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Université de Bordeaux

Bordeaux, France

guillaume.lagarde@labri.fr

Joseph Swernofsky∗

School of Electrical Engineering and Computer Science
KTH Royal Institute of Technology

Stockholm, Sweden

josephsw@kth.se

Submitted: Jan 6, 2019; Accepted: Jan 25, 2020; Published: Feb 7, 2020

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

The Galvin problem asks for the minimum size of a family F ⊆
( [n]
n/2

)
with the

property that, for any set A of size n
2 , there is a set S ∈ F which is balanced on

A, meaning that |S ∩ A| = |S ∩ A|. We consider a generalization of this question
that comes from a possible approach in complexity theory. In the generalization the
required property is, for any A, to be able to find d sets from a family F ⊆

( [n]
n/d

)
that form a partition of [n] and such that each part is balanced on A. We construct
such families of size polynomial in the parameters n and d.

Mathematics Subject Classifications: 05D05, 05D40

1 Introduction

1.1 Galvin problem

The starting point of this paper is a question raised by Galvin in extremal combinatorics.
Given two sets A and S, we say that S is balanced on A if |S ∩ A| = |S|

2
.

Definition 1 (Galvin family). If 4 | n, a family F ⊆
(
[n]
n/2

)
is said to be Galvin if for any

A ∈
(
[n]
n/2

)
there exists a set S ∈ F which is balanced on A (i.e., |S ∩ A| = n

4
).

∗Supported by Knut and Alice Wallenberg Foundation
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Figure 1: S balanced on A

The Galvin problem asks for the minimal size, denoted by m(n), of a Galvin family.
An upper bound of m(n) 6 n

2
follows from the family given by the sets Si = {i, i +

1, . . . , i + n
2
− 1} for i ∈ [n/2]. Lower bounds for the size of Galvin families are more

subtle. An easy counting argument shows that m(n) >
( n
n/2)

(n/2
n/4)

2 = Θ(
√
n), which is far

from n/2. Frankl and Rödl [4] established that m(n) > εn for some ε > 0 whenever n
4

is odd, as a corollary to a strong result in extremal set theory. This linear bound was
later strengthened by Enomoto, Frankl, Ito and Nomura [3] to m(n) = n/2, with the
same parity constraint, thus showing the optimality of the construction in this special
case. Later, using Gröbner basis methods and linear algebra, Hegedűs [5] obtained that
m(n) > n

4
whenever n

4
> 3 is a prime.

Figure 2: A Galvin family for n = 8 consisting of 4 sets

1.2 Generalizations and related works

Surprisingly, problems closely related to the one of Galvin proved useful in arithmetic
complexity theory, in order to give lower bounds on the size of arithmetic circuits com-
puting some target polynomials. This connection was first noticed by Jansen [8], and
was recently successfully used in a paper by Alon et al. [2]. There the elements of the
Galvin family F are allowed to be sets of size between 2τ and n − 2τ (τ being an in-
teger). Furthermore, for a given A ∈

(
[n]
n/2

)
instead of asking for the existence of a set

S ∈ F perfectly balanced on A the authors look for a set S which is nearly balanced, i.e.,∣∣∣|S ∩ A| − |S|2 ∣∣∣ < τ for the same τ . For this setting, Alon, Kumar and Volk [2] showed,

using the so-called polynomial method, that m(n) > Ω(n/τ).
Alon, Bergmann, Coppersmith, and Odlyzko [1] investigate a problem dealing with

{−1,+1} vectors which looks similar to the Galvin one. When rephrasing it as an extremal
problem over sets, it reads as follows: what is the minimal number K(n, c) on the size of
a family F ⊆ P([n]) such that the following holds

∀A ⊆ [n], ∃S ∈ F ,
∣∣|A4S| − |A4S|∣∣ 6 c,
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where 4 denotes the symmetric difference. Setting c = 0 and asking all sets to be of size
n/2 is exactly the Galvin problem.

We consider here a different type of generalization. Asking for a set S ∈ F to be
balanced on A ∈

(
[n]
n/2

)
is equivalent (up to a factor 2 in the family size) to ask for a

partition of [n] into two parts, namely (S, S), such that each part is balanced on A and
such that S, S are elements of F . Instead of splitting [n] into two parts, we look for
partitions that involve more sets. Introducing a parameter d ∈ N, we want, for a given
A, to be able to find d sets in F that form a partition of [n] and such that each set is
balanced on A.

