ΓE

(C,P,D) or MR,Γ̃E
(C̃, P,D) by −1.

Property I. Suppose first that v is a vertex with P (v) = ψC(v).
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1. Suppose w 6= v ∈ V (F ) and CΓE
(w) does not intersect CΓE

(v). Then CΓE
(w) and

C̃Γ̃E
(w) are the same circuit in F , so they provide the same w row for MR,ΓE

(C,P,D) and

MR,Γ̃E
(C̃, P,D).

2. Suppose w ∈ V (F ) and CΓE
(w) is contained in CΓE

(v). (It may be that v = w.)

Then CΓE
(w) and C̃Γ̃E

(w) are the same circuit in F , but oriented in opposite directions.

It follows that the w row of MR,ΓE
(C,P,D) is the negative of the w row of MR,Γ̃E

(C̃, P,D).

3. Suppose w 6= v ∈ V (F ) and CΓE
(w) contains CΓE

(v). Then the vectors zD(CΓE
(w))

and zD(C̃Γ̃E
(w)) are obtained using the same contributions from passages through vertices

outside CΓE
(v), and opposite contributions from passages through vertices inside CΓE

(v),

other than v itself. It follows that if x 6= v ∈ V (F ) then the x coordinates of zD(C̃Γ̃E
(w))

and zD(CΓE
(w))− 2 · zD(CΓE

(v)) are the same.
In contrast, the situation at v is complicated by the fact that the passages of CΓE

(v)
and CΓE

(w) through v are different. The circuit of C incident on v is . . . , hv1, v, h
v
2, . . . , h

v
3,

v, hv4, . . ., where CΓE
(v) = v, hv2, . . . , h

v
3, v does not contain any edge e ∈ E. Then the fact

that P (v) = ψC(v) indicates that the single transitions at v included in P are {hv1, hv3}
and {hv2, hv4}. It follows that the passages hv1, v, h

v
2; hv1, v, h

v
4; hv3, v, h

v
2 and hv3, v, h

v
4 all have

the same “shadow” in Tch(P ). Let us suppose for convenience that the direction of ev in
D follows the common shadow of these four passages through v. (If the opposite is true
then all the v coordinates mentioned in the next paragraph should be multiplied by −1;
but the conclusion of the paragraph after that is unchanged.)

The passages of CΓE
(w) through v are hv1, v, h

v
2 and hv3, v, h

v
4, so the v coordinate

of zD(CΓE
(w)) is 2. The passage of CΓE

(v) through v is hv3, v, h
v
2, so the v coordinate

of zD(CΓE
(v)) is 1. It follows that the v coordinate of zD(CΓE

(w)) − 2 · zD(CΓE
(v)) is

0. As the passages of C̃Γ̃E
(w) through v are hv1, v, h

v
3 and hv2, v, h

v
4, the v coordinate of

zD(C̃Γ̃E
(w)) is also 0.

We see that zD(C̃Γ̃E
(w)) = zD(CΓE

(w)) − 2 · zD(CΓE
(v)). That is, the w row of

MR,Γ̃E
(C̃, P,D) is obtained by subtracting 2 times the v row of MR,ΓE

(C,P,D) from the
w row of MR,ΓE

(C,P,D).
4. Suppose now that CΓE

(w) intersects CΓE
(v) but neither induced circuit contains the

other. Then C̃Γ̃E
(w) is obtained from CΓE

(w) by replacing CΓE
(v)∩CΓE

(w) with CΓE
(v)\

CΓE
(w), oriented in the opposite direction from its orientation in CΓE

(v). Consequently

zD(C̃Γ̃E
(w)) = zD(CΓE

(w))− zD(CΓE
(v)), as far as the x coordinates with x /∈ {v, w} are

concerned.
For v and w, though, we have complications similar to the complications at v in part

3. As discussed in part 3, the passages of CΓE
(v) and CΓE

(w) through v have the same

shadow in Tch(P ), so the v coordinate of zD(CΓE
(w))−zD(CΓE

(v)) is 0. The v coordinate

of zD(C̃Γ̃E
(w)) is also 0, because P (v) = φC̃(v).

We claim that the w coordinates of zD(CΓE
(w)) − zD(CΓE

(v)) and zD(C̃Γ̃E
(w)) are

the same, too. To verify this claim we need a detailed analysis of half-edges like the one
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in part 3. A circuit of C is of the form . . . , hw1 , w, h
w
2 , . . . , h

w
3 , w, h

w
4 , . . ., with CΓE

(w) =
w, hw2 , . . . , h

w
3 , w not containing any e ∈ E.

If P (w) = φC(w) then the single transitions at w included in P are {hw1 , hw2 } and
{hw3 , hw4 }. It follows that the passages hw1 , w, h

w
3 ; hw1 , w, h

w
4 ; hw2 , w, h

w
3 and hw2 , w, h

w
4 all

have the same “shadow” in Tch(P ). Let us assume that the direction of ew in D follows
this shadow. The passage of CΓE

(w) through w is hw3 , w, h
w
2 , so the w coordinate of

zD(CΓE
(w)) is −1. The passage of CΓE

(v) through w might be hw1 , w, h
w
2 or hw3 , w, h

w
4 ;

{hw1 , hw2 } and {hw3 , hw4 } are single transitions of P , so the w coordinate of zD(CΓE
(v)) is 0.

The passage of C̃Γ̃E
(w) through w is hw3 , w, h

w
1 or hw4 , w, h

w
2 . Either way, the w coordinate

of zD(C̃Γ̃E
(w)) is −1, the same as the w coordinate of zD(CΓE

(w))− zD(CΓE
(v)).

If P (w) = χC(w) then the single transitions at w included in P are {hw1 , hw4 } and
{hw2 , hw3 }, so the passages hw1 , w, h

w
2 ; hw1 , w, h

w
3 ; hw4 , w, h

w
2 and hw4 , w, h

w
3 all have the same

“shadow” in Tch(P ). Let us assume that the direction of ew in D follows this shadow.
The passage of CΓE

(w) through w is hw3 , w, h
w
2 ; as {hw2 , hw3 } is a single transition of P , the

w coordinate of zD(CΓE
(w)) is 0. The passage of CΓE

(v) through w might be hw1 , w, h
w
2 or

hw3 , w, h
w
4 ; we refer to these possibilities as subcases (i) and (ii), respectively. The passage

of C̃Γ̃E
(w) through w is hw3 , w, h

w
1 in subcase (i) and hw4 , w, h

w
2 in subcase (ii); in either

subcase the shadows in Tch(P ) of the passages of CΓE
(v) and C̃Γ̃E

(w) through w are

opposites of each other. Consequently the w coordinates of zD(CΓE
(w))−zD(CΓE

(v)) and

zD(C̃Γ̃E
(w)) are the same if P (w) = χC(w).

