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Abstract

We provide a Minkowski sum decomposition of marked chain-order polytopes
into building blocks associated to elementary markings and thus give an explicit
minimal set of generators of an associated semi-group algebra. We proceed by
characterizing the reflexive polytopes among marked chain-order polytopes as those
with the underlying marked poset being ranked.

Mathematics Subject Classifications: 52B20, 06A07

1 Introduction

To a given finite poset, Stanley [22] associated two polytopes—the order polytope and the
chain polytope, which are lattice polytopes having the same Ehrhart polynomial. When
the underlying poset is a distributive lattice, Hibi studied in [15] the geometry of the toric
variety associated to the order polytope, nowadays called Hibi varieties. Together with Li,
they also initiated the study of the toric variety associated to the chain polytope [17]. The
singularities of Hibi varieties arising from Gelfand-Tsetlin degenerations of Grassmann
varieties are studied by Brown and Lakshmibai in [5] (see also the references therein).

Motivated by the representation theory of complex semi-simple Lie algebras, namely
the framework of PBW-degenerations, Ardila, Bliem and Salazar [1] introduced the notion
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of marked order polytopes and marked chain polytopes, defined on marked posets. They
showed that they are lattice polytopes, and for a fixed marked poset, they share the same
Ehrhart polynomial. Their motivating example is the Gelfand-Tsetlin polytopes and the
Feigin-Fourier-Littelmann-Vinberg (FFLV) polytopes [10], which are respectively marked
order polytopes and marked chain polytopes associated to particular marked posets (which
are in fact distributive lattices). The toric varieties associated to these polytopes can be
obtained from toric degenerations of flag varieties of type A ([14, 20, 11]). The geometric
properties of the toric varieties associated to Gelfand-Tsetlin polytopes are investigated in
[3]. Some vertices of the FFLV polytopes are studied in [12].

To put these two families of polytopes into a continuous family, the third author
introduced a one-parameter family interpolating the marked order and the marked chain
polytopes continuously.

Motivated by the work on linear degenerations of flag varieties [7], seeking for interme-
diate lattice polytopes between the marked order and the marked chain polytopes, as well
as toric degenerations of the linear degenerate flag varieties to these polytopes, becomes a
meaningful question.

A first step in this direction has been initiated by the first two authors in [8], where
such polytopes are defined under certain restrictions. Later in the joint work with J.-P.
Litza [9], this approach is combined with the interpolating one parameter family: we
introduced a family interpolating the marked order and the marked chain polytopes, called
marked poset polytopes, parametrized by points in a hypercube. In this family, every
vertex of the hypercube corresponds to a lattice polytope (called a marked chain-order
polytope) and they all have the same Ehrhart polynomial.

The goal of this paper is to study the algebro-geometric properties of the toric varieties
associated to the marked chain-order polytopes.

The first result of this paper is a decomposition of marked chain-order polytopes into
Minkowski sums of building blocks associated to elementary markings (Theorems 18 and 20).
As a consequence, we provide an explicit set of minimal generators (of homogeneous degree
one) of the semi-group algebra of the associated toric variety.

Reflexive polytopes arise from the study of mirror symmetry for Calabi-Yau hypersur-
faces in toric varieties [2]. Geometrically, the toric variety associated to a reflexive polytope
is Gorenstein–Fano. The second main result of this paper is concerned with characterizing
reflexive polytopes in arbitrary dimensions from marked chain-order polytopes. Indeed,
for any ranked marked poset and any vertex in the parametrizing hypercube, we construct
a reflexive polytope (many of them are not unimodular equivalent) by choosing a proper
marking (Theorem 25).

The paper is structured as follows: After recalling the construction of marked chain-
order polytopes and basic facts on reflexive polytopes in Section 2, we study the Minkowski
decomposition property in Section 3 and the reflexivity in Section 4.
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2 Preliminaries

The set R (resp. Q, Z, N) of real (resp. rational, integral, natural) numbers is endowed
with the usual total order.

For a polytope Q ⊆ RN , we denote by QZ = Q ∩ ZN the set of lattice points in Q. For
c ∈ R we denote by cQ the dilation of Q consisting of all points cx for x ∈ Q. When c is
a positive integer, we denote by cQZ the Minkowski sum of c copies of QZ, by (−c)QZ

the Minkowski sum of c copies of −Q and by 0QZ the set {0} ⊆ RN .

2.1 Marked Chain-Order Polytopes

Let (P,⩽) be a finite poset and denote covering relations by p ≺ q [23]. We first recall the
notion of a marked poset [1].

Definition 1. A pair (P, λ) is called a marked poset, if P ∗ ⊆ P is an induced subposet and
λ : P ∗ → R is an order-preserving map on P ∗. The map λ is called a marking ; members in
P ∗ are called marked elements. We denote by P̃ = P \P ∗ the set of all unmarked elements.
The marking λ is called integral, if im(λ) ⊆ Z.

In this paper, we will assume throughout that at least all minimal elements in P are
marked: min(P ) ⊆ P ∗. To a marked poset we associated in [9] a family of polyhedra
parametrized by partitions P̃ = C ⊔O.

Definition 2. Let P = P ∗ ⊔ C ⊔ O be a partition of a poset P with min(P ) ⊆ P ∗ and
λ a marking. The elements of C and O are called chain elements and order elements,
respectively. The marked chain-order polyhedron OC,O(P, λ) ⊆ RP is the set of all
x = (xp)p∈P ∈ RP satisfying the following conditions:

1. for any a ∈ P ∗, xa = λ(a);

2. for p ∈ C, xp ⩾ 0;

3. for each saturated chain a ≺ p1 ≺ · · · ≺ pr ≺ b with a, b ∈ P ∗ ⊔O, pi ∈ C, r ⩾ 0, we
have

xp1 + · · ·+ xpr ⩽ xb − xa.

