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Abstract

We present a bijection between permutation matrices and descending plane par-
titions without special parts, which respects two of the statistics considered by
Mills, Robbins and Rumsey, and an additional statistic considered by Behrend, Di
Francesco and Zinn–Justin.

Mathematics Subject Classifications: 05A05, 05A19

1 Introduction

It is a well–known fact [11, 5, 4] that the enumeration

• of descending plane partitions with parts not exceeding n (let us denote the set of
these objects by Dn)

• and of alternating sign matrices of dimension n (let us denote the set of these objects
by An)

gives the same number:

|An| = |Dn| =
n−1∏
j=0

(3j + 1)!

(n+ j)!
. (1)

∗Research supported by the National Research Network “Analytic Combinatorics and Probabilistic
Number Theory”, funded by the Austrian Science Foundation.
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1.1 Search for a bijection

It appears to be quite difficult to find some “natural” bijection

Φ : An → Dn.

However, there are two additional informations which might help in the search for such
bijection:

• There is a quadruplet (p, i, s, q) of statistics for both An and Dn, i.e. there are
functions

σA : An → Z4 and σD : Dn → Z4,

such that for all y := (p, i, s, q) ∈ Z4 the preimages are equinumerous, i.e.,∣∣σ−1
A (y)

∣∣ = ∣∣σ−1
D (y)

∣∣
(see [3, Theorem 1], the details are given in the next section).

• There are certain subsets of An and of Dn, namely

– alternating sign matrices with statistic s = 0 (let us denote this set by A0
n; it

is, in fact, the set of n× n permutation matrices),

– descending plane partitions with statistic s = 0 (let us denote this set by D0
n),

which are much simpler to understand and for which it is, in fact, quite easy to give
“natural” bijections (see below).

So an obvious approach would be to search for a bijection Φ which respects this quadruplet
of statistics (p, i, s, q); in the sense that for all A ∈ An there should hold:

σA (A) = σD (Φ (A)) for all A ∈ An. (2)

Clearly, such bijection Φ restricted to the subset A0
n ⊂ An would give a bijection

Ψ : A0
n → D0

n.

So if we find such “restricted” bijection Ψ which respects the triplet (p, i, q) of statistics
in the sense of (2), then we might hope to “extend” it somehow to the desired “full”
bijection Φ.

The purpose of this note is to present a simple bijection Ψ which indeed respects the
triplet (p, i, q) of statistics in the sense of (2): The construction of Ψ relies on the repre-
sentation of descending plane partitions as families of non–intersecting lattice paths and
on a certain “visualization” of the statistic i (as number of certain entries) for matrices).
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1.2 Other bijections

It should be noted that there are other bijections A0
n → D0

n: Maybe the simplest one
was already mentioned by Lalonde [8, p.981], who referred to the inversion table of a
permutation: This table (also called inversion word) gives a (well–known) unique encoding
of permutations. The missing link from inversion words to D0

n was explained by Striker
[10, Lemma 5]. Striker uses monotone triangles as intermediate objects to establish the
bijection between inversion words and A0

n, but this intermediate step is not necessary:
Instead, we can employ directly the well–known encoding of permutations by inversion
words. (We shall call these two mappings A0

n → D0
n Striker’s and Lalonde’s bijection,

respectively). Unfortunately, none of these two simple bijections respects the statistic
q (see Figure 4). Ayyer [1] presented another (inductively constructed) bijection, which
does not respect the statistic i (see [1, p. 1786]).

1.3 Organization of this note

This note is organized as follows:

• Section 2 contains basic definitions and background information,

• Section 3 presents a “visualization” of inversions in alternating sign matrices used
for our bijection,

• Section 4 presents a representation of descending plane partitions as families of non–
intersecting lattice paths (in the “obvious” way: for the expert it will suffice to look
at Figure 2),

• Section 5 presents a bijection Ψ : A0
n → D0

n which respects the triplet (p, i, q) of
statistics.

2 Background information

For reader’s convenience, we recall some background information.

2.1 Descending plane partitions

Here is the definition of descending plane partitions as given by Mills, Robbins and Rum-
sey [9, Definitions 2–4]:

Definition 1 (descending plane partition). A descending plane partition is an array π =
(ai,j), 1 ⩽ i ⩽ j < ∞, of positive integers

π =

a1,1 a1,2 a1,3 · · · · · · a1,µ1

a2,2 a2,3 · · · · · · a2,µ2

· · ·
· · ·

ak,k · · · ak,µk
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such that

1. rows are weakly decreasing, i.e., ai,j ⩾ ai,j+1 for all i = 1, . . . , k and i ⩽ j < µi,

2. columns are strictly decreasing, i.e., ai,j > ai+1,j for all i = 1, . . . , k − 1 and i < j ⩽
µi+1,

3. ai,i > µi − i+ 1 for all i = 1, . . . , k,

4. ai,i ⩽ µi−1 − i+ 2 for all i = 2, . . . , k.

