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Abstract

A polynomial A(q) =
∑n

i=0 aiq
i is said to be unimodal if a0 6 a1 6 · · · 6 ak >

ak+1 > · · · > an. We investigate the unimodality of rational q-Catalan polynomials,
which is defined to be Cm,n(q) = 1

[n+m]

[
m+n
n

]
q

for a coprime pair of positive integers

(m,n). We conjecture that they are unimodal with respect to parity, or equivalently,
(1 + q)Cm+n(q) is unimodal. By using generating functions and the constant term
method, we verify our conjecture for m 6 5 in a straightforward way.

Mathematics Subject Classifications: 05A15, 05A20, 05E05

1 Introduction

We will consider the unimodality of some symmetric polynomials. A sequence a0, . . . , an is
said to be symmetric if ai = an−i for all i. It is said to be unimodal if there is a k such that
a0 6 a1 6 · · · 6 ak > ak+1 > · · · > an. It is said to be unimodal with respect to parity if
a0, a2, . . . and a1, a3, . . . are both unimodal. A polynomial P (q) = a0 +a1q+ · · ·+anq

n of
degree n is said to be symmetric (resp., unimodal) if its coefficient sequence a0, a1, . . . , an
is symmetric (resp., unimodal).

Stanley gave a nice survey [22] on various methods for showing that a sequence is
unimodal (or log-concave which we will not discuss here). A classical example is the
following.

Theorem 1.1. The Gaussian polynomial Gm,n(q) is symmetric and unimodal, where

Gm,n(q) =

[
m+ n

m

]
q

=
[m+ n]!

[m]![n]!
,

with the classical q-notation [n] = 1−qn
1−q , [n]! = [n][n− 1] · · · [1].

This important result has many proofs. See [2, 6, 7, 17, 19, 22, 30, 31]. It is an
outstanding open question to find an explicit order matching proof for the unimodality.
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Though the Gaussian polynomials have been extensively studied, the closely related q-
Catalan polynomials are less studied.

The q-Catalan polynomials (or numbers) Cn(q) we are discussing here are defined by

Cn(q) =
1

[n+ 1]

[
2n

n

]
q

=
[2n]!

[n+ 1]![n]!
.

It starts with C0(q) = C1(q) = 1, C2(q) = 1 + q2, C3(q) = 1 + q2 + q3 + q4 + q6,
C4(q) = 1 + q2 + q3 + 2q4 + q5 + 2q6 + q7 + 2q8 + q9 + q10 + q12. Clearly, one sees that Cn(q)
is symmetric, but not unimodal. However, we have the following conjecture.

Conjecture 1.2. The q-Catalan polynomials Cn(q) are unimodal with respect to parity.

We find that Conjecture 1.2 can be extended for rational q-Catalan polynomials. For
a pair (m,n) of positive integers, define

Cm,n(q) =
1

[n+m]

[
m+ n

n

]
q

=
1

[m]

[
m+ n− 1

n

]
q

.

When m and n are coprime to each other, i.e., gcd(m,n) = 1, Cm,n(q) is known to be
in N[q] (a polynomial with nonnegative coefficients), and is called the (m,n) rational
q-Catalan polynomials (or q-Catalan numbers). See, e.g., [13].

Conjecture 1.3. For a coprime pair of positive integers (m,n), the (m,n)-rational q-
Catalan polynomials Cm,n(q) are unimodal with respect to parity.

When gcd(m,n) > 1, Cm,n(q) is usually not a polynomial, while it has been shown
that C̄m,n(q) = [gcd(m,n)]Cm,n(q) is in N[q]. See, e.g., [1, 9, 12].

Conjecture 1.4. For a pair of positive integers (m,n), the polynomial C̄m,n(q) is uni-
modal with respect to parity.

Conjecture 1.4 includes Conjecture 1.3 as a special case, since C̄m,n(q) reduces to
Cm,n(q) when gcd(m,n) = 1. We state the latter separately because the combinatorial
meaning of Cm,n(q) is much more elegant as we will explain later in Section 5. Conjecture
1.3 includes Conjecture 1.2 as a special case, since Cn+1,n(q) = Cn(q). We state the latter
separately because Cn(q) has a different combinatorial interpretation. See Section 5. 1

We have verified Conjecture 1.4 for m,n 6 180 by Maple. Observe that C̄m,km(q) =
[m]Cm,km =

[
km+m−1

km

]
q
, which by Theorem 1.1 is indeed unimodal. We will prove this

conjecture for m 6 5. Our method is to compute the corresponding generating functions
by means of the constant term method. It turns out that for m 6 5, the positivity is
transparent in view of their generating functions.