When a partition P = P ∗⊔C ⊔O is given, we write the points of RP as x = (λ,xC ,xO)
with λ ∈ RP ∗

, xC ∈ RC and xO ∈ RO. Since the coordinates in P ∗ are fixed for the points
of OC,O(P, λ), we sometimes consider the projection of OC,O(P, λ) in RP̃ instead, keeping
the same notation to write (xC ,xO) ∈ OC,O(P, λ) instead of (λ,xC ,xO) ∈ OC,O(P, λ).

Remark 3. 1. When min(P ) ∪max(P ) ⊆ P ∗ and λ is integral, the marked chain-order
polyhedron OC,O(P, λ) is a lattice polytope. In this case, the notion of marked
chain-order polytope is different from the one in [8], where the assumption that C is
an order ideal was made.
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2. When in addition C = ∅ the marked chain-order polytope OC,O(P, λ) is the marked
order polytope and will be denoted by O(P, λ); when O = ∅ the marked chain-order
polytope OC,O(P, λ) is the marked chain polytope and will be denoted by C(P, λ)
(for the marked order and the marked chain polytopes, see [1]).

2.2 Regular and Ranked Marked Posets

We recall two important properties of marked posets: the regularity and the rankedness.

Definition 4. 1. ([21]) A marked poset (P, λ) is called regular if for each covering
relation p ≺ q in P and a, b ∈ P ∗ such that a ⩽ q and p ⩽ b, we have a = b or
λ(a) < λ(b).

2. A poset P is called ranked, if there exists a rank function r : P → Z satisfying: for
each covering relation p ≺ q in P , r(p) = r(q)− 1.

3. ([9]) A marked poset (P, λ) is called ranked, if P is a ranked poset with rank function
r such that for any a, b ∈ P ∗ with r(a) < r(b), we have λ(a) < λ(b).

Let P be a ranked poset and P ∗ ⊆ P a set of marked elements. Any rank function r
defines a marking λr : P ∗ → Z by letting λr(a) = r(a) for all a ∈ P ∗.

The following lemma is clear by definition.

Lemma 5. The marked poset (P, λr) is regular.

For a regular marked poset, the facets of the marked order polytope are given in [21].

Proposition 6. Let (P, λ) be a regular marked poset. The facet-defining inequalities of

O(P, λ) are xp ⩽ xq for all p, q ∈ P with p ≺ q.1For the projection of O(P, λ) in RP̃ , the
facets are expressed as:

1. for a covering relation p ≺ q in P̃ , xp ⩽ xq;

2. for a ∈ P ∗, p ∈ P̃ such that a ≺ p, λ(a) ⩽ xp;

3. for b ∈ P ∗, q ∈ P̃ such that q ≺ b, xq ⩽ λ(b).

2.3 Ehrhart-Macdonald Reciprocity

Let Q ⊆ Rn be a lattice polytope. The Ehrhart polynomial LQ(x) ∈ Q[x] is a polynomial
of degree dim(Q), satisfying for all m ∈ N:

LQ(m) = #(mQ ∩ Zn).

1Note that there are no covering relations between marked elements in a regular marked posets [21,
Proposition 3.20].
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By the famous Ehrhart-Macdonald reciprocity [19, 4] of the Ehrhart polynomial, for all
m ∈ N we have

LQ(−m) = (−1)dim(Q)#(int(mQ) ∩ Zn).

Two polytopes are called Ehrhart equivalent, if they have the same Ehrhart polynomial.
The following result on the Ehrhart equivalence of the marked chain-order polytopes is

proved in [9] with the help of a transfer map.

Proposition 7. Let (P, λ) be an integrally marked poset such that min(P )∪max(P ) ⊆ P ∗.
For any two partitions P̃ = C ⊔ O = C ′ ⊔ O′, the polytopes OC,O(P, λ) and OC′,O′(P, λ)
are Ehrhart equivalent.

2.4 Reflexive Polytopes

Let Q ⊆ Rn be a polytope. The polar dual of Q is defined to be:

Q◦ = {α ∈ (Rn)∗ | α(x) ⩽ 1 for all x ∈ Q}.

Let Q ⊆ Rn be a polytope with 0 ∈ int(Q), then the polar dual Q◦ is a polytope.
A polytope Q with 0 ∈ int(Q) is called reflexive (see [2]), if both Q and Q◦ are lattice
polytopes. Toric varieties associated to reflexive polytopes are Gorenstein-Fano, which
play an important role in Batyrev’s construction in mirror symmetry.

Hibi gives [16] a beautiful criterion on the integrality of the dual of a rational polytope.
For our application, we recall it in the case of lattice polytopes.

Theorem 8. Let Q ⊆ Rn be a lattice polytope with 0 ∈ int(Q). Then Q◦ is a lattice
polytope if and only if for all m ∈ N,

LQ(−m− 1) = (−1)nLQ(m).

In particular, if Q◦ is a lattice polytope, by taking m = 0, the above theorem and the
Ehrhart-Macdonald reciprocity imply that 0 is the only interior lattice point in Q.

We finish this subsection by recalling the polarity theorem [26], which will be used
later.