The original motivation for considering this generalization stems from arithmetic cir-
cuits. There, an open question is to know whether there is a separation between two
models of computation called multilinear algebraic branching programs (ml-ABPs) and
multilinear circuits (ml-circuits). By “separation”, we mean that there is some specific
polynomial f that can be computed by a small ml-circuit but any ml-ABP for f must be
of size superpolynomial in the degree and the number of variables of f . Proving that any
generalized Galvin families (i.e., with d parts in the partitions – see below for a formal
definition) must be of superpolynomial size (in n the size of the ground set, and d the num-
ber of parts) would imply a separation between ml-ABPs and ml-circuits. Since our main
result is to prove that generalized Galvin families of polynomial size exist, this approach
is unfortunately not promising. Note that it is still possible that ml-ABPs and ml-circuits
can be separated, and even that the proof will involve showing that ml-ABPs cannot com-
pute efficiently so-called “full rank polynomials”. We only rule out a specific approach
to showing that ml-ABPs cannot efficiently compute full rank polynomials. However, we
believe that the construction is of intrinsic combinatorial interest. We present briefly at
the end of the paper how bounds on d-Galvin families relate to separating ml-ABPs from
ml-circuits.

2 d-Galvin families

2.1 Definition

We start with the formal definition of generalized Galvin families.

Definition 2 (d-Galvin families). Given two integers d, n ∈ N such that 2d | n, we say
that a family F ⊆

(
[n]
n
d

)
is d-Galvin if for any A ∈

(
[n]
n/2

)
, A is handled by F , meaning

that there exist d sets S1, . . . , Sd ∈ F such that:

• The Si form a partition of [n],

• Each Si is balanced on A (i.e., |Si ∩ A| = n
2d

).

Remark 3. Note that a 2-Galvin family is simply a Galvin family (up to adding the
complements of any set in the family).

Somewhat surprisingly, small d-Galvin families exist.
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Figure 3: Set A handled by a partition S1, S2, . . . Sd

Theorem 4. For any d, n ∈ N such that 2d | n, there exists a d-Galvin family of size
Θ̃(n2d9).

Here Θ̃(f(n, d)) is some function g such that

f(n, d)(ln f(n, d))c1 6 g(n, d) 6 f(n, d)(ln f(n, d))c2

for some integers c1, c2. The next section is devoted to the construction of a d-Galvin
family, yielding a proof of the main theorem.

2.2 Proof of Theorem 4

For technical reasons, we need to distinguish two cases in the proof of Theorem 4: we
start by giving a construction when d is reasonably small, then we show how to adapt it
to handle larger d.
First case: d < n

(lnn)3

The overall idea is to construct a family F of size Θ̃(nd9) such that a random set
A ∈

(
[n]
n/2

)
is handled by F with probability at least 1/2. Taking the random family G

which is the union of n independent such F increases this probability to at least 1− 2−n.
By the union bound, the probability that G handles all sets A is non-zero, yielding the
existence of the desired family. We now focus on the construction of such a family F .

Construction of F
For a set X, we use the notation A ∼ X to denote that A is a set chosen uniformly at

random from X. We let k := n
2d

for the rest of the paper.

Lemma 5. When d < n
(lnn)3

, there is a family F ⊆
(
[n]
2k

)
of size Θ̃(nd9) such that

Pr
A∼( [n]

n/2)
(A is handled by F) > 1/2

Before going into the construction, let us see how we can prove the main theorem with
Lemma 5 in hand.

the electronic journal of combinatorics 27(1) (2020), #P1.36 4



Proof of Theorem 4, first case. Let σ1, . . . , σn be n permutations of [n], chosen uniformly
at random. For each of these, construct the family Fσi = σi(F), i.e., the family from
Lemma 5 where any element e ∈ [n] has been replaced by σi(e). Consider the family
G := ∪i∈[n]Fσi . We aim to prove that G is d-Galvin with non-zero probability. Given a
set A, let Hi be the event: “A is handled by Fσi”. Hi is equivalent to “σ−1i (A) is handled
by F”. As σ−1i (A) is a uniformly random set independent from σ−1i′ (A) for i 6= i′, this
proves the independence between the events Hi. From this we conclude

Pr
A∼( [n]

n/2)
(∀i ∈ [n], A is not handled by Fσi) 6 2−n

Thus, by the union bound there is a non-zero probability that G handles all sets A,
concluding the proof of the theorem.