This paper is organized as follows. Section 1 is this introduction. Section 2 introduces
the basic concepts and idea for our proof. The unimodality conjectures are translated
by using their generating functions. Section 3 tries direct computation, which already

1We were informed that Conjecture 1.3 is a special case of Conjecture 1.2 and Theorem 1.3 in [24],
where the proof involves rational Cherednik algebra and is hard to follow.
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becomes complicated for m = 4. Section 4 uses the constant term method to compute
the corresponding generating functions, whose positivity is transparent and hence proves
Conjecture 1.3 for m 6 5. In Section 5, we discuss possible representation approach
for settling these conjectures. We also introduce the combinatorial interpretations of
q-Catalan polynomials.

2 Preliminary

A Laurent polynomial L(q) is said to be symmetric if L(q−1) = L(q), and is said to be
anti-symmetric if L(q−1) = −L(q).

Define the normalization of a polynomial P (q) of degree n by

NP (q) := N (P (q)) = P (q2)q−n, N (0) = 0.

Then the symmetry of P (q) (i.e., P (q) = qnP (q−1)) is transformed to the more natural
symmetry of the Laurent polynomial NP (q). The following properties are easy to verify
and will be used without mentioning:

1. For polynomials P (q) and Q(q), we have N (P (q)Q(q)) = N (P (q))N (Q(q)).

2. The product of two symmetric Laurent polynomials is still symmetric.

3. If L1(q
−1) = L1(q) and L2(q

−1) = −L2(q), then L1(q)L2(q)
∣∣
q=q−1 = −L1(q)L2(q).

We will also use the following linear operators on Laurent polynomials in Q[q, q−1].

PT
q

∑
i

aiq
i =

∑
i>0

aiq
i, (extracting the positive exponent terms)

CT
q

∑
i

aiq
i = a0, (extracting the constant term)

NT
q

∑
i

aiq
i =

∑
i<0

aiq
i, (extracting the negative exponent terms)

These operators clearly extend to Q[q, q−1][[x]], the ring of power series in x with coeffi-
cients Laurent polynomials in q. Indeed, they act coefficient wise in x.

The following lemma is transparent.

Lemma 2.1. Suppose P (q) is a symmetric polynomial of degree n. Then

1. P (q) is unimodal if and only if PTqN ((q − 1)P (q)) ∈ N[q].

2. P (q) is unimodal with respect to parity if and only if

PT
q
N (q2 − 1)P (q) = PT

q
(q2 − q−2)NP (q) ∈ N[q].

Thus Conjecture 1.3 can be restated as follows.
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Conjecture 1.3a. For a coprime pair of positive integers (m,n), the polynomial

PT
q
N (q2 − 1)Cm,n(q) = PT

q
(q2 − q−2)Cm,n(q2)q−(m−1)(n−1)

= PT
q

(q2 − q−2)(1− q2m+2)(1− q2m+4) · · · (1− q2m+2n−2)

(1− q4)(1− q6) · · · (1− q2m)
q−(m−1)(n−1) (1)

has nonnegative integer coefficients.

Our point is that it is usually easier to consider generating functions. Let

Fm(x, q) :=
∑
n>0

(q2 − q−2)NCm,n(q)xn. (2)

Note that the coefficients in x are not always Laurent polynomials in q. We take Fm(x, q)
as an element in Q((q))[[x]], the ring of power series in x with coefficients Laurent series
in q.

For integers m > r > 0, let Xm,r be the linear operator acting on Q(q)[[x]] by

Xm,r

∑
n>0

an(q)xn =
∑
k>0

akm+r(q)xk. (extracting the terms with special exponents) (3)

When gcd(m, r) = 1, Xm,rFm(x, q) ∈ Q[q, q−1][[x]].

Then Conjecture 1.3a is transformed as follows.

Conjecture 1.3b. Let m > r be positive integers with gcd(m, r) = 1. Then

PT
q
Xm,rFm(x, q) = Xm,r PT

q
Fm(x, q)

is a power series in x with coefficients in N[q].

The case gcd(m, r) = d is a little complicated. We need to consider the generating
function∑

k>0

N ((q2 − 1)[d]Cm,km+r(q))x
k =

∑
k>0

qd − q−d

q − q−1
(q2 − q−2)N (Cm,km+r(q))x

k

=
qd − q−d

q − q−1
Xm,r

∑
n>0

(q2 − q−2)N (Cm,n(q))xn

=
qd − q−d

q − q−1
Xm,rFm(x, q).

Thus Conjecture 1.4 can be transformed as follows.

Conjecture 1.4b. Let m > r be nonnegative integers with gcd(m, r) = d. Then

PT
q
Xm,r

qd − q−d

q − q−1
Fm(x, q) = Xm,r PT

q

qd − q−d

q − q−1
Fm(x, q)

is a power series in x with coefficients in N[q].
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We remark that qd−q−d

q−q−1 Fm(x, q) is a power series in x with coefficient Laurent series
in q, so we need to extend the PTq operator. See Section 4.

To our surprise, Fm(x, q) has a product formula as follows.