Proposition 9. Let Q ⊆ Rn be a polytope with 0 ∈ int(Q). Assume that

Q = conv{v1, . . . ,vs} = {x ∈ Rn | α1(x) ⩽ 1, . . . , αt(x) ⩽ 1}

be the descriptions of Q by its vertices and facets where α1, . . . , αt ∈ (Rn)∗. Then the polar
dual

Q◦ = conv{α1, . . . , αt} = {α ∈ (Rn)∗ | α(v1) ⩽ 1, . . . , α(vs) ⩽ 1}
is the description of Q◦ by its vertices and facets.

The polarity theorem implies the following geometric characterization of reflexive
polytopes.

Theorem 10. Assume that Q is a lattice polytope with 0 ∈ int(Q). Then Q is reflexive if
and only if for each of its facets F , there is no lattice point between the hyperplane aff(F )
and its parallel through the origin.

the electronic journal of combinatorics 27(1) (2020), #P1.27 5



3 Minkowski Property of Marked Chain-Order Polytopes

The goal of this section is to give a decomposition of marked chain-order polyhedra as
Minkowski sums of marked chain-order polyhedra that are given by zero-one markings.
For marked order polytopes, this Minkowski decomposition property has been discussed
in [18, 24]. For marked chain polytopes it appeared in [13]. We generalize the results to
all marked chain-order polyhedra.

3.1 Minkowski Decomposition Property

Lemma 11. Let λ, µ : P ∗ → R be two markings on a poset P and let P̃ = C ⊔O be any
partition. We have

OC,O(P, λ) +OC,O(P, µ) ⊆ OC,O(P, λ+ µ),

OZ
C,O(P, λ) +OZ

C,O(P, µ) ⊆ OZ
C,O(P, λ+ µ).

Proof. This result is immediate by summing the defining inequalities of OC,O(P, λ) and
OC,O(P, µ) from Definition 2. For example, when x ∈ OC,O(P, λ), y ∈ OC,O(P, µ) and
a ≺ p1 ≺ · · · ≺ pr ≺ b is one of the defining saturated chains, we have

xp1 + · · ·+ xpr ⩽ xb − xa and

yp1 + · · ·+ ypr ⩽ yb − ya

and thus

(xp1 + yp1) + · · ·+ (xpr + ypr) ⩽ (xb + yb)− (xa + ya),

which is one of the conditions for x+ y ∈ OC,O(P, λ+ µ).

Note that the other inclusion “⊇” does not hold in general:

Example 12. Consider the following marked poset:

p

0

1 1

The associated marked order polytope is a line segment. Decomposing the marking as

(0, 1, 1) = (0, 1, 0) + (0, 0, 1),

we see that the marked order polytopes associated to the summands are both just a point
at the origin. Hence, their sum is not the original line segment.
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Definition 13. A marking ω of a marked poset (P, ω) is called elementary, if it is the
indicator function χF : P

∗ → {0, 1} of some filter F ⊆ P ∗.

The marking in the above example is elementary, since it is a zero-one marking with
the set of elements marked one being upward closed.

Definition 14. Let (P, λ) be any marked poset and λ(P ∗) = {c0 < c1 < · · · < ck}. To λ
we associate the elementary markings ωi : P

∗ → R for i = 0, . . . , k given by ωi = χFi
for

the filters

Fi = λ−1(R⩾ci).

That is, ωi(a) is 1 if λ(a) ⩾ ci and 0 otherwise. We refer to the decomposition

λ = c0ω0 + (c1 − c0)ω1 + · · ·+ (ck − ck−1)ωk

as the decomposition of λ into elementary markings.

Proposition 15. The marked order polyhedron O(P, λ) decomposes as the weighted
Minkowski sum

O(P, λ) = c0O(P, ω0) + (c1 − c0)O(P, ω1) + · · ·+ (ck − ck−1)O(P, ωk).

Furthermore, when λ is integral, we have

OZ(P, λ) = c0OZ(P, ω0) + (c1 − c0)OZ(P, ω1) + · · ·+ (ck − ck−1)OZ(P, ωk).

Proof. First note that ω0 is the constant marking of all ones. Hence, the all-one vector
1 ∈ RP is a lattice point in O(P, ω0). Now let x be any point in O(P, λ), then by
subtracting c0 from all coordinates, we see that x− c01 ∈ O(P, λ− c0ω0). This implies
that

O(P, λ) = O(P, λ− c0ω0) + c0O(P, ω0).

Note that, when c0 ̸= 0, c0O(P, ω0) is just the recession cone of O(P, λ) shifted by c01
and O(P, λ− c0ω0) is just O(P, λ) shifted by −c01. When λ and x are both integral, the
above construction yields

OZ(P, λ) = OZ(P, λ− c0ω0) + c0OZ(P, ω0).

We may thus assume that c0 = 0 and all ci ⩾ 0, replacing λ by λ − c0ω0 otherwise.
Given c0 = 0, we now show for any 0 < ε ⩽ c1 that

O(P, λ) = O(P, λ− εω1) + εO(P, ω1).

Let x ∈ O(P, λ) and define y ∈ RP by yp = min{xp, ε}. Note that for p ∈ P ∗ we
have εω1(p) = min{λ(p), ε} and hence y ∈ O(P, εω1) = εO(P, ω1) since a ⩽ b implies
min{a, c} ⩽ min{b, c}. Let z = x− y so that zp = xp −min{xp, ε} = max{0, xp − ε}. We
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have z ∈ O(P, λ − εω1), since a ⩽ b implies max{0, a − c} ⩽ max{0, b − c}. Choosing
ε = c1 we have

O(P, λ) = O(P, λ− c1ω1) + c1O(P, ω1).