The rest of the section consists of a proof of Lemma 5. The overall strategy is to
divide the elements of [n] into buckets, denoted by χi, and build the sets S from any
pair of buckets (χi, χj). Suppose the amount by which these buckets are unbalanced on
A are Ri and Rj respectively. If half the elements of S are chosen from bucket χi and
half from bucket χj then the amount by which S is unbalanced on A will be close to a
normal distribution with expectation depending on Ri and Rj. By showing a good upper
bound on the Ri, the probability that S is balanced is reasonably large, and picking only
polynomially many random sets S is sufficient. In fact, we must be slightly more careful
because the bucket errors accumulate as we pick many sets S. Fortunately, we can manage
this by taking an ordering π of the buckets such that the error of ∪j6iχπ(j) stays small for
all i.

Proof of Lemma 5. First, we divide [n] into several intervals (recall that k = n
2d

).

• χ0 = (0, k],

• χi = ((2i− 1)k, (2i+ 1)k] for i ∈ [d− 1],

• χd = ((2d− 1)k, n].

For i ∈ [d−1], let Ti be a random variable obtained by sampling uniformly at random from(
χi

k

)
. We create sets Gi = {T hi : h ∈ [1, r]} by sampling independently r = Θ̃(n1/2d7/2)

subsets T hi ∼
(
χi

k

)
and adding them to Gi. For technical reasons, we let G0 to be the

singleton {∅} and Gd = {χd}. Finally let F = {T hi ∪ T lj : i, j ∈ [0, d], T hi ∈ Gi, T
l
j ∈ Gj},

where T hi denotes χi \ T hi (similarly, Ti denotes the random variable χi \ Ti). Now, we
claim that such a random F handles A ∼

(
[n]
n/2

)
with probability at least 1/2, giving the

existence of the desired family. As there are Θ(d2) pairs (i, j) to consider and for each
one we add Θ̃((n1/2d7/2)2) sets S to F , this gives a total size |F| = Θ̃(nd9).

For I ⊆ [0, d] we introduce an error term R(I) to represent the error in balancing A.

We let χ(I) = ∪i∈Iχi and R(I) = |A ∩ χ(I)| − |χ(I)|
2

. Furthermore we write Ri := R({i}).
For reasons that will become clear later, we want to choose a permutation π of [0, d] with
π(0) = 0 and π(d) = d with maxi∈[0,d] |R(π([0, i]))| small.
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Figure 4: An ordering π

Claim 6. ∃π : maxi∈[0,d] |R(π([0, i]))| 6 maxi∈[0,d] |Ri|

Proof. We let π(0) be fixed to be 0, and for each i > 0, pick π(i+1) among the remaining
elements such that Rπ(i+1) has opposite sign from R(π[0, i]). If R(π[0, i]) = 0 pick any
value of π(i+ 1). Note that this is always possible as R([0, d]) = 0.

0 10 20 30 40 50

1200

1000

800

600

400

200

0

200

R([0,i])
R( [0,i])

Figure 5: Cumulative R value shrinks under a good ordering. n = 106 and d = 50

We fix π to be a permutation that fulfills Claim 6 for the rest of the paper. Recall
that the hypergeometric distribution of parameters K,N, n, written H(K,N, n),
describes the following process: in a population of N balls among which exactly K are
red, n balls are drawn without replacement; H is the number of red balls obtained during
the process. More precisely:

Definition 7 (hypergeometric distribution). A random variable X follows the hyperge-
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ometric distribution H(K,N, n) if its probability mass function is given by

Pr(X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

)
Claim 8. With probability at least 3

4
over a random A ∼

(
[n]
n/2

)
, we have maxi∈[0,d] |Ri| 6√

ln(13d)
√
k.

Proof. For i ∈ [1, d−1], each element Ri follows a hypergeometric distribution H(n
2
, n, 2k).

We get the following bound, due to Hoeffding [6].

P (|Ri| > x) 6 2 exp(−2x2

2k
)

With x =
√

ln(13d)
√
k this becomes 2 exp(− ln(13d)) = 2

13
· 1
d
. R0 and Rd follow the

distribution H(n
2
, n, k), which yields an even stronger bound for i = 0 and i = d. Applying

a union bound over all i ∈ [d], the probability that at least one |Ri| exceeds
√

ln(13d)
√
k

is bounded by 2
13
d+1
d
< 1

4
(since d > 2).