The last possibility to consider is P (w) = ψC(w). Then the single transitions at w
included in P are {hw1 , hw3 } and {hw2 , hw4 }, and the passages hw1 , w, h

w
2 ; hw1 , w, h

w
4 ; hw3 , w, h

w
2

and hw3 , v, h
w
4 all have the same “shadow” in Tch(P ). We presume that the direction of

ew in D follows this shadow. The passage of CΓE
(w) through w is hw3 , w, h

w
2 , so the w

coordinate of zD(CΓE
(w)) is 1. The passage of CΓE

(v) through w is hw1 , w, h
w
2 or hw3 , w, h

w
4 ,

so the w coordinate of zD(CΓE
(v)) is 1. The passage of C̃Γ̃E

(w) through w is hw3 , w, h
w
1

or hw4 , w, h
w
2 , so the w coordinate of zD(C̃Γ̃E

(w)) is 0. We see that the w coordinates of

zD(CΓE
(w))− zD(CΓE

(v)) and zD(C̃Γ̃E
(w)) are both 0.

Parts 1–4 complete the proof in case P (v) = ψC(v). As noted early in the argument,
P (v) = ψC(v) implies P (v) = φC̃(v). In the same way, the case P (v) = φC(v) includes
P (v) = ψC̃(v). Consequently the argument for P (v) = φC(v) is obtained by interchanging

C and C̃ in parts 1–4.
It remains to consider the possibility that P (v) = χC(v). The argument follows the

same outline as above, but the details are different in some places.
5. If CΓE

(w) does not intersect CΓE
(v) then CΓE

(w) and C̃Γ̃E
(w) are the same circuit

in F , so zD(CΓE
(w)) = zD(C̃Γ̃E

(w)).

6. If CΓE
(w) is contained in CΓE

(v) then CΓE
(w) and C̃Γ̃E

(w) are the same circuit in

F , but with opposite orientations. Hence zD(CΓE
(w)) = −zD(C̃Γ̃E

(w)).

7. Suppose v 6= w and CΓE
(w) contains CΓE

(v). Then zD(CΓE
(w)) and zD(C̃Γ̃E

(w)) are
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obtained using the same contributions from passages through vertices outside CΓE
(v), and

opposite contributions from passages through vertices inside CΓE
(v). Hence zD(C̃Γ̃E

(w)) =

zD(CΓE
(w))− 2 · zD(CΓE

(v)) as far as passages inside or outside of CΓE
(v) are concerned.

We must still discuss the v coordinate. A circuit of C is . . . , hv1, v, h
v
2, . . . , h

v
3, v, h

v
4, . . .,

where CΓE
(v) = v, hv2, . . . , h

v
3, v does not contain any e ∈ E. The fact that P (v) = χC(v)

indicates that the single transitions at v included in P are {hv1, hv4} and {hv3, hv2}. It follows
that the passages hv1, v, h

v
2; hv1, v, h

v
3; hv4, v, h

v
2 and hv4, v, h

v
3 all have the same “shadow” in

Tch(P ); we presume that the direction of ev in D follows the common shadow of these
four passages through v. The passages of CΓE

(w) through v are hv1, v, h
v
2 and hv3, v, h

v
4,

so the v coordinate of zD(CΓE
(w)) is 1 − 1 = 0. The passage of CΓE

(v) through v is

hv3, v, h
v
2, so the v coordinate of zD(CΓE

(v)) is 0. It follows that the v coordinate of

zD(CΓE
(w))− 2 · zD(CΓE

(v)) is 0. As the passages of C̃Γ̃E
(w) through v are hv1, v, h

v
3 and

hv2, v, h
v
4, the v coordinate of zD(C̃Γ̃E

(w)) is also 1− 1 = 0.

Just as before, it follows that zD(C̃Γ̃E
(w)) = zD(CΓE

(w))− 2 · zD(CΓE
(v)).

8. If CΓE
(w) intersects CΓE

(v) but neither contains the other then just as before,

zD(C̃Γ̃E
(w)) = zD(CΓE

(w))−zD(CΓE
(v)) as far as the contributions of vertices x /∈ {v, w}

are concerned.
As in part 7, a circuit of C is of the form . . . , hv1, v, h

v
2, . . . , h

v
3, v, h

v
4, . . .; the single

transitions at v included in P are {hv1, hv4} and {hv3, hv2}; and the direction of ev in D
follows the common “shadow” of the passages hv1, v, h

v
2; hv1, v, h

v
3; hv4, v, h

v
2 and hv4, v, h

v
3.

The v coordinate of zD(CΓE
(v)) is 0, because P (v) = χC(v). If CΓE

(w) includes the

passage hv1, v, h
v
2 through v then the v coordinate of zD(CΓE

(w)) is 1. Also, C̃Γ̃E
(w)

includes the passage hv1, v, h
v
3 through v, so the v coordinate of zD(C̃Γ̃E

(w)) is 1 too. On
the other hand, if CΓE

(w) includes the passage hv3, v, h
v
4 through v then the v coordinates

of zD(CΓE
(w)) and zD(C̃Γ̃E

(w)) are both −1. We see that the v coordinates of zD(C̃Γ̃E
(w))

and zD(CΓE
(w))− zD(CΓE

(v)) are always the same.

We claim that in addition, the w coordinates of zD(C̃Γ̃E
(w)) and zD(CΓE

(w)) −
zD(CΓE

(v)) are the same. To verify this claim we can use the same argument as in
part 4; the different value of P (v) is irrelevant.

Property II. In the argument above, parts 1 and 5 have zD(C̃Γ̃E
(w)) = zD(CΓE

(w)),

parts 2 and 6 have zD(C̃Γ̃E
(w)) = −zD(CΓE

(w)), parts 3 and 7 have zD(C̃Γ̃E
(w)) =

zD(CΓE
(w)) − 2 · zD(CΓE

(v)), and parts 4 and 8 have zD(C̃Γ̃E
(w)) = zD(CΓE

(w)) −
zD(CΓE

(v)). This is not quite enough as the case P (v) = φC(v) was not discussed in detail,

but instead described by interchanging C and C̃ in parts 1—4. When we interchange C

and C̃ in the equalities zD(C̃Γ̃E
(w)) = zD(CΓE

(w)) and zD(C̃Γ̃E
(w)) = −zD(CΓE

(w)), we

obtain the same equalities. When we interchange C and C̃ in zD(C̃Γ̃E
(w)) = zD(CΓE

(w))−
2 · zD(CΓE

(v)) we obtain zD(CΓE
(w)) = zD(C̃Γ̃E

(w)) − 2 · zD(C̃Γ̃E
(v)) or equivalently,
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zD(CΓE
(w)) + 2 · zD(C̃Γ̃E

(v)) = zD(C̃Γ̃E
(w)). This is the same as the original equal-

ity because part 2 tells us that zD(C̃Γ̃E
(v)) = −zD(CΓE

(v)). Similarly, when we inter-

change C and C̃ in zD(C̃Γ̃E
(w)) = zD(CΓE

(w)) − zD(CΓE
(v)), we obtain zD(CΓE

(w)) =

zD(C̃Γ̃E
(w)) − zD(C̃Γ̃E

(v)), or zD(CΓE
(w)) + zD(C̃Γ̃E

(v)) = zD(C̃Γ̃E
(w)); this is the same

as the original equality because zD(C̃Γ̃E
(v)) = −zD(CΓE

(v)).