Proposition 2. For any positive integer m, we have

Fm(x, q) = (q2 − q−2) (q − q−1)
(qm − q−m)

m−1∏
i=0

1

(1− xq1−m · q2i)
(4)

Proof. The proposition is indeed a consequence of the following well-known identity. See,
e.g., [23, pp. 272].

1

(1− x)(1− xq)(1− xq2) · · · (1− xqm)
=
∑
n>0

[
m+ n

m

]
q

xn (5)

We have ∑
n>0

q
−(n−1)(m−1)−2

2 (q2 − 1)Cm,n(q)xn

=
∑
n>0

q
−(n−1)(m−1)−2

2 (q2 − 1)
1− q

1− qm

[
m+ n− 1

m− 1

]
q

xn

= q
m−3

2 (q2 − 1)
1− q

1− qm
∑
n>0

[
m+ n− 1

m− 1

]
q

(q
−(m−1)

2 x)n

= q
m−3

2 (q2 − 1)
1− q

1− qm
m−1∏
i=0

1

(1− xq
−(m−1)

2 qi)
.

We can get

Fm(x, q) =
∑
n>0

(q2 − q−2)NCm,n(q)xn

=
∑
n>0

(q2 − q−2)Cm,n(q2)q−(m−1)(n−1)xn

=
∑
n>0

q−(n−1)(m−1)−2(q4 − 1)Cm,n(q2)xn

= qm−3(q4 − 1)
1− q2

1− q2m
m−1∏
i=0

1

(1− xq1−m · q2i)

= (q2 − q−2) (q − q−1)
(qm − q−m)

m−1∏
i=0

1

(1− xq1−m · q2i)
.

3 Direct computation

Conjecture 1.3 can be verified directly for m = 3, but already becomes complicated for
m = 4.
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3.1 The case m = 3

In this case, we have the following explicit expansion.

Proposition 1. We have

(q2 − 1)C3,n(q) =

{
q3k+1(−

∑k
i=0 q

−(3i+1) +
∑k

i=0 q
3i+1), if n = 3k + 1;

q3k+2(−
∑k

i=0 q
−(3i+2) +

∑k
i=0 q

3i+2), if n = 3k + 2.
(6)

Consequently, Conjecture 1.3 holds true for m = 3.

Proof. By direct computation, we have

(q2 − 1)C3,n(q) =
(q2 − 1)(1− q)

1− qn+3

(1− qn+1)(1− qn+2)(1− qn+3)

(1− q)(1− q2)(1− q3)

= −(1− qn+1)(1− qn+2)

(1− q3)
When n = 3k + 1, we have

(q2 − 1)C3,3k+1(q) = −(1− q3k+2)(1− q3k+3)

(1− q3)
= (q3k+2 − 1)(1 + q3 + q6 + · · ·+ q3k)

= q3k+1

(
−

k∑
i=0

q−(3i+1) +
k∑
i=0

q3i+1

)
.

This proves Conjecture 1.3 for (m,n) = (3, 3k + 1).

When n = 3k + 2, we have

(q2 − 1)C3,3k+2(q) = −(1− q3k+3)(1− q3k+4)

(1− q3)
= (q3k+4 − 1)(1 + q3 + q6 + · · ·+ q3k)

= q3k+2

(
−

k∑
i=0

q−(3i+2) +
k∑
i=0

q3i+2

)
.

This proves Conjecture 1.3 for (m,n) = (3, 3k + 2).

3.2 The case m = 4

This case is already complicated. We have

(q2 − 1)C4,n(q) = −(1− qn+1)(1− qn+2)(1− qn+3)

(1− q3)(1− q4)
.

We can have explicit polynomial representation, but that will not help to prove our
conjecture. For instance, if n = 12k + 1, then

(q2 − 1)C4,12k+1(q) = −(1− q12k+2)(1− q12k+3)(1− q12k+4)

(1− q3)(1− q4)

= (q12k+2 − 1) ·
4k∑
i=0

q3i ·
3k∑
j=0

q4j.
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Now it is unclear why its coefficients in qr is negative for r 6 3n−1
2

.

4 The generating function method

4.1 Basic idea

We illustrate the idea by redoing the case m = 3, n = 3k + 1. Consider the generating
function∑

k>0

(q − q−1)q−3kC3,3k+1(q)x
k =

∑
k>0

−q−3k−1 (1− q3k+2)(1− q3k+3)

(1− q3)
xk

=
1

1− q3
∑
k>0

(−q−3k−1 + q + q2 − q3k+4)xk

=
1

1− q3

(
− q−1

1− q−3x
+
q2 + q

1− x
− q4

1− q3x

)
=
q (1− q) (1 + q) (x+ q + q2x)

(1− x) (x− q3) (1− q3x)
.

By taking partial fraction decompositions in q, we obtain:

q (1− q) (1 + q) (x+ q + q2x)

(1− x) (x− q3) (1− q3x)
=

q2

(q3 − x)(x− 1)
+

q

(q3x− 1)(x− 1)
.