Claim 9. Suppose d < n
(lnn)3

. Let Sj := T π(j−1)∪Tπ(j) for j ∈ [d]. If {Sj}j<i are balanced
on A then we have Si balanced on A with probability at least

Θ

(
exp(−4

k
max{R(π[0, i− 1])2, R2

π(i)})
√

1

k

)
Proof. Let t := −R(π[0, i− 1]). Since the {Sj}j<i are balanced, we have:

|A ∩ ∪i−1j=1Sj| = (i− 1)k (1)

On the other hand:

|A ∩ χ(π[0, i− 1])| = |A ∩ ∪i−1j=1Sj|+ |A ∩ T π(i−1)|
= (i− 1)k + |A ∩ T π(i−1)| using (1)

and

|A ∩ χ(π[0, i− 1])| = (2i− 1)
k

2
− t by definition of R(·)

Therefore, |A ∩ T π(i−1)| = k
2
− t. To make Si to be balanced we must have |A ∩ Tπ(i)| +

|A ∩ T π(i−1)| = k. This means that the probability that Si is balanced is the probability
that |A ∩ Tπ(i)| = k

2
+ t. Let x := |A ∩ Tπ(i)| and R := Rπ(i). We have that x follows a

hypergeometric distribution with parameters H(k +R, 2k, k). Claim 11 below suffices to
establish Claim 9.

We state an easy lemma that will be helpful for Claim 11 to estimate binomial coeffi-
cients, a proof of which can be found in Spencer and Florescu [9].
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Figure 6: Conditions on |A ∩ Tπ(i)|

Lemma 10.
(

n
n
2
−m

)
= 2n

√
2
nπ

exp
(
−2m2

n

)(
1 +O(m

3

n2 )
)

Claim 11. We have that x = k
2

+ t with probability at least

Θ

(
exp(−4

k
max{t2, R

2

4
})
√

1

k

)
Proof. As x follows a hypergeometric distribution with parameters H(k + R, 2k, k), we
have that

P (x =
k

2
+ t) =

(
k +R
k
2

+ t

)(
k −R
k
2
− t

)(
2k

k

)−1
. (2)

By Claim 6 and Claim 8 we have 0 6 t, R 6
√

ln(13d)
√
k. Recall also that k = n

2d
.

Therefore, as long as d < n
(lnn)3

, we are in the regime (R
2
− t)3 = o(k2); we can apply

Lemma 10 and Equation (2) becomes

=2k+R

√
2

(k +R)π
exp

(
−

2(R
2
− t)2

k +R

)

× 2k−R

√
2

(k −R)π
exp

(
−

2(R
2
− t)2

k −R

)

×

(
22k

√
2

2kπ

)−1
(1 + o(1))

=

√
4k

(k +R)(k −R)π
exp

(
−2(

R

2
− t)2( 1

k +R
+

1

k −R
)

)
(1 + o(1))

=

√
4k

(k2 −R2)π
exp

(
−4k(R

2
− t)2

k2 −R2

)
(1 + o(1))

Since 0 6 t, R 6
√

ln(13d)
√
k = o(k), we finally get

=

√
4

kπ
exp

(
−4

k
(
R

2
− t)2

)
(1 + o(1))
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Combining Claim 8 and Claim 9, we have a probability of

Θ

(
exp(−4

k
(k ln(13d)))

√
1

k

)
= Θ

(
exp(−4 ln(13d))

√
d

n

)
= Θ((13d)−7/2n−1/2)

that Si is balanced. Call this probability y. If |Gi| = ln(4d)
y

then the probability that some

choice of Tπ(i) balances Si is at least 1− 1
4d

. By the union bound, the chance that |Ri| is
not bounded in Claim 8 or that any Si is unbalanced is at most 1

4
+ d 1

4d
= 1

2
. Hence the

probability that we get a d-Galvin partition is at least 1
2
, as desired.

In the above proof we used d < n
(lnn)3

to apply Lemma 10. While this could perhaps
be improved to d = n

lnn
, there is a real barrier here. When d is this large we expect some

buckets to be entirely empty of elements from A and the above proof does not work. We
now handle the case where d is larger.
Second case: d > n

(lnn)3

Proof of Theorem 4, second case. First, observe that Galvin families compose nicely; if
F is an a-Galvin family over [n], and if we take a b-Galvin family FS over S for each set
S ∈ F , then the union of all FS forms an ab-Galvin family.