It follows that property II holds when ΓE, Γ̃E respect the assumption about orienta-
tions of induced circuits mentioned at the beginning of the argument above. To deal with
induced circuits that might not respect this assumption, we might have to multiply some
rows by −1; but the same rows will require this multiplication for every P . It follows that
property II holds when C̃ is a κ-transform of C, for all choices of ΓE and Γ̃E.

Definition 32. Let C be an Euler system of a 4-regular graph F , and Γ a set of oriented
induced circuits of C. If v ∈ V (F ) then the “shadow” of CΓ(v) in Tch(C) includes only
one edge: CΓ(v) = ev. We denote by DΓ the directed version of Tch(C) in which for each
v ∈ V (F ), the direction of ev is chosen so that when we traverse CΓ(v) according to the
orientation of CΓ(v), our shadow traverses ev in the DΓ direction.

That is, DΓ is the directed version of Tch(C) with MR,Γ(C,C,DΓ) = I.

Theorem 33. Suppose E is a set of base edges in a 4-regular graph F , C and C̃ are
Euler systems of F , and ΓE and Γ̃E are based sets of oriented induced circuits of C and
C̃ (respectively).

Then for every circuit partition P of F and every directed version D of Tch(P ),

MR,Γ̃E
(C̃, P,D) = MR,Γ̃E

(C̃, C,DΓE
) ·MR,ΓE

(C,P,D).

Moreover,
MR,Γ̃E

(C̃, C,DΓE
) = MR,ΓE

(C, C̃,DΓ̃E
)−1.

Proof. Let A be the product of elementary matrices corresponding to the row operations
of Lemma 31. Then Lemma 31 tells us that for every circuit partition P and every directed
version D of Tch(P ), MR,Γ̃E

(C̃, P,D) = A ·MR,ΓE
(C,P,D). In particular, A = A · I =

A ·MR,ΓE
(C,C,DΓE

) = MR,Γ̃E
(C̃, C,DΓE

).

Taking P = C̃ and D = DΓ̃E
, the equality just proved tells us that

MR,Γ̃E
(C̃, C,DΓE

) ·MR,ΓE
(C, C̃,DΓ̃E

) = MR,Γ̃E
(C̃, C̃,DΓ̃E

) = I.

We refer to the equalities of Theorem 33 as naturality properties of the MR,ΓE
(C,P,D)

matrices.

Corollary 34. Let C be an Euler system of a 4-regular graph F , and let ΓE be a based set
of oriented induced circuits of C. Then detMR,ΓE

(C,P,D) ∈ {−1, 0, 1} for every circuit
partition P of F and every directed version D of Tch(P ).
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Proof. If P is not an Euler system then Tch(P ) has at least one non-loop edge, so the
dimension of the cycle space of Tch(P ) is < |V (F )|. According to Theorem 21, this
dimension is the same as the rank of MR,ΓE

(C,P,D), so detMR,ΓE
(C,P,D) = 0.

If P = C̃ is an Euler system and D = DΓ̃E
, Theorem 33 tells us that MR,Γ̃E

(C,P,D)−1

is a matrix of integers; this can only happen if detMR,Γ̃E
(C,P,D) = ±1. If D 6=

DΓ̃E
then as mentioned a couple of paragraphs after Theorem 21, MR,Γ̃E

(C,P,D) is
transformed into MR,Γ̃E

(C,P,DΓ̃E
) by multiplying some columns by −1. Consequently

detMR,Γ̃E
(C,P,D) = ± detMR,Γ̃E

(C,P,DΓ̃E
) = ±± 1 = ±1.

Corollary 34 implies that for based sets of induced circuits, Theorem 21 holds over all
fields.

Theorem 35. Let C be an Euler system of a 4-regular graph F , and let ΓE be a based
set of oriented induced circuits of C. Let P be a circuit partition of F and D a directed
version of Tch(P ). Then for every field F, the row space of MR,ΓE

(C,P,D) over F is
equal to the cycle space of Tch(P ) over F.

Proof. Proposition 23 tells us that the row space of MR,ΓE
(C,P,D) over F is contained in

the cycle space of Tch(P ) over F. To prove that the two spaces are equal, then, it suffices
to prove that they have the same dimension.

As Theorem 21 holds over R, the dimension of the cycle space of Tch(P ) over R equals
the rank of MR,ΓE

(C,P,D) over R. It is well known that the dimension of the cycle space
of a graph equals the number of edges excluded from a maximal forest; in particular, this
dimension is the same over all fields. Consequently proving the proposition reduces to
proving that MR,ΓE

(C,P,D) has the same rank over F and R.
The smallest possible value of |P |, the number of circuits in P , is c(F ), the number

of connected components in F . If |P | = c(F ) then P is an Euler system of F , and Corol-
lary 34 tells us that detMR,ΓE

(C,P,D) = ±1 is nonzero in both F and R. Consequently
the rank of MR,ΓE

(C,P,D) is n over both F and R.
We proceed using induction on |P | > c(F ). There must be a component of F that

contains more than one circuit of P , and this component must contain a vertex v incident
on two distinct circuits of P . Let P ′ be a circuit partition that involves the same transitions
as P , except that P ′(v) 6= P (v). Then P ′ includes the same circuits as P , except that
the two circuits of P incident at v are united in one circuit of P ′. (Two circuit partitions
related in this way are pictured in Figure 3.) It follows that Tch(P ′) is the graph obtained
from Tch(P ) by contracting the edge ev and replacing it with a loop, so the dimension of
the cycle space of Tch(P ′) is one more than the dimension of the cycle space of Tch(P ).

Let D′ be the directed version of Tch(P ′) in which edge directions are inherited from
D. As |P ′| = |P |−1, the inductive hypothesis tells us that MR,ΓE

(C,P ′, D′) has the same
rank over F and R. The only column of MR,ΓE

(C,P ′, D′) that is not equal to the corre-
sponding column of MR,ΓE

(C,P,D) is the v column, so the ranks of MR,ΓE
(C,P ′, D′) and

MR,ΓE
(C,P,D) cannot differ by more than 1. It follows that the rank of MR,ΓE

(C,P,D)
over F is at least the dimension of the cycle space of Tch(P ), which is the rank of
MR,ΓE

(C,P,D) over R.
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On the other hand, any relation involving columns of MR,ΓE
(C,P,D) over R can be

expressed with coefficients from Z, so it reduces to a linear relation involving columns of
MR,ΓE

(C,P,D) over F. Consequently the rank of MR,ΓE
(C,P,D) over R is at least the

rank of MR,ΓE
(C,P,D) over F. We conclude that MR,ΓE

(C,P,D) has the same rank over
F and R.

Corollary 36. The nullity of MR,ΓE
(C,P,D) over F is equal to |P | − c(F ).

Proof. For any graph G, the dimension of the cycle space is |E(G)| − |V (G)| + c(G).
Therefore Theorem 35 tells us that the rank of MR,ΓE

(C,P,D) is |V (F )|−|P |+c(Tch(P )).
As MR,ΓE

(C,P,D) has |V (F )| rows, we conclude that the nullity is |P | − c(Tch(P )). It
is not hard to see that c(Tch(P )) = c(F ); details are provided in [32, Section 2].

