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Abstract

The poset Yk,2 consists of k + 2 distinct elements x1, x2, . . . , xk, y1, y2, such
that x1 6 x2 6 . . . 6 xk 6 y1, y2. The poset Y ′k,2 is the dual poset of Yk,2.
The sum of the k largest binomial coefficients of order n is denoted by Σ(n, k).
Let La](n, {Yk,2, Y ′k,2}) be the size of the largest family F ⊂ 2[n] that contains
neither Yk,2 nor Y ′k,2 as an induced subposet. Methuku and Tompkins proved that

La](n, {Y2,2, Y ′2,2}) = Σ(n, 2) for n > 3 and conjectured the generalization that if k >

2 is an integer and n > k+1, then La](n, {Yk,2, Y ′k,2}) = Σ(n, k). On the other hand,

it is known that La](n, Yk,2) and La](n, Y ′k,2) are both strictly greater than Σ(n, k).
In this paper, we introduce a simple approach, motivated by discharging, to prove
this conjecture.
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1 Introduction

The n-dimensional Boolean lattice, denoted Bn, is the partially ordered set (poset) (2[n],⊆),
where [n] = {1, . . . , n}. For any 0 6 i 6 n, let

(
[n]
i

)
:= {A ⊆ [n] : |A| = i} denote the ith

level of the Boolean lattice. Let P be a finite poset and F be a family of subsets of [n].
We say that P is contained in F as a weak subposet if there is an injection α : P → F
satisfying x1 <p x2 =⇒ α(x1) ⊂ α(x2) for all x1, x2 ∈ P . F is called P -free if P is
not contained in F as a weak subposet. We define the corresponding extremal function
to be La(n, P ) := max{|F| : F is P -free}. Analogously, if P , Q are two posets, then
La(n, {P,Q}) := max{|F| : F is P -free and Q-free}.

The linearly ordered poset on k elements, a1 < a2 < · · · < ak, is called a chain of
length k, and is denoted by Pk. Using this notation the well-known theorem of Sperner [15]
can be stated as La(n, P2) =

(
n
bn/2c

)
. Let us denote the sum of the k largest binomial

coefficients of order n by Σ(n, k). Erdős [6] extended Sperner’s theorem by showing that
La(n, Pk) = Σ(n, k−1), with equality if and only if the family is the union of k−1 largest
levels of the Boolean lattice. Notice that, since any poset P is a weak subposet of a chain

of length |P |, Erdős’s theorem implies that La(n, P ) 6 (|P | − 1)
(

n
bn/2c

)
= O

((
n
bn/2c

))
.

Later many authors, including Katona and Tarján [12], Griggs and Lu [9], and Griggs, Li,
and Lu [8] studied La(n, P ) for various other posets P . (See the recent survey by Griggs
and Li [7] for an excellent survey of all the posets that have been studied.) Let h(P )
denote the height (maximum length of a chain) of P . One of the first general results is
due to Bukh [2], who showed that if T is a finite poset whose Hasse diagram is a tree
of height h(T ) > 2, then La(n, T ) = (h(T ) − 1 + O(1/n))

(
n
bn/2c

)
. The most notorious

poset for which the asymptotic value of the extremal function is still unknown is the
diamond Q2, the poset on 4 elements with the relations a < b, c < d where b and c are
incomparable. The best known bound is (2.20711 + o(1))

(
n
bn/2c

)
, due to Grósz, Methuku,

and Tompkins [10].
We say that P is contained in F as an induced subposet if and only if there is an

injection α : P → F satisfying x1 <p x2 ⇐⇒ α(x1) ⊂ α(x2) for all x1, x2 ∈ P . We say
that F is induced-P -free if P is not contained in F as an induced subposet. We define
the corresponding extremal function as La](n, P ) := max{|F| : F is induced P -free}.
Analogously, if P , Q are two posets, then

La](n, {P,Q}) := max{|F| : F is induced P -free and induced Q-free}.