When λ and x are integral, we may choose ε = 1 so that the points y and z are integral
as well and we have

OZ(P, λ) = OZ(P, λ− ω1) +OZ(P, ω1).

Applying this decomposition c1 times, we conclude

OZ(P, λ) = OZ(P, λ− c1ω1) + c1OZ(P, ω1).

Inductively repeating the above procedure yields the Minkowski decomposition given
in the statement of the proposition: after subtracting c0ω0 + c1ω1 from the marking, we
changed the marking λ to a marking λ′ with c0 and c1 replaced by 0 and c2, . . . , ck replaced
by c2 − c1 − c0, . . . , ck − c1 − c0. Now the elementary marking ω′

1 for λ′ is exactly the
elementary marking ω2 for the original λ.

The Minkowski decomposition of O(P, λ) already appeared in [18, 24] for the case of
bounded polyhedra and P ∗ being a chain in P . For arbitrary marked order polyhedra
it was shown in [21] using different techniques. Note that the unbounded case could
as well be obtained from the bounded case by considering the maximal elements in P
marked when decomposing individual points. However, the inductive approach taken here
(subtracting an ε-amount of ω1 in each step) becomes important in the generalization to
marked chain-order polyhedra and in obtaining integral decomposition of lattice points.

The following proposition generalizes the Minkowski property of marked chain polytopes
proved in [13] for the case of P ∗ being a chain.

Proposition 16. The marked chain polyhedron C(P, λ) decomposes as the weighted
Minkowski sum

C(P, λ) = c0 C(P, ω0) + (c1 − c0) C(P, ω1) + · · ·+ (ck − ck−1) C(P, ωk).

Furthermore, when λ is integral, we have

CZ(P, λ) = c0 CZ(P, ω0) + (c1 − c0) CZ(P, ω1) + · · ·+ (ck − ck−1) CZ(P, ωk).

Proof. Since ω0 is the constant marking of all ones, the marked chain polyhedron C(P, ω0)
is the recession cone of C(P, λ) and C(P, λ− c0ω0) is in fact equal to C(P, λ). To see this,
note that all defining inequalities involving the marking are of the form xp1 + · · ·+ xpr ⩽
λ(b) − λ(a), so that changing all markings to 1 yields the defining inequalities of the
recession cone while subtracting c0 from all markings does not change these inequalities at
all. Hence, we have

C(P, λ) = C(P, λ− c0ω0) + c0 C(P, ω0).

Furthermore, when λ is integral, we may decompose lattice points in C(P, λ) as (λ,xC) =
(λ− c0ω0,xC) + c0 (ω0,0), which yields

CZ(P, λ) = CZ(P, λ− c0ω0) + c0 CZ(P, ω0).
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Thus, we may assume c0 = 0 as before. To show that

C(P, λ) = C(P, λ− c1ω1) + c1 C(P, ω1),

we take x ∈ C(P, λ) and define y ∈ RP in the following way: denote by S the set of all
p ∈ C such that there is no a < p with ω1(a) = 1 and no b > p with ω1(b) = 0. Denote by
supp(x) the set of all p ∈ C such that xp > 0. When S ∩ supp(x) is empty, we may just
decompose x as

(λ,xC) = (λ− c1ω1,xC) + (c1ω1,0).

Otherwise, let ε̃ > 0 be the minimum over all xp for p a minimal element in S ∩ supp(x)
as an induced subposet of P and set ε = min{ε̃, c1}. Now define y ∈ RP by letting

yp =


εω1(p) for p ∈ P ∗,

ε for p ∈ min(S ∩ supp(x)),

0 otherwise,

We claim that y ∈ C(P, εω1). We have yp ⩾ 0 for all p ∈ C by definition. Now consider
any saturated chain a ≺ p1 ≺ · · · ≺ pr ≺ b with a, b ∈ P ∗ and all pi ∈ C. We have to
verify

yp1 + · · ·+ ypr ⩽ ε(ω1(b)− ω1(a)).

When ω1(a) = 1 or ω1(b) = 0, both sides of the inequality are zero: the left hand side is
zero since none of the pi are elements of S, the right hand side is zero since ω1(a) = ω1(b)
in this case. When ω1(a) = 0 and ω1(b) = 1, at most one of the pi is a minimal element in
S ∩ supp(x), since the pi are elements of a chain. Hence, the left hand side is at most ε in
this case and we conclude that y ∈ C(P, εω1).

Now consider z = x− y. The coordinates of z are

zp =


λ(p)− εω1(p) for p ∈ P ∗,

xp − ε for p ∈ min(S ∩ supp(x)),

xp otherwise.