7 Completing the proof of Theorem 6

Proposition 26 and Theorem 33 imply the following.

Corollary 37. Let E be a set of base edges in a 4-regular graph F , let C and C̃ be
oriented Euler systems of F , and let ΓoE and Γ̃oE be sets of based, consistently oriented

induced circuits of C and C̃, respectively.
Then IASΓ̃o

E
(C̃) can be obtained from MR,Γ̃o

E
(C̃, C,DΓo

E
) · IASΓo

E
(C) by multiplying

some columns by −1.

Proof. By Theorem 33, MR,Γ̃o
E

(C̃, P,DΓo
E

) = MR,Γ̃o
E

(C̃, C,DΓo
E

) ·MR,Γo
E

(C,P,DΓo
E

) for ev-

ery circuit partition P of F . Recall from Section 4 that MR,Γ̃o
E

(C̃, P,DΓ̃o
E

) is obtained from

MR,Γ̃o
E

(C̃, P,DΓo
E

) by multiplying some columns by −1. By Proposition 26, we have that

MR,Γ̃o
E

(C̃, P,DΓ̃o
E

) and MR,Γo
E

(C,P,DΓo
E

) are the submatrices of IASΓ̃o
E

(C̃) and IASΓo
E

(C),

respectively, corresponding to the transitions in P . Consequently, we obtain the desired
result.

Recall from the paragraph below Definition 3 that rows and columns of matrices in this
paper are not ordered but instead indexed by finite sets. If we were required to preserve
the column order of Definition 24, Corollary 37 would have to mention permuting columns
in accordance with the φ, χ, ψ representation of elements of T(F ) with respect to C and

C̃.
As mentioned at the end of Section 5, the only implication of Theorem 6 that has not

yet been verified is 1⇒ 2. This implication is part of the following.

Corollary 38. Let F be a field, let E be a set that contains one edge from each connected
component of a 4-regular graph F , and let ΓoE be a set of based, consistently oriented
induced circuits of an oriented Euler system C of F . Let MF[IASΓo

E
(C)] denote the

matroid represented by the matrix whose entries are the images in F of the entries of
IASΓo

E
(C). Then MF[IASΓo

E
(C)] is a strict 3-sheltering matroid for Z3(I(C)). Moreover,

MF[IASΓo
E

(C)] is independent of C.
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Proof. Let S be a subtransversal of Z3(I(C)). To show that Z3(I((C)) is strictly sheltered
by MF[IASΓo

E
(C)], it suffices show that S is an independent set of MF[IASΓo

E
(C)] if and

only if S is an independent set of MR[IASΓo
E

(C)]. The only-if direction follows since R
is of characteristic 0. Conversely, assume that S is an independent set of MR[IASΓo

E
(C)].

Since all bases of Z3(I(C)) are transversals, S ⊆ B for some transversal B that is a basis
of MR[IASΓo

E
(C)]. By Corollary 34, B is also a basis of MF[IASΓo

E
(C)]. Hence, I is an

independent set of MF[IASΓo
E

(C)].

To verify the last sentence of the statement, let C̃ be another Euler system of F . By
Corollary 37 and [25, Section 6.3], the matroids of IASΓo

E
(C) and IASΓ̃o

E
(C̃) are equal.

We should point out that although the matroid MF[IASΓo
E

(C)] is independent of C,
it is not independent of E or F. An example of dependence on E is given in the next
section. For dependence on F, note that the fact that IASΓo

E
(C) reduces to IAS(I(C))

modulo 2 implies that M [IAS(G)] = MGF (2)[IASΓo
E

(C)]. As shown in [29], it follows
that if G has a connected component with three or more vertices then the matroid
M [IAS(G)] = MGF (2)[IASΓo

E
(C)] is not regular, i.e., it cannot be represented over any

field of characteristic 6= 2. We deduce that MGF (2)[IASΓo
E

(C)] cannot be isomorphic to
MF[IASΓo

E
(C)] if char(F) 6= 2.

8 An example

We illustrate the above results with an example.
Figure 4 illustrates two oriented Euler circuits in a 4-regular graph. As in Figure 3, we

trace an oriented Euler circuit by walking along the edges of the graph, and maintaining
the dashed/plain line status when passing through a vertex.

With E = {ad}, it is convenient to represent the two illustrated oriented Euler circuits

C and C̃ by the double occurrence words abcdbacd and abcdcabd, respectively. (This
notation does not completely specify the Euler circuits, because it does not distinguish
between parallel edges.) This way, for each vertex v the circuits CΓo

{ad}
(v) and CΓ̃o

{ad}
(v)

are represented by subwords of the double occurrence words. (For instance CΓo
{ad}

(c) is

cdbac, not cdabc.) The resulting matrices are as follows.

IASΓo
{ad}

(C) =


φC(a)φC(b)φC(c)φC(d)χC(a)χC(b)χC(c)χC(d)ψC(a)ψC(b)ψC(c)ψC(d)

a 1 0 0 0 0 0 −1 −1 1 2 1 1
b 0 1 0 0 0 0 −1 −1 0 1 1 1
c 0 0 1 0 1 1 0 −1 1 1 1 1
d 0 0 0 1 1 1 1 0 1 1 1 1



IASΓ̃o
{ad}

(C̃) =


φC̃(a)φC̃(b)φC̃(c)φC̃(d)χC̃(a)χC̃(b)χC̃(c)χC̃(d)ψC̃(a)ψC̃(b)ψC̃(c)ψC̃(d)

a 1 0 0 0 0 −1 0 −1 1 1 2 1
b 0 1 0 0 1 0 0 −1 1 1 2 1
c 0 0 1 0 0 0 0 −1 0 0 1 1
d 0 0 0 1 1 1 1 0 1 1 1 1


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Corollary 37 asserts that MR,Γo
{ad}

(C, C̃,DΓ̃o
{ad}

) · IASΓ̃o
{ad}

(C̃) becomes IASΓo
{ad}

(C)

when we multiply some columns by −1, to reflect the differences in edge directions of
DΓo

{ad}
and DΓ̃o

{ad}
. We proceed to verify this assertion.