When expanding as a power series in x, the first term has only negative powers in q and
the second term has only positive powers in q:

q2

(q3 − x)(x− 1)
=

−q−1

(1− q−3x)(1− x)
= −q−1

(∑
i>0

xi
)(∑

i>0

(q−3x)i
)
,

q

(q3x− 1)(x− 1)
= q
(∑

i>0

xi
)(∑

i>0

(q3x)i
)
.

Thus by extracting positive powers in q, we obtain∑
k>0

PT
q

(q − q−1)q−3kC3,3k+1(q)x
k =

q

(q3x− 1)(x− 1)
∈ N[q][[x]].

Conjecture 1.3b thus holds for the case (m, r) = (3, 1).

The case (m, r) = (3, 2) can be done similarly.

Extracting positive powers in q of a general class of rational series can be done
systematically by the constant term method. The resulting rational function turns out to
be trivially positive for m 6 5.

4.2 The constant term method

Constant term extraction or residue computation has a long history. See, e.g., [27] for
further references. The fundamental problem we are concerned here is to compute the
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constant term of in a set of variables of a formal series in the field of iterated Laurent
series K = Q((xn)) · · · ((x1)), which is called the working field. The reader is referred
to [9] for the original development of the field of iterated Laurent series. Here we only
recall that K defines a total ordering 0 < x1 < x2 < · · · < xn < 1 on the variables
(more precisely, a total group order on its monomials), which can be formally treated as
0 << x1 << x2 << · · · << xn << 1. Every rational function has a unique series expansion
in K. We will focus on the class of Elliott-rational functions, which are rational functions
whose denominators are the product of binomials. It is known that the constant term of
an Elliott-rational function is still an Elliott-rational function. Efficient algorithms have
been developed to evaluate this type of constant terms, such as the Omega Mathematica
package [3, 4], Ell Maple package [28] developed from Algebraic Combinatorics. See [26]
for further references on algorithmic development from Computational Geometry and
Algebraic Combinatorics.

We will use the first author’s (updated) Ell2 Maple package. We use a list xvar =
[x1, x2, . . . , xn] to specify the working field Q((xn)) · · · ((x1)). Let var = [xi1 , . . . , xis ] be
a list of variables to be eliminated, then the constant term of an Elliott-rational function
F (x1, . . . , xn)

CT
xi1 ,...,xis

F (x1, . . . , xn)

can be evaluated by the command E OeqW (F, xvar, var) after loading the Ell2 package.

In what follows, we always specify the working field K by letting 0 < x < q < λ < 1.
This K includes all the rings, such as Q((q))[[x]], appear below as a subring. Firstly, we
shall explain how to realize the PTq and Xm,r operators by the constant term operator.

For anti-symmetric Laurent polynomials L(q), we have PTq L(q) = −NTq L(q)
∣∣∣
q=q−1

.

For anti-symmetric F (x, q) ∈ Q((q))[[x]], PTq F (x, q) is not in Q[q][[x]], but NTq F (x, q)
belongs to Q[q−1][[x]]. It is convenient for us to use

PT′
q
F (x, q) = −NT

q
F (x, q)

∣∣∣
q=q−1

to replace PTq F (x, q), since they agree when F (x, q) ∈ Q[q, q−1][[x]]. We have

PT′
q
F (x, q) = −NT

q
F (x, q)

∣∣∣
q=q−1

= −CT
λ

λq

1− λq
F (x, λ), (7)

Xm,rF (x, q) = CT
λ

λ−r

1− xλ−m
F (λ, q). (8)

The above identities are easily verified for F (x, q) = qixj and then extended by linearity
for arbitrary F (x, q).

Let us redo the m = 3 case for the sake of clarity. The cases n = 3k+1 and n = 3k+2
can be done simultaneously. By starting with the formula

F3(x, q) =
q2 (1− q2) (1− q4)

(1− x) (x− q2) (1− q2x) (1− q6)
,

we compute

G3(x, q) = PT′
q
F3(x, q) =

q2x

(1− x3) (1− q2x)
.
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This clearly belongs to N[q][[x]], and hence reprove Conjecture 1.3b for (m, r) = (3, 1) and
(m, r) = (3, 2). Indeed, a further step gives

X3,1G3(x, q) =
q2

(1− x) (1− q6x)
∈ N[q][[x]],

X3,2G3(x, q) =
q4

(1− x) (1− q6x)
∈ N[q][[x]].

The case n = 3k is a little different. We need to compute

H0
3 (x, q) = PT′

q

q3 − q−3

q − q−1
F3(x, q) =

q2

(1− x) (1− q2x)
,

which clearly belongs to N[q][[x]]. This implies the positivity of X3,0H
0
3 (x, q) and hence

reproves Conjecture 1.4b for (m, r) = (3, 0). Indeed, we have

X3,0H
0
3 (x, q) =

q2 (1 + q2x+ q4x)

(1− x) (1− q6x)
.