Despite the considerable progress that has been made on the extremal function for
forbidden weak subposets, little is known about forbidden induced subposets (except
for Pk, where the weak and induced containment are equivalent). The first results for
forbidden induced subposets are due to Carroll and Katona [3] and to Katona [11], showing
La](n, Vr) = (1 + o(1))

(
n
bn/2c

)
where Vr is the r-fork poset (x 6 yi for all 1 6 i 6 r).

Boehnlein and Jiang [1] generalized the results of [3, 11] by extending Bukh’s result to
induced containment of tree-shaped posets, T , proving La](n, T ) = (h(T )−1+o(1))

(
n
bn/2c

)
.

Only recently, Methuku and Pálvölgyi [14] showed that for every poset P , there is a
constant cP depending only on P such that La](n, P ) 6 cP

(
n
bn/2c

)
.
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Even fewer exact results are known for forbidden induced subposets, which is the
topic of this paper. Katona and Tarján [12] proved that La(n, {V,Λ}) = La] (n, {V,Λ}) =
2
( n−1
bn−1

2 c
)
, where V and Λ are the 2-fork and its dual, the 2-brush, respectively.

Now we formally define the posets considered in this paper.

Definition 1. Let k, r > 2 be integers. The r-fork with a k-shaft poset consists of k + r
elements x1, x2, . . . , xk, y1, y2, . . . , yr−1, yr with x1 6 x2 6 · · · 6 xk and xk 6 yi for all
1 6 i 6 r, and is denoted by Yk,r. Let Y ′k,r denote the reversed poset of Yk,r, also called
the dual poset of Yk,r.

For simplicity, we will write Yk and Y ′k instead of Yk,2 and Y ′k,2 respectively.

The first result about Yk,r was due to Thanh [16] who showed that La(n, Yk,r) =
(k+o(1))

(
n
bn/2c

)
. The lower order term in his upper bound was improved by De Bonis and

Katona [4]. Thanh also gave a construction showing that La(n, Yk,r) > Σ(n, k). Methuku
and Tompkins [13] showed that if one forbids both Yk and Y ′k , then an exact result can
be obtained: La(n, {Yk, Y ′k}) = Σ(n, k).

Using a cycle decomposition method, they also showed the following exact result for
induced posets.

Theorem 2 (Methuku–Tompkins [13]). If n > 3, then La](n, {Y2, Y ′2}) = Σ(n, 2).

Theorem 2 strengthens the result of De Bonis, Katona, and Swanepoel [5] stating that
La(n,B) = Σ(n, 2) where B is the butterfly poset which consists of 4 elements a, b, c, d
with a, b 6 c, d. Indeed if a family does not contain the butterfly as a subposet, then
it contains neither Y2 nor Y ′2 as an induced subposet. However, a family might contain
neither an induced Y2 nor an induced Y ′2 while still containing a butterfly.

In Section 3, we establish the following generalization of Theorem 2 by proving a
conjecture from [13].

Theorem 3. If k > 2 is an integer and n > k + 1, then La](n, {Yk, Y ′k}) = Σ(n, k).

Note that forbidding only one of Yk and Y ′k is not enough to obtain an exact result.
Indeed, again by Thanh’s construction [16] we have La](n, Yk) > Σ(n, k) and La](n, Y ′k) >
Σ(n, k).

In the course of proving Theorem 3, we establish the following LYM-type inequality
in the case that ∅ and [n] are not in our family.

Theorem 4. Let k > 2 be an integer and n > k + 1. If F ⊂ 2[n] contains neither Yk nor
Y ′k as an induced subposet and ∅, [n] /∈ F , then

∑
F∈F

(
n

|F |

)−1
6 k.

In order to prove Theorem 4 we use a double-counting argument that is reminiscent of
discharging-type arguments, as described in the next section. We then prove Theorem 3
by using Theorem 4 and induction on k.

the electronic journal of combinatorics 27(1) (2020), #P1.31 3



2 Preliminaries and our approach

The following terminology will be used to prove Theorems 3 and 4. Let F be a family of
subsets of [n] which is induced Yk-free and induced Y ′k-free. For sets U , V ⊆ [n], let the
interval [U, V ] denote the Boolean lattice induced by the collection of all sets that contain
U and are contained in V . A chain C where C = {A0, . . . , An} and ∅ = A0 ⊂ A1 ⊂ · · · ⊂
An = [n] is called a full chain or a maximal chain.