We have zp ⩾ 0 for all p ∈ C, since we only subtract ε for coordinates in min(S ∩
supp(x)). Now consider any saturated chain a ≺ p1 ≺ · · · ≺ pr ≺ b with a, b ∈ P ∗ and all
pi ∈ C. Since x ∈ C(P, λ), we have

xp1 + · · ·+ xpr ⩽ λ(b)− λ(a). (1)

The corresponding condition for z ∈ C(P, λ− εω1) is

zp1 + · · ·+ zpr ⩽ (λ(b)− εω1(b))− (λ(a)− εω1(a)). (2)

We only have to verify this for cases where the right hand side of (1) got decreased by ε
in (2), i.e., when ω1(a) = 0 and ω1(b) = 1. In all other cases, the right hand side of (2) is
the same as in (1) while the left hand side possibly decreased by ε.
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Hence, we assume ω1(a) = 0 and ω1(b) = 1, so we have λ(a) = 0 and λ(b) ⩾ c1 ⩾ ε > 0.
If all xpi are zero, all zpi are zero as well and (2) is trivially satisfied. Otherwise, let j be
the smallest index such that xpj > 0. If there is some a′ < pj with ω1(a

′) = 1, the chain
a′ < pj ≺ · · · ≺ pr ≺ b yields2

xp1 + · · ·+ xpj−1︸ ︷︷ ︸
0

+xpj + · · ·+ xpr ⩽ λ(b)− λ(a′) ⩽ λ(b)− ε = λ(b)− λ(a)− ε,

since λ(a′) ⩾ c1 ⩾ ε > 0 = λ(a). Hence, decreasing the right hand side of (1) by ε still
yields a valid inequality, regardless of the left hand side being decreased or not.

If there is some b′ > pj with ω1(b
′) = 0, the chain a < pj < b′ yields

xpj ⩽ λ(b′)− λ(a) = 0− 0 = 0,

which contradicts the choice of pj.
Hence, we may assume that pj ∈ S∩supp(x). If pj is a minimum in S∩supp(x), the left

hand side decreases by ε and (2) is satisfied. Otherwise, there is some q ∈ min(S∩supp(x))
with q < pj. Furthermore, there is a marked element a′ < q and since q ∈ S this element
satisfies λ(a′) = 0 = λ(a). Thus, the chain a′ < q < pj ≺ · · · ≺ pk ≺ b together with
xpq ⩾ ε yields

xp1 + · · ·+ xpj−1︸ ︷︷ ︸
0

+xpj + · · ·+ xpr + ε ⩽ xpq + xpj + · · ·+ xpr ⩽ λ(b)− λ(a).

We conclude that the difference in (1) is at least ε and hence (2) still holds.
Thus, we have shown that z ∈ C(P, λ − εω1) and thus may conclude that C(P, λ) =

C(P, λ− εω1) + C(P, εω1).
Effectively, we replaced λ with c0 = 0 by a marking λ′ = λ − εω1 with c0 = 0 and

ci = ci − ε for i ⩾ 1. Repeating this procedure yields λ− c1ω1 after finitely many steps,
since in each case one of the following happens:

1. S ∩ supp(x) is empty and we reach λ− c1ω1 immediately,

2. S ∩ supp(x) is non-empty and ε = c1, so that we also reach λ− c1ω1,

3. S∩supp(x) is non-empty and ε = ε̃, so that at least one coordinate in min(S∩supp(x))
is non-zero for x but zero for z.

Since S is finite, the third situation can only occur finitely many times. Hence, we conclude
that

C(P, λ) = C(P, λ− c1ω1) + c1 C(P, ω1).

Furthermore, when λ is integral, we may choose ε = 1 whenever S ∩ supp(x) is non-empty
to obtain

CZ(P, λ) = CZ(P, λ− c1ω1) + c1 CZ(P, ω1).

The statement of the proposition now follows by induction as in the previous proof.
2This chain is not saturated and hence does not correspond to a defining inequality of C(P, λ) by our

definition. However, the chain may be refined to a saturated one and split at every marked element to
obtain the given inequality.
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Lemma 17. Let P be a poset with a decomposition P = P ∗ ⊔ C ⊔O into marked, chain
and order elements. For x = (λ,xC ,xO) ∈ RP we have x ∈ OC,O(P, λ) if and only if
xO ∈ O(P \ C, λ) and xC ∈ C(P, λ ⊔ xO), where λ ⊔ xO is the map P ∗ ⊔ O → R that
restricts to λ on P ∗ and to xO on O.

Proof. This is an immediate consequence of the definition of OC,O(P, λ).

Theorem 18. The marked chain-order polyhedron OC,O(P, λ) decomposes as the weighted
Minkowski sum

OC,O(P, λ) = c0OC,O(P, ω0) + (c1 − c0)OC,O(P, ω1) + · · ·+ (ck − ck−1)OC,O(P, ωk).

Furthermore, when λ is integral, we have

OZ
C,O(P, λ) = c0OZ

C,O(P, ω0) + (c1 − c0)OZ
C,O(P, ω1) + · · ·+ (ck − ck−1)OZ

C,O(P, ωk).

Proof. We apply Lemma 17 to reduce the claim to Proposition 15 and Proposition 16. We
start by showing that

OC,O(P, λ) = OC,O(P, λ− c0ω0) + c0OC,O(P, ω0).

Let x = (λ,xC ,xO) ∈ OC,O(P, λ) and λ̂ = λ ⊔ xO. Denote by ĉ0 < ĉ1 < · · · < ĉl the

elements of λ̂(P ∗ ⊔O) and note that ĉ0 = c0 since P ∗ contains all minimal elements of P .

By Lemma 17, we have xO ∈ O(P \C, λ), xC ∈ C(P, λ̂) and x decomposes as x = z+ c0 y
with z = (λ− c0ω0, zC , zO) and y = (ω0,yC ,yO) satisfying

zC ∈ C(P, λ̂− c0ω̂0),

zO ∈ O(P \ C, λ− c0ω0),

yC ∈ C(P, ω̂0), and

yO ∈ O(P \ C, ω0).