4.3 The case m = 4

We shall establish the following result.

Proposition 1. Conjecture 1.4b holds true for m = 4.

Proof. We start with the formula

F4(x, q) = − q5 (1− q2) (1− q4)
(x− q) (1− qx) (x− q3) (1− q3x) (1− q8)

.

By constant term extraction, we obtain

G4(x, q) = PT′
q
F4(x, q) = −xq (−q + x3 − qx2 + q2x− qx4)

(1− qx) (1− xq3) (1− x8)
,

which do not show the positivity directly. By applying X4,r for r = 1, 3, we obtain

X4,1G4(x, q) =
q2 (1 + q6x+ q6x2 + q12x2)

(1− x2) (1− q4x) (1− q12x)
,

X4,3G4(x, q) =
q2 (1 + q6 + q6x+ q12x2)

(1− x2) (1− q4x) (1− q12x)
.

This proves Conjecture 1.3b for (m, r) = (4, 1), (4, 3).

For the case (m, r) = (4, 2), we need to compute

H2
4 (x, q) = PT′

q

q2 − q−2

q − q−1
F4(x, q) =

xq (1− x4) (1− qx+ q2 − q3x+ q3x3)

(1− x2) (1− qx) (1− q3x) (1− x8)
,

X4,2H
2
4 (x, q) =

q4 (1 + q2) (1 + xq6)

(1− x) (1− q4x) (1− q12x)
,
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which is clearly in N[q][[x]].

For the case (m, r) = (4, 0), we need to compute

H0
4 (x, q) = PT′

q

q4 − q−4

q − q−1
F4(x, q) =

q2

(1− x2) (1− qx) (1− q3x)
,

X4,0H
0
4 (x, q) =

q2 (1 + q2x+ q4x+ 2xq6 + q8x+ q10x+ q12x2)

(1− x) (1− q4x) (1− q12x)
,

which is clearly in N[q][[x]].

4.4 The case m = 5

Proposition 2. Conjecture 1.4b holds true for m = 5.

Proof. We start with the formula

F5(x, q) = − q8 (1− q2) (1− q4)
(1− x) (x− q2) (1− q2x) (x− q4) (1− q4x) (1− q10)

.

By the constant term method, we obtain

G5(x, q) = PT′
q
F5(x, q) =

xq2 (1− x) (1 + x− x3 − q2x+ q2x3 + q2x4)

(1− x2) (1− x3) (1− q2x) (1− x5) (1− q4x)
,

which do not show the positivity directly. By applying X4,r for r = 1, 2, 3, 4, we obtain

X5,rG5(x, q) =
q2P5,r(x, q)

(1− x2) (1− x3) (1− q10x) (1− q20x)
,

where

P5,1(x, q) = 1 + q2x+ q2x2 + q4x+ q4x2 + q4x3 + q6x2 + 2q6x3 + q8x+ q6x4

+ 2q8x2 + q8x3 + q8x4 + 2q10x2 + 2q10x3 + q12x+ q10x4 + q12x2

+ 2q12x3 + q14x+ q12x4 + q14x2 + q14x3 + q14x4 + 2q16x2 + q14x5

+ 2q16x3 + q16x4 + q18x2 + 2q18x3 + 2q18x4 + q20x2 + q20x3 + q20x4

+ q20x5 + q22x3 + q22x4 + q22x5 + q24x3 + q24x4 + q26x2,

P5,2(x, q) = x+ q2x2 + q4 + q2x3 + q4x+ q4x2 + q6x+ q6x2 + q6x3 + q8x

+ q6x4 + 2q8x2 + 2q8x3 + q10x+ q10x2 + 2q10x3 + q12x+ q10x4

+ 2q12x2 + q12x3 + q12x4 + 2q14x2 + 2q14x3 + q16x+ q14x4 + q16x2

+ 2q16x3 + q18x+ q16x4 + q18x2 + q18x3 + q18x4 + q20x2 + q18x5 + 2q20x3

+ q20x4 + q22x2 + q22x3 + q22x4 + q24x4 + q24x5 + q26x3,

P5,3(x, q) = x2 + q2 + q2x+ q4x+ q4x2 + q4x3 + q6x+ 2q6x2 + q8 + q6x3 + q8x

+ q8x2 + q8x3 + q10x+ q8x4 + 2q10x2 + q10x3 + q12x+ q10x4 + 2q12x2

+ 2q12x3 + q14x+ q14x2 + 2q14x3 + q16x+ q14x4 + 2q16x2 + q16x3 + q16x4

+ 2q18x2 + 2q18x3 + q20x+ q18x4 + q20x2 + q20x3 + q20x4 + q22x3 + q22x4

+ q24x2 + q22x5 + q24x3 + q26x4,
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P5,4(x, q) = x3 + q2x+ q2x2 + q4 + q4x+ q4x2 + q6 + q6x+ q6x2 + q6x3 + 2q8x+ 2q8x2

+ q8x3 + q10x+ 2q10x2 + q12 + 2q10x3 + q12x+ q12x2 + q12x3 + q14x+ q12x4

+ 2q14x2 + q14x3 + q16x+ q14x4 + 2q16x2 + 2q16x3 + q18x+ q18x2 + 2q18x3

+ q20x+ q18x4 + 2q20x2 + q20x3 + q22x2 + q22x3 + q22x4 + q24x3 + q24x4 + q26x.