A spine is a chain A1 ⊂ A2 ⊂ · · · ⊂ A` such that |Ai+1 \ Ai| = 1 for 1 6 i 6 ` − 1
where there are exactly k− 1 members of F in {A1, . . . , A`} and where A1, A` ∈ F . Note
that a spine may contain elements not from F .

Let C be the set of all full chains and let S be the set of all spines. We say that a full
chain C ∈ C is associated with a spine S ∈ S or that C contains S as a spine if either

1. C has exactly k − 1 members of F , which we name F1, . . . , Fk−1. In this case, C is
associated with the spine that is a subchain of C from F1 to Fk−1; or

2. C has exactly k + x elements of F (where x > 1), which we name F1, . . . , Fk+x. In
this case, C is associated with x spines, namely SFi

for 2 6 i 6 x+ 1, where SFi
is

the spine that is a subchain of C from Fi to Fi+k−2. (Notice that a chain C with at
least k + 1 elements of F is not associated with the spines that correspond to the
first k − 1 elements of F ∩ C and to the last k − 1 elements of F ∩ C.)

Let spine(C) denote the set of all spines that C contains. More precisely,

spine(C) := {S : C contains S as a spine}.

We start by placing a weight (or charge) on a spine depending on the chains that
contain it. More precisely, if S ∈ S is a spine and C ∈ C is a full chain, then we define a
weight function w(S,C) as follows.

w(S,C) =

{
1, if S ∈ spine(C) and C contains at least k + 1 members of F ,

−1, if S ∈ spine(C) and C contains exactly k − 1 members of F .

The motivation behind the above weight function is that, when considering all the chains C
associated with a fixed spine S, we would like to show that the total positive charge of
these chains is outweighed by their total negative charge. This is confirmed by Lemma 6.
Moreover, notice that for any C ∈ C with spine(C) 6= ∅, we have the following useful
identity: ∑

S∈S
S∈spine(C)

w(S,C) = |F ∩ C| − k. (1)

Observe that any chain C having exactly k − 1 or at least k + 1 members of F must
contain a spine S. It follows that if spine(C) = ∅ then C contains at most k members
of F . In other words,
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∑
C∈C

spine(C)=∅

(|F ∩ C| − k) 6 0. (2)

Before proving Lemma 6, we need the following straightforward counting lemma, the
proof of which we provide for completeness.

Lemma 5. Let n > 2. If G ⊆ {{1}, {1, 2}, {1, 2, 3}, . . . , {1, 2, 3. . . . , n − 1}}, then the
number of full chains in 2[n] containing no member of G is at least the number of full
chains that contain at least one member of G.

Proof. Let the set of full chains that contain at least one member of G be X and the set of
full chains that contain no member of G be Y . To show that |X| 6 |Y | we will construct
an injection from X to Y . Consider any chain C ∈ X. Let C be ∅ ⊂ {x1} ⊂ {x1, x2} ⊂
{x1, x2, x3} ⊂ · · · ⊂ {x1, x2, x3, . . . , xn}. For simplicity, we will say the permutation
corresponding to C is x1x2x3 · · ·xn.

If {x1, x2, . . . , xj} is the last set from G in C and xi = 1, then x1x2 · · ·xj is a permu-
tation of {1, 2, . . . , j}. Hence, xj+1 > j + 1 and 1 6 i 6 j. Let us consider the chain C ′

corresponding to the permutation

x1x2 · · ·xi−1xj+1xi+1xi+2 · · ·xjxixj+2 · · ·xn,

obtained by swapping xj+1 with xi in the permutation corresponding to C. If C ′ contains
the set {1, 2, . . . , j+ 1}, then it must be the case that xj+1 = j+ 1. Thus, C contains the
set {1, 2, . . . , j + 1}, which contradicts the maximality of j. Therefore, under this map,
the full chain C ′ does not contain any member of G. If we map C ∈ X to C ′ ∈ Y in this
way, the map is an injection, as desired.