Note that C̃ = C ∗ d. Since φC̃(d) = ψC(d) and χC̃(x) = ψC(x) for all x ∈ {a, b, c}
(and the same identities hold when interchanging C and C̃), we see that

IASΓ̃o
{ad}

(C̃) =


φC(a)φC(b)φC(c)φC(d)χC(a)χC(b)χC(c)χC(d)ψC(a)ψC(b)ψC(c)ψC(d)

a 1 0 0 1 1 1 2 −1 0 −1 0 0
b 0 1 0 1 1 1 2 −1 1 0 0 0
c 0 0 1 1 0 0 1 −1 0 0 0 0
d 0 0 0 1 1 1 1 0 1 1 1 1

.
Multiplying IASΓ̃o

{ad}
(C̃) on the left by

MR,Γo
{ad}

(C,C ∗ d,DΓ̃o
{ad}

) =


a b c d

a 1 0 0 −1
b 0 1 0 −1
c 0 0 1 −1
d 0 0 0 −1


yields


φC(a)φC(b)φC(c)φC(d)χC(a)χC(b)χC(c)χC(d)ψC(a)ψC(b)ψC(c)ψC(d)

a 1 0 0 0 0 0 1 −1 −1 −2 −1 −1
b 0 1 0 0 0 0 1 −1 0 −1 −1 −1
c 0 0 1 0 −1 −1 0 −1 −1 −1 −1 −1
d 0 0 0 −1 −1 −1 −1 0 −1 −1 −1 −1

.
To obtain IASΓo

{ad}
(C) multiply every column containing a nonzero entry in the last row

by −1.
For later comparison we give now the circuits of cardinality 3 of MR[IASΓo

{ad}
(C)], in

a compressed way for readability:

φC(a)χC(a)ψC(a), φC(a)χC(b)ψC(a), φC(d)χC(d)ψC(c), φC(d)χC(d)ψC(d),

φC(a)ψC(b)ψC(c), φC(a)ψC(b)ψC(d), φC(b)ψC(a)ψC(c), φC(b)ψC(a)ψC(d),

φC(c)φC(d)χC(a), φC(c)φC(d)χC(b), χC(a)χC(c)χC(d), χC(b)χC(c)χC(d).

The last eight of these listed 3-circuits are transverse circuits; as discussed in [11],
they correspond to the eight 3-cycles in F . (Each set of three vertices in F appears on
two 3-cycles.) Notice that each of χC(a), χC(b), ψC(c), ψC(d) appears in precisely three
3-circuits.

If we use one of the cd edges as the base edge instead of ad, then it is convenient to
represent the oriented Euler circuits C and C̃ as dabcdbac and dcbadbac, respectively. The

the electronic journal of combinatorics 27(1) (2020), #P1.25 25



 

d d 

c 

b a 

c 

b a 

Figure 4: Two oriented Euler circuits in a 4-regular graph.

resulting matrices are given below.

IASΓo
{cd}

(C) =


φC(a)φC(b)φC(c)φC(d)χC(a)χC(b)χC(c)χC(d)ψC(a)ψC(b)ψC(c)ψC(d)

a 1 0 0 0 0 0 −1 1 1 2 1 1
b 0 1 0 0 0 0 −1 1 0 1 1 1
c 0 0 1 0 1 1 0 1 1 1 1 1
d 0 0 0 1 −1 −1 −1 0 1 1 1 1



IASΓ̃o
{cd}

(C̃) =


φC̃(a)φC̃(b)φC̃(c)φC̃(d)χC̃(a)χC̃(b)χC̃(c)χC̃(d)ψC̃(a)ψC̃(b)ψC̃(c)ψC̃(d)

a 1 0 0 0 0 1 0 1 1 1 0 1
b 0 1 0 0 −1 0 0 1 1 1 0 1
c 0 0 1 0 0 0 0 1 2 2 1 1
d 0 0 0 1 −1 −1 −1 0 1 1 1 1


We have MR,Γo

{cd}
(C,C ∗ d,DΓ̃o

{cd}
) = MR,Γo

{ad}
(C,C ∗ d,DΓ̃o

{ad}
), and IASΓo

{cd}
(C) is

obtained from MR,Γo
{cd}

(C,C ∗ d,DΓ̃o
{cd}

) · IASΓ̃o
{cd}

(C̃) by multiplying by −1 the columns

indexed by ψC̃(d) = φC(d) and φC̃(d) = ψC(d) (recall that in the case of base edge {ad}
we needed to multiply eight columns by −1).

We also verify that the matroids MR[IASΓo
{cd}

(C)] and MR[IASΓo
{ad}

(C)] are not iso-

morphic. Indeed, the 3-circuits of MR[IASΓo
{cd}

(C)] are:

φC(a)ψC(b)ψC(c), φC(a)ψC(b)ψC(d), φC(b)ψC(a)ψC(c), φC(b)ψC(a)ψC(d),

φC(c)φC(d)χC(a), φC(c)φC(d)χC(b), φC(c)χC(c)ψC(c), φC(c)χC(c)ψC(d),

φC(d)χC(d)ψC(c), φC(d)χC(d)ψC(d), χC(a)χC(c)χC(d), χC(b)χC(c)χC(d).

Unlike MR[IASΓo
{ad}

(C)], this matroid has no element that appears in precisely three

3-circuits (in fact, each element appears in an even number of 3-circuits).

9 Naji’s Theorem

In this section we discuss a characterization of circle graphs discovered by Naji [23, 24].

Definition 39. Let G be a simple graph. For each pair of distinct vertices v and w of
G, let β(v, w) and β(w, v) be distinct variables. Then the Naji equations for G are the
following.
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1. If vw is an edge of G then β(v, w) + β(w, v) = 1.

2. If v, w, x are three distinct vertices of G such that vw is an edge of G and vx, wx
are not edges of G, then β(x, v) + β(x,w) = 0.

3. If v, w, x are three distinct vertices of G such that vw, vx are edges of G and wx is
not an edge of G, then β(v, w) + β(v, x) + β(w, x) + β(x,w) = 1.

Theorem 40. ([17, 23, 24, 31]) G is a circle graph if and only if the Naji equations of
G have a solution over GF (2).

It turns out that the IASΓo(C) matrices of Section 5 provide solutions to the Naji
equations for the interlacement graph I(C).

Proposition 41. Let C be an Euler system of a 4-regular graph F , and Γo a set of
oriented induced circuits of C. Let IASΓo(C) =

(
I A B

)
be a corresponding matrix

defined as in Section 5. For v 6= w ∈ V (F ) define β(v, w) ∈ GF (2) as follows.

β(v, w) =


0, if vw ∈ E(I(C)) and Avw = 1

1, if vw ∈ E(I(C)) and Avw = −1

0, if vw /∈ E(I(C)) and Bvw = 0

1, if vw /∈ E(I(C)) and Bvw = 2

Then β is a Naji solution for I(C).

Proof. The verification is routine. For details see [31, Proposition 4].

The solution described in Proposition 41 cannot be extracted from theGF (2) reduction
of IASΓo(C), because −1 ≡ 1 and 0 ≡ 2 (mod 2). We come to the rather curious
conclusion that even though the Naji equations are defined overGF (2), they are connected
to representations of Z3(G) over fields of characteristic other than 2.

10 Characterizations of circle graphs and planar matroids in
terms of multimatroids

In this section we formulate a more detailed form of Theorem 6 in terms of multimatroids.

10.1 Multimatroids

First we recall some basic notions regarding multimatroids from [4, 8].
The power set of a set X is denoted by 2X . Let Ω be a partition of a set U . A

transversal T of Ω is a subset of U such that |T ∩ ω| = 1 for all ω ∈ Ω. The set of
transversals of Ω is denoted by T (Ω). A subtransversal of Ω is a subset of a transversal
of Ω. The set of subtransversals of Ω is denoted by S(Ω).

In order to efficiently define the notion of a multimatroid, we first recall the notion of
a semi-multimatroid.
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Definition 42. A semi-multimatroid Z (described by its circuits) is a triple (U,Ω, C),
where Ω is a partition of a finite set U and C ⊆ S(Ω) such that for each T ∈ T (Ω),
(T, C ∩ 2T ) is a matroid (described by its circuits).