This proves Conjecture 1.3b for m = 5 and r = 1, 2, 3, 4.

For the case n = 5k, we have

H0
5 (x, q) = PT′

q

q5 − q−5

q − q−1
F5(x, q) =

q2 (1 + q2x2)

(1− x2) (1− x3) (1− q2x) (1− q4x)
,

which clearly implies the positivity for X5,0H
0
5 (x, q). Indeed, we have

X5,0H
0
5 (x, q) =

q2P5,0(x, q)

(1− x2) (1− x3) (1− q10x) (1− q20x)
,

where P5,0(x, q) ∈ N[q, x] contains 64 terms. This reproves Conjecture 1.4b for (m, r) =
(5, 0).

4.5 The cases m > 6

When we calculated the case m > 6 in a similar way, we are not able to prove the positivity
in a straightforward way as before. Let us explain the problem by working with the m = 6
case. We start with the formula

F6(x, q) =
q12 (1− q2) (1− q4)

(x− q) (1− qx) (x− q3) (1− q3x) (x− q5) (1− q5x) (1− q12)
.

By the constant term method, we obtain

G6(x, q) = PT′
q
F6(x, q) = − xqM6

(1− qx) (1− q3x) (1− x6) (1− q5x) (1− x8) (1− x12)
,

where M6 is a polynomial of many terms that does not show positivity. We can apply
X6,r for r = 1, 5, corresponding to the gcd(m, r) = 1 case. Neither of the two cases shows
the positivity directly.

For the gcd(m, r) = 2 case, i.e., r = 2, 4, we need to compute

H2
6 (x, q) = PT′

q

q2 − q−2

q − q−1
F6(x, q)

=
A lengthy polynomial

(1− x)2 (1− x2) (1− x4) (1− q6x) (1− q18x) (1− q30x)
.

We can apply X6,r for r = 2, 4. Neither of the two cases shows the positivity directly.

For the gcd(m, r) = 3 case, i.e., r = 3, we need to compute

H3
6 (x, q) = PT′

q

q3 − q−3

q − q−1
F6(x, q)

=
A lengthy polynomial

(1− x) (1− x2) (1− x4) (1− q6x) (1− q18x) (1− q30x)
.
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We can apply X6,3, and the result does not show the positivity directly.

For the case r = 0, we need to compute

H0
6 (x, q) = PT′

q

q6 − q−6

q − q−1
F6(x, q) =

A lengthy polynomial

(1− x)2 (1− x4) (1− q6x) (1− q18x) (1− q30x)
.

We can apply X6,0, and the result does not show the positivity directly.

4.6 An extension

The computation of the case m = 6 suggests that we need to consider different cases for
proving Conjecture 1.4b. However, we find a possible unified way to attack the conjecture.
More precisely, let

Gm(x, q) = PT′
q
Fm(x, q) for m > 3, (9)

or equivalently,

[qi]Gm(x, q) = CT
q
−qiFm(x, q) = CT

q
−qi(q2 − q−2) (q − q−1)

(qm − q−m)

m−1∏
i=0

1

(1− xq1−m · q2i)
.

(10)

Then Gm(x, q) ∈ Q[q][[x]], and it is easy to verify that:

[q0]Gm(x, q) = 0,

[qxn]Gm(x, q) = [q]N (q2 − 1)Cm,n(q) 6= 0 only when m,n are both even,

[q]G4(x, q) = − 1

1− x4
,

[q]G6(x, q) = −x
6 (1− x2 + x4 − x6 − x8)

(1− x6) (1− x8) (1− x12)
= −

(
x6 + x10 + 2x18 + x22 + 2x30 + x34 + 2x42 + x54

)
+ positive terms,

[q]G10(x, q) = −
(
x6q + x10q

)
+ positive terms.

We summarized all the other cases in the following conjecture.