Lemma 6. Let k > 2 be an integer and n > k + 1. Let F be a family in Bn with no
induced Yk and no induced Y ′k such that ∅, [n] 6∈ F . Let S denote the set of spines of F
and let C denote the set of full chains in Bn. For any S ∈ S,∑

C∈C
S∈spine(C)

w(S,C) 6 0.

Proof. Let a spine S be the chain A1 ⊂ A2 ⊂ · · · ⊂ A` where |Ai+1 \ Ai| = 1 for
1 6 i 6 `− 1. (Recall that, by definition of a spine, there are exactly k− 1 members of F
in {A1, . . . , A`} and A1, A` ∈ F .) If all of the chains C ∈ C that contain S as a spine have
at most k members of F then since w(S,C) = −1 for each of these chains, our lemma
follows trivially. Therefore, we may assume that there is a chain C ∈ C that contains S
as a spine such that w(S,C) = 1. By definition (of w(S,C) = 1), such a chain C has
at least k + 1 members of F . Moreover, C must have sets P , Q ∈ F with P ⊂ A1 and
A` ⊂ Q.

If two sets A, B ∈ F are unrelated to each other and A, B ⊂ A1 then we have an
induced copy of Y ′k consisting of A, B, the k − 1 members of F in S, and Q. Therefore,
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F ∩ [∅, A1] induces a chain G1. By symmetry, F ∩ [A`, [n]] induces a chain G2 as well. By
assumption, ∅, [n] 6∈ F , so the chains G1 \ {A1} and G2 \ {A`} may be extended to chains
that satisfy the hypotheses of Lemma 5 for [∅, A1] and [A`, [n]].

Therefore, the number a0 of full chains in [∅, A1] containing no member of G1 \ {A1}
is at least the number a1 of full chains in [∅, A1] that contain a member of G1 \ {A1}.
Similarly, the number b0 of full chains in [A`, [n]] containing no member of G2 \ {A`} is
at least the number b1 of full chains in [A`, [n]] that contain a member of G2 \ {A`}. Now
notice that the number of chains C ∈ C associated with the spine S that have exactly k−1
members of F is a0 · b0 and the number of chains C ∈ C associated with S that have at
least k + 1 members of F is a1 · b1 (here we used that S is not associated with such a
chain C unless C has a member of F both above and below S). Therefore, since a1 6 a0
and b1 6 b0, ∑

C∈C
S∈spine(C)

w(S,C) = a1 · b1 − a0 · b0 6 0.

3 Proofs of Theorem 3 and Theorem 4

Recall that Σ(n, k) denotes the sum of the sizes of the largest k levels in the Boolean
lattice Bn. First we use a folklore lemma that establishes an inequality very similar to
the LYM inequality.

Lemma 7 (See [17, Lemma 1]). If F ⊆ 2[n] satisfies

∑
F∈F

(
n

|F |

)−1
6 k, (3)

then |F| 6 Σ(n, k).

The above lemma can be proved easily: if we fix |F|, the left-hand side of (3) is min-
imized when we choose the subsets with sizes as near to n/2 as possible. (See [17] for a
more detailed proof.)

Proof of Theorem 4. Observe that by Lemma 6,∑
S∈S

∑
C∈C

spine(C)3S

w(S,C) 6 0. (4)

Now by double counting,∑
S∈S

∑
C∈C

spine(C)3S

w(S,C) =
∑
C∈C

spine(C) 6=∅

∑
S∈spine(C)

w(S,C). (5)

Recall that for any C ∈ C with spine(C) 6= ∅, the identity (1) holds.
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So by (4) and (5), we have ∑
C∈C

spine(C)6=∅

(|F ∩ C| − k) 6 0. (6)

Adding up (2) and (6), we get ∑
C∈C

(|F ∩ C| − k) 6 0.