As in the the proofs of Proposition 15 and Proposition 16, we may choose yO = 1,
zO = xO − c01, yC = 0 and zC = xC . We claim that

λ̂− c0ω̂0 = (λ− c0ω0) ⊔ zO and

ω̂0 = ω0 ⊔ yO,

so that z ∈ OC,O(P, λ− c0ω0) and y ∈ OC,O(P, ω0). Note that ω0 ⊔ yO = 1 ⊔ 1 = 1 = ω̂0

and hence

(λ− c0ω0) ⊔ zO = (λ− c01) ⊔ (xO − c01) = (λ ⊔ xO)− c01 = λ̂− c0ω̂0.

Thus, we may assume that c0 and ĉ0 are zero and proceed by showing that

OC,O(P, λ) = OC,O(P, λ− c1ω1) + c1OC,O(P, ω1).
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As before, let x = (λ,xC ,xO) ∈ OC,O(P, λ) and λ̂ = λ ⊔ xO, then xO ∈ O(P \ C, λ) and
xC ∈ C(P, λ̂). Choose 0 < ε ⩽ ĉ1 as in the proof of Proposition 16 for C(P, λ̂) to obtain a

decomposition xC = zC+yC with zC ∈ C(P, λ̂−εω̂1) and yC ∈ C(P, εω̂1). Taking the same
ε in the proof of Proposition 15 for O(P \C, λ), we obtain a decomposition xO = zO + yO

with zO ∈ O(P \ C, λ − εω1) and yO ∈ O(P \ C, εω1), where (yO)p = min{xp, ε} and
(zO)p = max{0, xp − ε}. In analogy to the previous step, we only need to show that

λ̂− εω̂1 = (λ− εω1) ⊔ zO and

εω̂1 = εω1 ⊔ yO.

Since 0 < ε ⩽ ĉ1 ⩽ c1 and ĉ1 is the smallest positive value of λ̂ = λ ⊔ xO, we have

εω̂1(p) = min{xp, ε} = εω1 ⊔ yO.

It follows that

λ̂− εω̂1 = (λ ⊔ xO)− (εω1 ⊔ yO) = (λ− εω1) ⊔ (xO − yO) = (λ− εω1) ⊔ zO.

Hence, we have shown that

OC,O(P, λ) = OC,O(P, λ− εω1) +OC,O(P, εω1)

and the rest of the proof is an induction as in the proof of Proposition 16, where we may
choose ε = 1 in the integral case to obtain integral decompositions.

3.2 Reinterpretation: The Cone of Markings and Chain-Order Cones

In this section we give a reinterpretation of Theorem 18 using a subdivision of the cone of
all markings associated to a poset P with a set of marked elements P ∗.

3.2.1 Subdivision of Order Cones

Let P be a finite poset. The order cone of P is defined by:

L(P ) = {f : P → R | f is order preserving} ⊆ RP .

We consider the following set of chains of order ideals in P :

I(P ) = {(I0, I1, · · · , Ik−1) | ∅ ≠ I0 ⊊ · · · ⊊ Ik−1 ̸= P is a chain of order ideals in P}.

For convenience we set I−1 = ∅ and Ik = P . The set I(P ) admits a poset structure given
by coarsening: for I,J ∈ I(P ), I ⩽ J if and only if I is obtained by deleting some of
the order ideals from J (in this case we say I is a coarsening of J ).

We define a map β : L(P ) → I(P ) sending an order-preserving map f : P → R to the
chain of order ideals

If = (f−1(R⩽c0), f
−1(R⩽c1), . . . , f

−1(R⩽ck−1
)) ∈ I(P )
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where f(P ) = {c0 < c1 < · · · < ck}.
For I ∈ I(P ) we define a closed subcone (in the real topology) L(P, I) = β−1(I). It

has the following description: for I = (I0, I1, . . . , Ik−1) ∈ I(P ),

L(P, I) = {f ∈ L(P ) | f is constant on Ij\Ij−1 and f(I0\I−1) ⩽ · · · ⩽ f(Ik\Ik−1)}.

The following statements hold (see [22, 18]):

1. The set of cones {L(P, I) | I ∈ I(P )} forms a polyhedral subdivision of the cone
L(P ).

2. For f ∈ L(P ), f ∈ L(P, I) if and only if If ⩽ I.

3. For f ∈ L(P ), f ∈ relint(L(P, I)) if and only if If = I.

For a chain I = (I0, I1, . . . , Ik−1) ∈ I(P ), note that the lineality space of L(P, I)
consists of all constant maps P → R, so that L(P, I)/R1 is a pointed polyhedral cone in
R/R1 that we refer to as L(P, I). Denoting the indicator function of P \ Ij−1 by ϕj, we
see that L(P, I) is a unimodular simplicial cone with ray generators [ϕ1], . . . , [ϕk].

3.2.2 Chain-Order Cones

When P is a poset with a subset P ∗ of marked elements, the construction in the previous
section, when applied to P ∗, yields a subdivision of the cone of all order-preserving
markings L(P ∗) where the cells L(P ∗, I) are unimodular simplicial cones and the ray
generators [ϕj] are elementary markings.

Letting λ vary over all of L(P ∗), the marked chain-order polyhedra OC,O(P, λ) form a
cone:

Definition 19. Let P = P ∗ ⊔ C ⊔O be a partition of a poset P with min(P ) ⊆ P ∗. The
chain-order cone OC,O(P ) ⊆ RP is the set of all x = (xp)p∈P ∈ RP satisfying the following
conditions:

1. for p ∈ C, xp ⩾ 0;

2. for each saturated chain a ≺ p1 ≺ · · · ≺ pr ≺ b with a, b ∈ P ∗ ⊔O, pi ∈ C, r ⩾ 0, we
have

xp1 + · · ·+ xpr ⩽ xb − xa.