For a semi-multimatroid Z = (U,Ω, C), we denote U(Z) := U , Ω(Z) := Ω, and
C(Z) := C. If Z is clear from the context, then we just write U , Ω and C to denote U(Z),
Ω(Z), and C(Z), respectively. We say that Z is a semi-multimatroid on (U,Ω).

The elements of Ω are called the skew classes of Z, the elements of C are called the
circuits of Z, and U is called the ground set of Z. The order of Z is |U |. We say that
I ∈ S(Ω) is an independent set of Z is no subset of I is a circuit and we say that B ∈ S(Ω)
is a basis of Z if B is an independent set, but no proper superset of B is an independent
set. The order of Z is |Ω(Z)|.

For any X ⊆ U , the restriction of Z to X, denoted by Z[X], is the semi-multimatroid
(X,Ω′, C ∩ 2X) with Ω′ = {ω ∩X | ω ∈ Ω} \ {∅}. We also define Z −X := Z[U \X].

If all elements of Ω(Z) are singletons, then, by slight abuse of notation, we associate
Z with the matroid (U(Z), C(Z)).

For X ∈ S(Ω), the minor of Z induced by X is the semi-multimatroid Z|X :=
(U ′,Ω′, C ′), where Ω′ = {ω ∈ Ω | ω ∩ X = ∅}, U ′ =

⋃
Ω′, and for all T ′ ∈ T (Ω′),

(Z|X)[T ′] = Z[T ′∪X]/X, where Z[T ′∪X] is regarded here as a matroid and /X denotes,
as usual, matroid contraction of X. Explicitly, C ′ = {C ∈ C(Z[T ′ ∪X]/X) | T ′ ∈ T (Ω′)}.

We remark that, unfortunately, the standard way to denote a multimatroid minor (i.e.,
Z|X) as introduced in [5] clashes with the usual way to denote matroid restriction. To
avoid confusion, we denote in this paper the restriction of a matroid M to a subset X of
its ground set by M [X] (which is compatible with the notation of multimatroid restriction
Z[X]).

Semi-multimatroids Z and Z ′ are called isomorphic if there is a one-to-one correspon-
dence between U(Z) and U(Z ′) respecting Ω and C.

For a semi-multimatroid Z and matroid M with ground set U(Z), we say that Z is
sheltered by M if Z[T ] = M [T ] for all T ∈ T (Ω(Z)). We say that a matrix A represents
(or, is a representation of) a semi-multimatroid Z if A represents a matroid M that
shelters Z [10]. We say that a semi-multimatroid Z is representable over some field F
if there is a matrix A over F that represents Z. If Z is representable over F, then so
is every minor of Z. A semi-multimatroid is called regular if it is representable over all
fields. We say that A is a strict representation of Z if A has at most |Ω(Z)| rows. This
terminology is consistent with [10], where it is said that M is a strict sheltering matroid
if r(M) 6 |Ω(Z)|. We note that this terminology is also consistent with the notion of
strictness for sheltering matroids of Z2(G) or Z3(G) as defined in Section 2, since both
Z2(G) and Z3(G) have bases that are transversals and so r(M) < |Ω(Z)| is impossible
for sheltering matroids M of Z when Z is equal to Z2(G) or Z3(G).

Definition 43. A semi-multimatroid Z is called a multimatroid if every minor of Z of
order 1 has at most one circuit. A multimatroid is called tight if every minor of Z of order
1 has exactly one circuit.
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For instance, suppose Z is a semi-multimatroid of order 1, i.e., Z contains a single
skew class. Thus Z is of the form (ω, {ω}, C) where C is a set of singletons. Then by
Definition 43, Z is a multimatroid if and only if |C| 6 1, and Z is a tight multimatroid if
and only if |C| = 1.

We remark that we use here the slightly more liberal notion of tightness from [8],
while the notion of tightness from [4] additionally requires that no element of Ω(Z) is a
singleton.

By definition, both multimatroids and tight multimatroids are closed under taking
minors. Also, if Z is a multimatroid and X ⊆ U(Z), then so is Z[X]. However, tight
multimatroids are in general not closed under taking restrictions.

If Z is a multimatroid where no element of Ω(Z) is a singleton, then all bases of Z are
transversals [4, Proposition 5.5]. If all elements of Ω(Z) for some multimatroid Z are of
cardinality q, then Z is called a q-matroid.

It is shown in [10] that for every looped simple graph G, Z3(G) is a tight 3-matroid
representable over GF (2) and, conversely, every tight 3-matroid representable over GF (2)
is isomorphic to Z3(G) for some looped simple graph.

10.2 Main result

We recall the following known result.

Lemma 44 ([29]). Let G be a looped simple graph. If H is a vertex-minor of G, then
Z3(H) is isomorphic to a minor of Z3(G). Conversely, if Z is a minor of Z3(G), then Z
is isomorphic to Z3(H) for some vertex-minor H of G.

Proof. Let H be a vertex-minor of G. Then there is a graph G′ locally equivalent to G
with G′ − X = H for some X ⊆ V (G′). By [29, Theorem 2], Z3(G′) is isomorphic to
Z3(G). By [29, Proposition 35], Z3(H) is equal to a minor of Z3(G′).

Let Z be a minor of Z3(G). Then by [29, Proposition 35 and Corollary 38], Z is
isomorphic to Z3(H) for some vertex-minor H of G.

Let Ω be a set of three disjoint circuits of the matroid AG(2, 3), the rank-3 affine
geometry over GF (3). Then AG(2, 3) shelters a tight 3-matroid H3,3 with Ω(H3,3) = Ω,
see [8]. Explicitly, we have Ω(H3,3) = {ωa, ωb, ωc}, where ωx = {x1, x2, x3} for x ∈ {a, b, c}
and

C(H3,3) = {{a1, b1, c1}, {a2, b2, c2}, {a3, b3, c3},
{a1, b3, c2}, {a2, b1, c3}, {a3, b2, c1},
{a1, b2, c3}, {a2, b3, c1}, {a3, b1, c2}}.

We say that a strict representation A of Z over R is transversely unimodular if for
each transversal T of Z, the square matrix obtained from A has determinant 0, −1, or 1.

We are now ready to prove a detailed form of Theorem 6 in terms of multimatroids.

Theorem 45. Let Z be a tight 3-matroid. Then the following conditions are equivalent.
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1. Z has a transversely unimodular strict representation with only integer entries.

2. Z is regular (i.e., representable over all fields).

3. Z is representable over GF (2) and over some field of characteristic different from
2.

4. For all transversals T of Z, the 2-matroid Z − T is representable over GF (2) and
over some field of characteristic different from 2.

5. Z does not have a minor isomorphic to H3,3, Z3(W5), Z3(W7), or Z3(BW3).

6. Z is isomorphic to Z3(G) for some circle graph G.

Proof. Assume Condition 1 holds. Let A be a transversely unimodular strict represen-
tation of Z over R with only integer entries. Let S be a subtransversal of Z. We show
that the columns of S in A are independent when computed over R if and only if these
columns are independent when computed over some field F. The if direction follows di-
rectly from the fact that A has only integer entries and the fact that R is of characteristic
zero. Conversely, assume that the columns of S in A are independent when computed
over R. Then S is an independent set of Z. Since all bases of a 3-matroid are transversals,
there is a basis B of Z that is a transversal and S ⊆ B. Since the square matrix obtained
from A by restricting to the columns of B is unimodular, these columns of B are also
independent when computed over F. Thus the columns of I ⊆ B are independent when
computing over F.