Set d′ = n
(lnn)3

and assume for the moment that d′ and d
d′

are valid factors of d. The idea

is to start by constructing a d′-Galvin family F over [n], using the previous construction.
We then recursively apply the construction to get a d

d′
-Galvin family FS for any S ∈ F ,

and the final family is the union of all FS. The elements of F are sets of size (lnn)3,
therefore the families FS are of size Θ̃(1), and the overall construction is of size Θ̃(n2d9).

In the case that d′ and d
d′

are not valid factors of d, we do the following. Let k′ = b d
d′
c.

The idea is to construct a family F with sets of size 2k′k, and 2(k′ + 1)k, that behaves
like a Galvin family: we ask that any set A has a partition of [n] from sets in F , where
each set of the partition is balanced on A. We then apply recursively the construction
to split the sets of size 2k′k and 2(k′ + 1)k until we get size k sets. To create the family
F , we adapt the construction of the Galvin family when d < n

(lnn)3
, in the following way.

Note that in any partition of [n] into sets of these sizes, the number of sets of size 2k′k
and 2(k′ + 1)k are fixed (given by d and n). We denote these numbers by f and c. We
need to ensure that the Ti ∪ Tj are of the correct sizes (i.e., 2k′k or 2(k′ + 1)k). For that,
we change the sizes of the χi in the following way:

• |χ0| = k′k

• For c values of i ∈ [1, d− 1], we have |χi| = 2(k′ + 1)k

• For the other i ∈ [1, d− 1] we have |χi| = 2k′k

• |χd| = k′k.

We then choose the Ti to be of size k′k except for i = 0 where the unique T0 remains ∅.
This gives the desired sizes for |Si| and it is not hard to see that the proof carries over to
this case with some simple and obvious modifications.

the electronic journal of combinatorics 27(1) (2020), #P1.36 9



2.3 Galvin family without the divisibility condition

The previous definition of a d-Galvin family requires 2d | n. Here we present a relaxed
version, which can be defined without the divisibility condition, and prove that such
families of polynomial size can be obtained using our previous construction.

When the divisibility condition does not hold we would like d sets to be exactly or
almost exactly balanced on A and for those sets to be as close in size as possible. To
be exactly balanced they must have evenly many elements, so if [n] is odd then we must
include a set of odd size which is imbalanced by 1 element. Of the remaining elements,
the closest they can come in size is differing by 2 elements - being of size either 2bkc or
2dke. We are able to achieve this best possible outcome.

Definition 12 (d-Galvin family, second version). Given two integers d, n ∈ N with d 6 n,
we say that a family F ⊆ 2[n] is d-Galvin if for any A ∈

(
[n]
dn/2e

)
, A is handled by F ,

meaning that there exist d sets S1, . . . , Sd ∈ F such that:

1. ∀i < d, |Si| = 2bkc or |Si| = 2dke,

2. 2bkc 6 |Sd| 6 2dke

3. The Si form a partition of [n],

4. For i < d, each Si is balanced on A.

5. |A ∩ Sd| 6 |A ∩ Sd| 6 |A ∩ Sd|+ 1.

Figure 7: For n = 29, d = 6, we have three sets of size 2bkc, two sets of size 2dke, and one
set of size bkc+ dke.

Theorem 13. There exists a d-Galvin family of size polynomial in d and n.

Sketch of the proof. We modify the previous construction slightly in order to handle this
more general setting. This is very similar to the proof of Theorem 4 in the case d > n

(lnn)3
.

Suppose k is not an integer and write k′ := bkc. Furthermore, assume for the moment that
k = ω((lnn)3) so that the construction from Claim 9 holds. Note that in any partition
of [n] into sets that respect properties (1) and (2) of the definition, the number of sets of
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size 2k′, 2k′ + 1, and 2(k′ + 1) are fixed (given by d and n). We denote these numbers by
f,m and c. We need to ensure that the Ti ∪ Tj are of the correct size in order to be able
to fulfill our definition. For that, we change the size of the χi in the following way:

• |χ0| = k′ if m = 0 and k′ + 1 otherwise

• For c values of i ∈ [1, d− 1], we have |χi| = 2(k′ + 1)

• For the other i ∈ [1, d− 1] we have |χi| = 2k′

• |χd| = k′.

We then choose the Ti to be of size k′ except for i = 0 where the unique T0 remains ∅.
By doing so, the partitions from the family respect properties (1) and (2), and again the
proof that this gives a valid construction is very close to the original proof and we omit
the details.