We let π : OC,O(P ) → L(P ∗) denote the linear projection onto the coordinates cor-
responding to P ∗. Then for λ ∈ L(P ∗), the fiber π−1(λ) = OC,O(P, λ) is the marked
chain-order polyhedron.

The polyhedral subdivision {L(P ∗, I) | I ∈ I(P ∗)} induces a polyhedral subdivision{
OC,O(P, I) := π−1(L(P ∗, I))

∣∣ I ∈ I(P ∗)
}

of the chain-order cone OC,O(P ).
Since the elementary markings ωj associated to a marking λ are determined by Iλ, we

can now reformulate Theorem 18 as follows:
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Theorem 20. Let P be any poset and P = P ∗ ⊔ C ⊔ O a partition into marked, chain
and order elements. For I ∈ I(P ∗) and λ, µ ∈ L(P ∗, I),

OC,O(P, λ+ µ) = OC,O(P, λ) +OC,O(P, µ).

Furthermore, if λ and µ are both integral, then

OZ
C,O(P, λ+ µ) = OZ

C,O(P, λ) +OZ
C,O(P, µ).

Proof. For the chains of order ideals, we have Iλ, Iµ ⩽ Iλ+µ ⩽ I, since Iλ and Iµ

have I as a common refinement. In other words, the elementary markings ωi appearing
in the decompositions of λ, µ and λ + µ form a subset of {1, ϕ1, . . . , ϕk}, where 1 is
the constant marking of all ones and the ϕj are the indicator functions of P \ Ij−1.
Using (α + β)OC,O(P, ωi) = αOC,O(P, ωi) + βOC,O(P, ωi) and (α + β)OZ

C,O(P, ω) =
αOZ

C,O(P, ωi) + βOZ
C,O(P, ωi) (for integral α, β ⩾ 0) we may thus decompose points of

OC,O(P, λ+µ) in terms of elementary markings and then redistribute summands to obtain
a sum of points of OC,O(P, λ) and OC,O(P, µ).

Note that in Example 12 the two markings given by (0, 1, 0) and (0, 0, 1) yield chains
of order ideals that do not admit a common refinement.

Remark 21. Let λ be integral and I ∈ I(P ∗) be a chain of order ideals in P ∗. By
Theorem 18 we can take any lattice point x = (λ,xC ,xO) ∈ OZ

C,O(P, I), decompose λ into
elementary markings—hence expressing it as a sum of 1s and minimal ray generators ϕj

of L(P ∗, I)—to then decompose x as a sum of lattice points in the polytopes OC,O(P, ϕj)
and OC,O(P,1).

We may rephrase this to obtain a generating set of the semigroup algebra associated
to OZ

C,O(P, I). Denote by C[OZ
C,O(P, I)] the C-algebra with basis elements χx for all

x ∈ OZ
C,O(P, I) and multiplication defined by χx · χy := χx+y. For λ ∈ L(P, I) let

C[OZ
C,O(P, I)]λ be the subspace spanned by the χx with x ∈ OZ

C,O(P, λ), then

C[OZ
C,O(P, I)] =

⊕
λ∈L(P,I)

C[OZ
C,O(P, I)]λ

and the algebra is generated by the χx where x ∈ OZ
C,O(P, λ) and λ ∈ {1, ϕ1, . . . , ϕk}.

4 Reflexivity of Marked Chain-Order Polytopes

In this section, we will assume that the marked poset (P, λ) satisfies max(P )∪min(P ) ⊆ P ∗

and the marking λ is integral.

4.1 Unique Interior Lattice Points

Let P be a ranked poset with rank function r and (P, λr) be the marking arising from the
rank function and a choice of marked elements. Then the point r = (rp)p∈P defined by
rp = r(p) is contained in O(P, λr).
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Proposition 22. The point r is the unique interior lattice point of O(P, λr) ⊆ RP̃ .

Proof. By Proposition 6, the point r is an interior lattice point in O(P, λr).
For the uniqueness, let r′ = (r′p) ̸= r be another interior lattice point in O(P, λr). Let

p ∈ P̃ be arbitrary and consider a saturated chain between marked elements containing p,
say

a ≺ p1 ≺ · · · ≺ pk = p ≺ · · · ≺ ps ≺ b

where a, b ∈ P ∗ and p1, · · · , ps ∈ P̃ . Note that for each covering relation pi ≺ pi+1 we
must have r′pi < r′pi+1

. Since r′ is integral and a, b are marked with their rank, this is only
possible for r′pi = r(a) + i = rpi .

Corollary 23. For any partition P̃ = C ⊔O, the marked poset polytope OC,O(P, λ
r) has

a unique interior lattice point.

Proof. Let Q = O(P, λ). We apply the Ehrhart-Macdonald reciprocity to Q, by the above
proposition, LQ(−1) = (−1)dim(Q). By Proposition 7, the value of the Ehrhart polynomial
of OC,O(P, λ

r) at −1 is (−1)dim(Q).

Remark 24. Another proof of this corollary without using the Ehrhart theory can be
executed using the transfer map [9]: it suffices to notice that the transfer map preserves
not only the lattice points, but also the boundary of the polytope by continuity.

4.2 Reflexivity

Let Q ⊆ Rn be a lattice polytope with a unique interior lattice point u. We denote
Q = Q− u be the canonically translated polytope.