On the other hand,
∑

C∈C(|F ∩ C| − k) =
∑

F∈F |F |! · (n− |F |)!− k · n!. Therefore,∑
F∈F

|F |! · (n− |F |)!− k · n! 6 0.

After rearranging, we obtain
∑

F∈F
(

n
|F |

)−1
6 k, proving Theorem 4. �

Proof of Theorem 3. The statement of Theorem 3 is true for k = 2 (base case) due to
Theorem 2.

If neither ∅ nor [n] are in F , then we may apply Theorem 4 directly to obtain |F| 6
Σ(n, k).

If both ∅ and [n] are in F , then F\{∅, [n]} is induced Yk−1-free and induced Y ′k−1-free.
Therefore, it has size at most Σ(n, k− 1) by the induction hypothesis. Since 2 + Σ(n, k−
1) 6 Σ(n, k) for n > k + 1 and k > 2, we are done.

Now, without loss of generality, suppose that ∅ ∈ F and [n] 6∈ F . Consider the
family F ′ := F \ {∅}. By Theorem 4, we have

∑
F∈F ′

(
n

|F |

)−1
6 k (7)

and, by Lemma 7, |F ′| 6 Σ(n, k).
Now suppose |F ′| = Σ(n, k). (Otherwise, we are done.) A consequence of the proof

of Lemma 7 is that, in order for equality to hold in (3), the quantities
(

n
|F |

)
(for F in F ′)

must be as large as possible—that is, the sets F ∈ F ′ must have size as close to n/2 as
possible. More precisely, in order for equality to hold in (3), the list of the quantities

(
n
|F |

)
for F ∈ F ′ in decreasing order (with multiplicities) must be the same as the list of the
first Σ(n, k) quantities

(
n
|S|

)
for S ⊆ 2[n] in decreasing order (with multiplicities).

First, if k and n have different parities, then |F ′| = Σ(n, k) can only occur if

F ′ =
(

[n]⌊
n−k
2

⌋) ∪ ( [n]⌊
n−k
2

⌋
+ 1

)
∪ · · · ∪

(
[n]⌊

n−k
2

⌋
+ k − 1

)
.

However, in that case, Yk−1 is an induced subposet of F ′. Hence, adding ∅ produces an
induced copy of Yk in F , a contradiction.
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Second, if k and n have the same parity, then |F ′| = Σ(n, k) can only occur if F ′
contains (

[n]
n−k
2

+ 1

)
∪
(

[n]
n−k
2

+ 2

)
∪ · · · ∪

(
[n]

n−k
2

+ k − 1

)
plus

(
n

n−k
2

)
sets from

( [n]
n−k
2

)
∪
( [n]

n−k
2

+k

)
. If F ′ contains any set from

( [n]
n−k
2

)
, then it is easy to

see that Yk−1 is an induced subposet of F ′ and adding ∅ produces an induced copy of Yk
in F . Otherwise, F ′ must contain all of the sets from

( [n]
n−k
2

+k

)
and n > k+ 2. But in this

case, Yk−1 is again an induced subposet of F ′, giving an induced copy of Yk in F , again
a contradiction.

Therefore, |F ′| 6 Σ(n, k)− 1, which implies |F| 6 Σ(n, k), as desired. �

4 Concluding Remarks

Our approach to proving Theorem 3 amounts to a weighted double-counting where the
choice of the charge values were motivated by a simple discharging argument. However, we
believe charge functions that are motivated by more sophisticated discharging arguments,
especially with the identification and enumeration of “spines,” can lead to progress on
other forbidden subposet problems.

We believe that a more general result than Theorem 3 holds. Recall that Yk,r denotes
the r-fork with a k-shaft poset and Y ′k,r denotes its dual.

Conjecture 8. For all k > 2 and r > 2, there is an n0 = n0(k, r) such that if n > n0,
then La](n, {Yk,r, Y ′k,r}) = Σ(n, k).

Theorem 3 is the case when r = 2; note that for all k > 2, n0(k, 2) = k + 1.
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