Conjecture 3. Let Gm(x, q) be as in (9). Then Gm(x, q) is almost positive for m > 3.
More precisely, besides the above formula, we have

1. For every k > 3, [q]G2k(x, q) has only finitely many negative terms.

2. For every i > 2, [qi]Gm(x, q) ∈ N[[x]].
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A unified approach for m = 4 and r = 1, 3 can be given as follows. We have

G4(x, q) = −xq (−q + x3 − x2q + q2x− x4q)
(1− qx) (1− q3x) (1− x8)

=
q2x (1 + x2 − qx− q2x4 + q3x5)

(1− qx) (1− q3x) (1− x8)
− x4q

1− x8

=
q2x (1− qx+ x2(1− q2x2))
(1− qx) (1− q3x) (1− x8)

+
q2x (q3x5)

(1− qx) (1− q3x) (1− x8)
− x4q

1− x8

=
q2x (1 + x2 + qx3)

(1− q3x) (1− x8)
+

q5x6

(1− qx) (1− q3x) (1− x8)
− x4q

1− x8

It follows that

X4,rG4(x, q) = X4,r
q2x (1 + x2 + qx3)

(1− q3x) (1− x8)
+X4,r

q5x6

(1− qx) (1− q3x) (1− x8)
,

which is clearly positive.

Generally, for odd m, we need to show the positivity of Gm(x, q). It is possible to
decompose Gm(x, q) as a sum of trivially positive rational functions. The decomposition is
nontrivial even for G5(x, q). The even m case needs a minor modification. We succeeded
in doing this type of decomposition in [21], and hence decomposition of Gm(x, q) for small
m, at least for m 6 6, should be possible. This suggested us to reconsider the following
problem in the near future.

Problem: Given an Elliott rational function Q, how to decompose Q =
∑

iQi with Qi

all trivially positive if possible.

5 Combinatorial model

5.1 Combinatorial interpretation of Cm,n(q)

In this section (m,n) is always a coprime pair of positive integers, unless specified other-
wise. The general case gcd(m,n) = d > 1 can be considered but is much more compli-
cated.

We should mention that representation theory maybe suitable for settling our con-
jectures. For instance, Conjecture 1.3 can be proved if we can find (usually hard to find)
an sl(2) module whose character is q−(m−1)(n−1)/2Cm,n(q). This is based on the following
well-known result. See, e.g., [22, Theorem 15].

Theorem 1. Let ψ : sl(2) 7→ gl(n) be a representation of sl(2) with

char ψ =
∑
i

biq
i.

Then the sequence . . . , b−2, b−1, b0, b1, b2, . . . is symmetric and unimodal with respect to
parity.
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Let Dm,n be the set of Dyck paths in the m × n lattice rectangle, i.e., paths from
(0, 0) to (m,n) with unit North step and unit East step, that never go below the diagonal
line y = nx/m. The rational q, t Catalan polynomials are defined by

Cm,n(q, t) =
∑

D∈Dm,n

qarea(D)tdinv(D),

where the sum is over Dyck paths in the m × n lattice rectangle, area(D) gives the
number of lattice squares between the path and the diagonal, and dinv(D) is a Dyck path
statistic that can also be given a relatively simple geometric construction. There is also
an equivalent interpretation in terms of simultaneous core partitions. See [5, 25].

The rational q-Catalan polynomials are specializations of the q, t Catalan polyno-
mials introduced by Garsia and Haiman [10]. They have the following combinatorial
interpretation:

Cm,n(q) = q(m−1)(n−1)/2Cm,n(q, q−1) =
∑

D∈Dm,n

qcoarea(D)+dinv(D).

It seems hard to show the parity unimodality of Cm,n(q) by this model, because the dinv
statistic is still hard to understand.

A mysterious property of Cm,n(q, t) is its symmetry in q and t, i.e., Cm,n(q, t) =
Cm,n(t, q). As a symmetric polynomial, Cm,n(q, t) has a Schur expansion

Cm,n(q, t) =
∑
λ

cλsλ[q, t],

where λ can has only two parts, say λ = (λ1, λ2), and

sλ1λ2 [q, t] = (qt)λ2 [λ1 − λ2]q,t, where [k]q,t = qk−1 + qk−2t+ · · ·+ tk−1.

Then the (q, t) Schur positivity of Cm,n(q, t) (i.e., cλ > 0 for all λ) implies the unimodality
of Cm,n(q) with respect to parity.

The symmetry of Cm,n(q, t) is a consequence of the rational shuffle conjecture, which
can be written as

Qm,n(−1)n = Hm,n(X; q, t),

where Hm,n(X; q, t) is the Hikita polynomial that has combinatorial interpretation as a
sum over rational parking functions [14], and Qm,n is a symmetric function operator intro-
duced by Gosky and Negut [11]. The rational Shuffle conjecture was proved by Mellit [18].
Detailed definitions are too involved. The reader is referred to [20] for further information
on this topic. We should mention that no combinatorial proof of this symmetry is known
up to now.

As a symmetric function in X, we can write

Hm,n(X; q, t) =
∑
λ`n

[sλ]m,nsλ[X].