Condition 2 directly implies Condition 3, which in turn directly implies Condition 4.
Assume Condition 4 holds. Assume Z has a minor Z|X isomorphic to Z3(G) for

some G ∈ {W5, BW3,W7}. By Proposition 16, there is a transversal T of Z|X such that
(Z|X)−T is not representable over any field of characteristic different from 2. Thus Z|X,
and therefore also Z, are not representable over any field of characteristic different from
2 — a contradiction.

Now assume Z has a minor Z|X isomorphic to H3,3. In [8] it is shown that there is
a transversal T of H3,3, such that H3,3 − T is isomorphic to the 2-matroid S1 = (U,Ω, C)
with Ω = {{ia, ib} | i ∈ {1, 2, 3}}, U =

⋃
Ω, and C = {{1a, 2b, 3b}, {1b, 2a, 3b}, {1b, 2b, 3a}}.

Now, S1 is not representable over GF (2). Indeed, suppose to the contrary that S1 is rep-
resentable over GF (2). Then the symmetric difference of the three circuits of C, which
is {1a, 2a, 3a}, is the union of disjoint circuits of a binary matroid that shelters S1. Since
{1a, 2a, 3a} is a subtransversal, these circuits must be in C. This is a contradiction. Conse-
quently, Z|X, and therefore also Z, are not representable over GF (2) — a contradiction.
We have thus obtained Condition 5.

Assume that Condition 5 holds. In [8] it is shown that if Z does not have a minor
isomorphic to H3,3, then Z is representable over GF (2). In [10] it is shown that a tight 3-
matroid representable over GF (2) is isomorphic to Z3(G) for some looped simple graph.
By the definition of an isotropic matroid, we may assume that G has no loops. By
Theorem 15 and Lemma 44, G is a circle graph. Thus Condition 6 holds.

Condition 6 implies Condition 1 by Corollaries 34 and 38.
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Remark 46. The equivalence of Conditions 4 and 6 in Theorem 45 is closely related to [15,
Theorem 3] and [16, Corollary 4.20], two positive solutions of Bouchet’s conjecture that
a graph is a circle graph if and only if every locally equivalent graph has a unimodular
orientation [2]. While Gasse’s statement involves unimodular orientations and Geelen’s
statement involves delta-matroid representations, the result can also be formulated, see
[11, Theorem 25], in terms of multimatroids as follows: for some graph G, we have that G
is a circle graph if and only if for all transversals T of Z3(G), if the 2-matroid Z3(G)−T is
tight, then Z3(G)− T has a transversely unimodular representation (I A) over R, where
A is skew-symmetric. Since Z2(W5), Z2(W7), and Z2(BW3) are tight, the restriction to
2-matroids Z3(G)−T that are tight is justified. The equivalence of Conditions 4 and 6 in
Theorem 45 shows that the skew-symmetry restriction of A can be replaced by the more
liberal condition that A has only integer entries (note that the skew-symmetry condition
of A along with transversal unimodularity of (I A) implies that A has only integer entries).

We might also mention a remark of Bouchet [7, p. 285], that if F is a 4-regular
graph and C an Euler system, then the 2-matroid obtained from Z3(I(C))− {ψI(C)(v) |
v ∈ V (F )} is representable over arbitrary fields. (Bouchet used a different notion of
multimatroid representability than we do, but the difference is not significant in the
present discussion.) Bouchet did not extend this remark to Z3(I(C)) − T for other
transversals T (or to Z3(I(C)) itself), or observe that the extended property characterizes
circle graphs.

10.3 A characterization of planarity

This subsection shows that the notion of regularity of tight 3-matroids generalizes the
notion of planarity of matroids. (We say a matroid is planar if it is the cycle matroid of
a planar graph.)

For a matroid M , denote by E(M) the set of elements of M . For an injective function
ϕ on E(M), denote by ϕ(M) the matroid on the ground set ϕ(E(M)) whose independent
sets are the subsets ϕ(I) such that I is independent in M .

Definition 47. Let M be a matroid and let ϕi, with i ∈ {1, 2}, be the function which
sends every e ∈ E(M) to (e, i). Let Ω = {{(e, 1), (e, 2)} | e ∈ E(M)} and U =

⋃
Ω.

Then the semi-multimatroid on (U,Ω) that is sheltered by the direct sum of the matroids
ϕ1(M∗) and ϕ2(M) is denoted by Z2(M).

It turns out that for every matroid M , Z2(M) is, in fact, a tight multimatroid [5]. We
remark that Z2(BW3) = Z2(F ), where F is the Fano matroid, see, e.g., [16].

For every binary matroid M , there is a unique tight 3-matroid Z3(M) on (U,Ω)
with Ω = {{(e, 1), (e, 2), (e, 3)} | e ∈ E(M)} such that Z3(M) − T = Z2(M), where
T = {(e, 3) | e ∈ E(M)} [9]. In fact, this holds even when M is quaternary [8]. The
uniqueness of Z3(M) follows from the following result.

Proposition 48 ([9]). Let Z1 = (U,Ω, C1) and Z2 = (U,Ω, C2) be tight multimatroids with
|ω| > 3 for all ω ∈ Ω. Let T ∈ T (Ω). If Z1 − T = Z2 − T , then Z1 = Z2.
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The next lemma concerns fundamental graphs of binary matroids. More specifically,
the bipartite graph G of the next lemma is called a fundamental graph of M .

Lemma 49. Let M be a binary matroid. Then Z2(M) is isomorphic to Z2(G) for some
bipartite graph G. Moreover, if Z2(M) is isomorphic to Z2(G) for some graph G, then G
is bipartite.

Proof. If (I A) is a representation of M , then (AT I) is a representation of M∗. Hence
Z2(M) is sheltered by (

I A 0 0
0 0 AT I

)
.

By rearranging columns within skew classes, we obtain the matrix(
I 0 0 A
0 I AT 0

)
,

which represents Z2(G) for some graph G with(
0 A
AT 0

)
as its adjacency matrix. We observe that G is bipartite.

Finally, assume Z2(M) is isomorphic to Z2(G) for some graph G. We have that Z2(G)
is represented by (φG(V (G)) χG(V (G))

I A(G)
)
.