Finally, if k = O((lnn)3) then we may have to simultaneously apply the adjustments
above and the ones in the proof of the second case of Theorem 4.

3 Discussion and open questions

The actual construction is probabilistic and it could be interesting to derandomize it,
without increasing too much the size of the family. A way to tackle the problem is to
carefully design the sets Ti belonging to Gi instead of taking them randomly.

The given upper bound is nicely polynomial in n and d but it is unlikely to be tight. We
suspect that even modifications of the current construction can yield some improvements.
In particular, the family F from Lemma 5 is constructed by taking the union T i∪Tj over
all possible pairs (Ti, Tj) ∈ Gi × Gj for i, j ∈ [d]. It might be possible to restrict (i, j)
to come from the edges of a sparse graph over the vertices [d], and still prove Claim 6,
maybe in some slightly weaker form, possibly saving a factor close to d. Even if this is
possible the resulting family is still not likely to be optimal size and hence we have not
investigated this approach in detail as it would lead to considerable complications and we
prefer a simple construction. A truly optimal construction is likely to require some new
ideas.

There is a linear lower bound for the original Galvin problem. This is essentially tight
and it would be nice to have a similar tight result for d-Galvin families for d > 2. The
work of Hrubes et al. [7] enables us to derive an nd

2
− o(nd) lower bound by using the

following theorem.

Theorem 14 (Theorem 3 from [7]). Let n be a positive even integer and S1, S2, . . . Sk be
proper non-empty subsets of [n] such that for every X ⊂ [n] of size n/2, there is an i ∈ [k]
for which |Si ∩X| = |Si|/2. Then, k > n

2
− o(n).

We can now turn to our lower bound for d-Galvin families.

Claim 15. A d-Galvin family must be of size at least nd
2
− o(nd).
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Proof. Consider a d-Galvin family F , some y ∈ [n], and the sets S1 . . . Sk ∈ F that
contain y. By definition, for X ∈

(
[n]
n/2

)
there must be one of these Si such that X ∩ Si =

n
2d

= |Si|
2

. Hence sets S1 . . . Sk respect the conditions of Theorem 14 and we conclude that
k > n/2− o(n).

This shows that B := {(S, y)|S ∈ F , y ∈ S} has size |B| > n2

2
− o(n2). Since each

S ∈ F has size |S| = n
d
, this shows |F| > nd

2
− o(nd).

Link with arithmetic complexity theory

In this section we present briefly how bounds on d-Galvin families relate to separating
ml-ABPs from ml-circuits.

One popular measure in arithmetic complexity is based on the rank of partial derivative
matrices. Given a multilinear polynomial f over a set X of n variables and a subset
A ⊂ X, we can split each monomial of f into those variables in A and those in X \ A.
We construct a 2|A| × 2n−|A| matrix with respect to A, written MA(f), where rows (resp.
columns) are indexed by multilinear monomials over the variables A (resp. X \ A).
The entry Mm1,m2(f) corresponding to monomials m1 and m2 is the coefficient of m1m2

in f . Perhaps surprisingly, there is a polynomial f computable by a polynomial-sized
arithmetic circuit where MA(f) is full-rank for any A ⊂ X of size n

2
. Therefore, one

strategy to separate ml-circuits from another model of computation, let us say ml-ABPs
in our case1, is to prove that an ml-ABP of polynomial size cannot compute such a full-
rank polynomial. The key idea to see the link with d-Galvin is the following: we show
that a polynomial f computed by a small ABP can be decomposed as

f(X) =
∑
i6N

f i1f
i
2 . . . f

i
d,

where N is small and related to the size of the ABP and for any fixed i, the polynomials
f i1, . . . , f

i
d are over disjoint sets of variables. We write these sets as X i

1, . . . X
i
d, respectively.

By subadditivity and since f is full-rank, for any A ⊂ X, there is at least one i0 ∈ [d] for

which rank(MA(f i01 × . . . · · · × f i0d )) > 2n/2

N
. It can be shown that this can happen only if

the sets X i0
1 , . . . , X

i0
d are well balanced on A (i.e., for any j ∈ [d], |X i0

j ∩A| ≈ |X
i0
j |/2). In

other words the dN sets of variables {X i
j : i ∈ [N ], j ∈ [d]} behave like a d-Galvin family.

Therefore, a lower bound on d-Galvin families gives a lower bound on dN which implies
a lower bound on the size of the ABP.
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1This strategy was successfully used by Ran Raz to separate multilinear formulas and multilinear
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