Then Cm,n(q, t) is just [s1n ]m,n. From the algebraic side, Hm,n(X; q, t) is easily seen to be
q, t symmetric, so is its coefficients [sλ]m,n. It is then natural to conjecture that [sλ]m,n(q, t)
is (q, t) Schur positive. The positivity (though not stated this way) has been proved for
the case n = 2 by Leven [15] and for the case n = 3 by Qiu and Remmel [20].
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5.2 Combinatorial interpretation of Cn(q)

Since Cn(q) = Cn+1,n(q), we have a combinatorial interpretation of Cn(q). Indeed, let Dn
be short for Dn,n. Then we have

Cn(q) =
1

[n+ 1]q

[
2n

n

]
q

=
∑
D∈Dn

qcoarea(D)+dinv(D) =
∑
D∈Dn

qcoarea(D)+bounce(D).

The second equality follows by the symmetry of Cn(q) and by application of the zeta map,
which is a bijection from Dn to itself that takes dinv to area and area to bounce. See
[25, 16]. Usually we think the statistic bounce is simpler than dinv in this case, (while
for D ∈ Dm,n, the dinv(D) is known but the bounce(D) is not).

Currently the simplest way to compute coarea(D) and bounce(D) might be as follows
(see [29]). Firstly, there is a easy way to convert D ∈ Dn to a standard Young tableau
T (D) of shape (n, n). Then coarea(D) is just the sum of the first row entries minus

(
n
2

)
,

and bounce(D) is the sum of the first row ranks, where the ranks of the entries of T can
be computed in a simple way: i) r(1) = 0; ii) r(i) = r(i − 1) if i is in the first row; iii)
r(j) = r(i) + 1 if j is under i. For example, Figure 1 illustrates these statistics for the
case n = 3.

1   2   3
4   5   6   

1   2   4
3   5   6   

1   2   5
3   4   6   

1   3   5
2   4   6   

1   3   4
2   5   6   

2q0q 6q3q 4q

coarea
6=1+2+3 7=1+2+4 8=1+2+5 9=1+3+5 8=1++4

0 1 2 3 2

0   0   0
1   1   1   

0   0   1
1   1   2   

0   0   1
1   1   2  

0   1   2
1   2   3   

0   1   1
1   2   2   

bounce 0 1 1 3 2
bouncecoareaq 

  6432
3 1 qqqqqC 

Figure 1: Bounce and coarea for D3: The top row gives the 5 standard Young tableaux.
The bottom row gives the corresponding rank tableaux.

There is a better interpretation found earlier than the above statistics. See, e.g., [23].

Cn(q) =
1

[n+ 1]

[
2n

n

]
q

=
∑
D∈Dn

qmaj(D)

where maj(D) is the major index of D, usually defined as the sum of the descent positions.
(Here a descent corresponds to a EN turn). The major index is also defined for standard
Young tableaux. We only exhibit the major index for C3(q).

There are also two closely related results. One is the following [22, p. 523].

Theorem 2. The polynomial Kn(q) = 1+q
1+qn

Cn(q) is symmetric and unimodal.
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1   2   3
4   5   6   

1   2   4
3   5   6   

1   2   5
3   4   6   

1   3   5
2   4   6   

1   3   4
2   5   6   

6q3q 0q2q 4q

  6432
3 1 qqqqqC 

Figure 2: Major index by standard Young tableaux of shape (n, n). Entry i is a descent
if i+ 1 appears to the left of i.

                                 

  

 

  

  

  

 

 

 

2

4 4

2

3

2q6q 3q4q 0q

  6432
3 1 qqqqqC 

Figure 3: Major index by Dyck paths in Dn. Descents appear at the EN turns.

For instance, K0(q) = K1(q) = 1, K2(q) = 1 + q,K3(q) = 1 + q+ q2 + q3 + q4, K4(q) =
1 + q + q2 + 2q3 + 2q4 + 2q5 + 2q6 + q7 + q8 + q9. This is also a q-analogue of the Catalan
number Cn = 1

n+1

(
2n
n

)
. The degree of Kn(q) is (n− 1)2.

It is not hard to see that the unimodality of Kn(q) implies that (1 + q)Cn(q) = (qn +
1)Kn(q) is almost unimodal. Indeed, if we let Kn(q) =

∑
i kiq

i and (1+q)Cn(q) =
∑

i ciq
i,

then ci = ki + ki+n. Consider

ci+1 − ci = (ki+1 + ki+1+n)− (ki + ki+n) = (ki+1 − ki) + (ki+1+n − ki+n).

Thus the unimodality of Kn(q) (Theorem 2) implies that ci+1−ci > 0 for 0 < i < n2−4n−1
2

,

while the desired positivity ci+1 − ci > 0 is for 1 6 i < n2−3n−1
2

.

The other one is the following conjecture. See [8].

Conjecture 3. Write Cn(q) =
∑

kmn(k)qk. The sequence (mn(1),mn(2), . . . ,mn(n(n−
1)− 1)) is unimodal when n is sufficiently large. (Seem to hold for n > 16.)

If this conjecture is true for n > 16, then Conjecture 1.3 is also true because the
n 6 16 cases are easily verified to be true.
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