Let f be an isomorphism from Z2(M) to Z2(G). Let Ti = {(e, i) | e ∈ E(M)} for
i ∈ {1, 2}. Assume that the principal submatrix A(G)[χ−1

G (f(Ti))] of A(G) induced by
χ−1
G (f(Ti)) for some i ∈ {1, 2} has a nonzero entry au,v. Since φG(V (G)) is a basis of
M [IAS(G)], there is a circuit C ⊆ φG(V (G)) ∪ {χG(v)} with χG(v) ∈ C. Note that
χG(v) ∈ C ∩ f(Ti) 6= ∅ and φG(u) ∈ C ∩ f(Tj) 6= ∅ with {i, j} = {1, 2}. If u 6= v, then C
is a subtransversal and so C is a circuit of Z2(G). Consequently, C ′ = f−1(C) is a circuit of
Z2(M) with C∩T1 6= ∅ and C∩T2 6= ∅. This contradicts the fact that Z2(M) is sheltered
by the direct sum of ϕ1(M∗) and ϕ2(M). Finally, if u = v, then Z2(G) is not tight by [10,
Proposition 17], contradicting the fact that Z2(G) is isomorphic to the tight 2-matroid
Z2(M). Thus the principal submatrices A(G)[χ−1

G (f(T1))] and A(G)[χ−1
G (f(T2))] are both

zero matrices and so G is bipartite.

We now recall that planar matroids correspond to fundamental graphs that are circle
graphs.

Proposition 50 (Proposition 6 of [14]). If G is a bipartite circle graph, then Z2(G) is
isomorphic to Z2(M) for some planar matroid M .

If M is a planar matroid, then Z2(M) is isomorphic to Z2(G) for some bipartite circle
graph G.
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We call a looped simple graph G a looped circle graph if G is obtained from a circle
graph by possibly adding some loops.

Proposition 51 (Corollary 43 in [10]). Let G be a looped simple graph. For every
transversal T of Z3(G), Z3(G)− T is isomorphic to Z2(G′) for some looped simple graph
G′ locally equivalent to G.

Proof. Corollary 43 in [10] shows that Z3(G)−T is isomorphic to Z2(G′) for some looped
simple graph G′. The proof of Corollary 43 in [10] shows that G′ is actually locally
equivalent to G.

The main result of this subsection is the following.

Theorem 52. Let M be a binary matroid. Then M is planar if and only if Z3(M) is
regular.

Proof. If M is planar, then by Proposition 50 we have that Z2(M) is isomorphic to
Z2(G) for some circle graph G. By Proposition 48, Z3(M) is isomorphic to Z3(G). By
Theorem 45, Z3(M) is regular.

Conversely, let Z3(M) be regular. By Theorem 45, Z3(M) is isomorphic to Z3(G)
for some circle graph G. Thus Z2(M) is isomorphic to Z3(G) − T for some transversal
T of Z3(G). By Proposition 51, Z2(M) is isomorphic to Z2(G′) for some looped simple
graph G′ locally equivalent to G. Since G′ is locally equivalent to the circle graph G,
G′ is a looped circle graph (we use here that circle graphs are closed under simple local
complement by, e.g., Theorem 15). By Lemma 49, G′ is bipartite. Thus G′ does not have
any loops. Hence G′ is a bipartite circle graph. By Proposition 50, Z2(G′) is isomorphic
to Z2(M ′) for some planar matroid M ′. Since Z2(M ′) and Z2(M) are isomorphic, M is
planar too.

References

[1] B. Bollobás, Modern Graph Theory, Springer-Verlag, New York, 1998.
doi:10.1007/978-1-4612-0619-4

[2] A. Bouchet, Unimodularity and circle graphs, Discrete Math. 66 (1987), 203–208.
doi:10.1016/0012-365X(87)90132-4

[3] A. Bouchet, Circle graph obstructions, J. Combin. Theory Ser. B 60 (1994), 107–144.
doi:10.1006/jctb.1994.1008

[4] A. Bouchet, Multimatroids. I. Coverings by independent sets, SIAM J. Discrete Math.
10 (1997), 626–646. doi:10.1137/S0895480193242591

[5] A. Bouchet, Multimatroids. II. Orthogonality, minors and connectivity, Electron. J.
Combin. 5 (1998), #R8. doi:10.37236/1346

[6] A. Bouchet, Multimatroids III. Tightness and fundamental graphs, European J. Com-
bin. 22 (2001), 657-677. doi:10.1006/eujc.2000.0486

the electronic journal of combinatorics 27(1) (2020), #P1.25 33

http://dx.doi.org/10.1007/978-1-4612-0619-4
http://dx.doi.org/10.1016/0012-365X(87)90132-4
http://dx.doi.org/10.1006/jctb.1994.1008
http://dx.doi.org/10.1137/S0895480193242591
http://dx.doi.org/10.37236/1346
http://dx.doi.org/10.1006/eujc.2000.0486


[7] A. Bouchet, Multimatroids. IV. Chain-group representations, Linear Algebra Appl.
277 (1998), 271–289. doi:10.1016/S0024-3795(97)10041-6

[8] R. Brijder, Orienting transversals and transition polynomials for multimatroids, Adv.
in Appl. Math. 94 (2018), 120–155. doi:10.1016/j.aam.2017.07.001

[9] R. Brijder and H. J. Hoogeboom, Interlace polynomials for multima-
troids and delta-matroids, European J. Combin. 40 (2014), 142–167.
doi:10.1016/j.ejc.2014.03.005

[10] R. Brijder and L. Traldi, Isotropic matroids I: Multimatroids and neighborhoods,
Electron. J. Combin. 23(4) (2016), #P4.1. doi:10.37236/5222

[11] R. Brijder and L. Traldi, Isotropic matroids II: Circle graphs, Electron. J. Combin.
23(4) (2016), #P4.2. doi:10.37236/5223

[12] R. Brijder and L. Traldi, Isotropic matroids III: Connectivity, Electron. J. Combin.
24(2) (2017), #P2.49. doi:10.37236/5937

[13] S. Even and A. Itai, Queues, stacks, and graphs, in: Theory of Machines and Com-
putations (Proc. Internat. Sympos., Technion, Haifa, 1971), pp. 71–86. Academic
Press, New York, 1971. doi:10.1016/B978-0-12-417750-5.50011-7

[14] H. de Fraysseix, A characterization of circle graphs, European J. Combin. 5 (1984),
223–238. doi:10.1016/S0195-6698(84)80005-0

[15] E. Gasse, A proof of a circle graph characterization, Discrete Math. 173 (1997),
223–238. doi:10.1016/S0012-365X(97)00068-X

[16] J. F. Geelen, Matchings, matroids, and unimodular matrices, PhD thesis, University
of Waterloo, 1995. https://www.math.uwaterloo.ca/~jfgeelen/Publications/

th.pdf

[17] J. Geelen and E. Lee, Naji’s characterization of circle graphs, J. Graph Theory 93
(2020), 21–33. doi:10.1002/jgt.22466

[18] E. Gioan, C. Paul, M. Tedder and D. Corneil, Practical and efficient circle graph
recognition, Algorithmica 69 (2014), 759–788. doi:10.1007/s00453-013-9745-8

[19] J. Jonsson, On the number of Euler trails in directed graphs, Math. Scand. 90 (2002),
191–214. doi:10.7146/math.scand.a-14370

[20] A. Kotzig, Eulerian lines in finite 4-valent graphs and their transformations, in:
Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, 1968,
pp. 219–230.

[21] J. Lauri, On a formula for the number of Euler trails for a class of digraphs, Discrete
Math. 163 (1997), 307–312. doi:10.1016/0012-365X(95)00345-W
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