By Corollary 23, for any partition P̃ = C ⊔ O, the translated polytope OC,O(P, λ
r)

is well-defined, and contains 0 as its unique interior lattice point. We continue by
characterizing the reflexive polytopes among marked chain-order polytopes.

Theorem 25. Let (P, λ) be a regular marked poset. The following statements are equivalent:

i) P is a ranked poset and λ = λr is a marking arising from a rank function;

ii) for any partition P̃ = C ⊔O, the polytope OC,O(P, λ) has a unique interior lattice
point and OC,O(P, λ) is reflexive.

Proof. We start by showing that i) implies ii). Applying the transfer map we see that
the unique interior lattice point of OC,O(P, λ

r) is given by xp = r(p) for p ∈ O ⊔ P ∗ and
xp = 1 for p ∈ C. Hence, after shifting this point to the origin, the defining inequalities of
Q = OC,O(P, λ

r) are:

1. for p ∈ C: xp ⩾ −1,

2. for each saturated chain a ≺ p1 ≺ · · · ≺ pr ≺ b with a, b ∈ P ∗ ⊔O, pi ∈ C, r ⩾ 0:

xp1 + · · ·+ xpr ⩽ xb − xa + 1.

the electronic journal of combinatorics 27(1) (2020), #P1.27 15



The polarity theorem (Proposition 9) can be then applied to conclude that the vertices
of Q◦ have integral coordinates and hence OC,O(P, λ

r) is reflexive.
For the other direction we note that OC,O(P, λ) is reflexive if and only if O(P, λ) is

reflexive since the polytopes are Ehrhart equivalent and the Ehrhart polynomial determines
reflexivity by Theorem 8.

If P is ranked but the marking λ does not arise from a rank function, there exist a, b ∈ P ∗

such that a < b but λ(b)−λ(a) is strictly larger than the length of a (hence of any) saturated
chain between a and b. We take such a saturated chain a ≺ p1 ≺ · · · ≺ pk ≺ pk+1 = b;
without loss of generality we may assume that p1, . . . , pk ∈ P̃ . Since O(P, λ) has only one
interior lattice point a, there exists 1 ⩽ r ⩽ k such that apr+1 − apr = ℓ ⩾ 2. Since (P, λ)
is regular, after translation, O(P, λ) has a facet defined by xpr+1 − xpr ⩾ ℓ: by the polarity
theorem (Proposition 9), it is not reflexive.

If P is not ranked, consider the unique interior lattice point a. There exist a covering
p ≺ q ∈ P not both in P ∗ such that ap < aq − 1, since otherwise a would give rise to a
rank function on P . Now the same argument as above applies.

Remark 26. 1. We also provide a geometric proof of the fact that O(P, λr) is reflexive
by applying Theorem 10. The facet defining inequalities of O(P, λr) are given by
xp ⩽ xq for each covering relation p ≺ q in P . The affine hull of such a facet is the
hyperplane xq − xp = 0 and its parallel through the unique interior lattice point r is
given by xq − xp = 1. Since there is no integer between 0 and 1, there are no lattice
points between these two hyperplanes. Translating O(P, λr) such that r becomes
the origin yields reflexivity of O(P, λr) by Theorem 10.

2. In [15, Lemma on p. 96] Hibi showed that the order polytope is Gorenstein, i.e., it has
an integral dilate that is reflexive up to translation, if and only if the defining poset
is ranked. In this setting P is a poset with the unique minimum 0̂ and maximum 1̂
being marked. The order polytope is obtained by λ(0̂) = 0 and λ(1̂) = 1. Dilating it
by the rank of the poset yields the marked order polytope given by λ = λr so that
O(P, λr) is reflexive.

4.3 Counter-Examples and Remark

We illustrate the obstructions in Theorem 25 in two examples.

Example 27. If P is a ranked poset while λ : P ∗ → Z is not a rank function on P , the
polytope O(P, λ) might not be reflexive despite having only one interior lattice point. We
consider the following marked poset:

(P, λ) =

1 1

5 6

4

s

r

t

qp
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The marked order polytope O(P, λ) has the unique interior lattice point

(xp, xq, xr, xs, xt) = (2, 2, 3, 4, 5).

But the dual polytope of the translated polytope O(P, λ) is not a lattice polytope.

Example 28. We consider the following poset

(P, λ) =

0

p
q

r

t

where the maximal and minimal elements are marked by t ∈ N and 0 respectively,
P̃ = {p, q, r}. We show that the marked order polytope O(P, λ) can not have a unique
interior lattice point.

When t ⩽ 2, there are no integers xq, xr such that 0 < xq < xr < t. When t ⩾ 3, the
two points with xq = 1, xr = 2 and xp ∈ {1, 2} are both interior lattice points of O(P, λ).

Remark 29. Let G = SLn+1 or Sp2n, B be a Borel subgroup in G, and G/B be the complete
flag variety embedded in P(V (2ρ)) (embedding using the anti-canonical bundle on G/B)
where 2ρ is the sum of positive roots in G. As shown in [14, 6] and [11], there exist flat
toric degenerations of G/B to the toric varieties associated to the marked order polytopes
and marked chain polytopes associated to Gelfand-Tsetlin posets where the marking is
given by 2ρ (see [1, 13] for the definition of the posets). By Theorem 25, these toric
varieties are Gorenstein and Fano. The same follows from more general results in [25] on
the reflexivity of Newton-Okounkov bodies arising from flag varieties.
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