Clearly, conditions 3 and 4 imply

µ1 ⩾ µ2 ⩾ · · · ⩾ µk ⩾ k.

The parts of a descending plane partition are the numbers (with repetitions) that appear
in the array. The empty array, which we denote by ∅, is explicitly allowed.

A descending plane partition π where no part is greater than n (i.e., π has at most
n− 1 rows) is said to have dimension n. (So a descending plane partition of dimension n
may also be viewed as a descending plane partition of dimension k, for all k > n.)

By the length of row i in descending plane partition π we define the number of parts
it contains (i.e., µi − i+ 1). So we may rephrase conditions 3 and 4 as follows:

3′. The first part of row i is greater than the length of row i for i = 1, . . . , k,

4′. The first part of row i is less or equal than the length of the preceding row i− 1 for
i = 2, . . . , k.

A part ai,j in a descending plane partition is called special if it does not exceed the
number of parts to its left (in its row i), i.e., if

ai,j ⩽ j − i.

Example 2. A typical example is the array

6 6 6 4 2
5 3 2 1

2

with 3 rows and 10 parts (written in descending order)

6, 6, 6, 5, 4, 3, 2, 2, 2, 1,

three of which are special parts (indicated as underlined numbers; note that the 2 in the
last row is not a special part):

2, 2, 1.

(This is the example D0 considered by Lalonde [7, Fig. 1].)

From now on, we shall use the shorthand DPP for descending plane partitions.
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2.2 Alternating sign matrices

Here is the definition of alternating sign matrices as given by Mills, Robbins and Rumsey,
see [9, Definition 1]:

Definition 3 (alternating sign matrix). An alternating sign matrix of dimension n is an
n× n square matrix which satisfies

• all entries are 1, −1 or 0,

• every row and column has sum 1,

• in every row and column the nonzero entries alternate in sign.

Suppose that A = (Ai,j)
n
1 is an alternating sign matrix of dimension n. Then the

number of inversions in A is defined to be [9, p. 344]∑
1⩽i<k⩽n
1⩽l<j⩽n

Ai,jAk,l. (3)

Example 4. The following matrix is an example of an alternating sign matrix of dimen-
sion 5: 

0 1 0 0 0
0 0 1 0 0
1 −1 0 1 0
0 1 0 −1 1
0 0 0 1 0.


From now on, we shall use the shorthand ASM for alternating sign matrices.

2.3 The Mills–Robbins–Rumsey conjecture

Here is the Conjecture of Mills, Robbins and Rumsey [9, Conjecture 3], slightly rephrased
to fit our exposition:

Theorem 5. Suppose that n, p, i, s are nonnegative integers, 0 ⩽ p ⩽ n−1. Let An (p, i, s)
be the set of ASMs such that

1. the size of the matrix is n× n (i.e., its dimension is n),

2. the number of 0’s to the left of the 1 in the first row is p,

3. the number of −1’s in the matrix is s,

4. the number of inversions in the matrix is i+ s.

On the other hand, let Dn (p, i, s) be the set of DPPs such that

1. no part exceeds n (i.e., the dimension of the DPP is n),
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2. there are exactly p parts equal to n,

3. there are exactly s special parts,

4. there are a total of i+ s parts.

Then An (p, i, s) and Dn (p, i, s) have the same cardinality — the sets An and Dn are
equidistributed with respect to the triplet of statistics (p, i, s).

This conjecture was proved by Behrend, Di Francesco and Zinn–Justin [2, Theorem
1].

2.4 The fourth statistic given by Behrend, Di Francesco and Zinn–Justin

In [3], Behrend, Di Francesco and Zinn–Justin presented a fourth statistic q for matrices
and DPPs and showed that matrices and DPPs are equidistributed with respect to the
quadruplet of statistics (p, i, s, q) [3, Theorem 1]: This statistic q is

• for n–dimensional ASMs equal to the number of 0’s to the right of the 1 in the last
row,

• for n–dimensional DPPs equal to the number of parts n−1 plus the number of rows
of length n− 1.

2.5 Permutation matrices and inversions

Let σ ∈ Sn be a permutation of the first n natural numbers {1, 2, . . . , n}.

2.5.1 Inversions of a permutation

Recall that an inversion of σ is a pair (i, j) such that i < j and σ (i) > σ (j). For the

number inv (σ) of all inversions of σ we have 0 ⩽ inv (σ) ⩽ n(n−1)
2

.
We may assign to σ its inversion word (a1, a2, . . . , an−1), where ak is the number of

inversions (i, j) with σ (j) = k, k = 1, 2, . . . , n − 1. Clearly we have 0 ⩽ ak ⩽ n − k and
a1 + a2 + · · ·+ an−1 = inv (σ).

Considering the one–line notation

[σ (1) , σ (2) , . . . , σ (n)] ,

of σ, the inversion word’s k–th entry ak is simply the number of elements to the left of k
(in the one–line notation) which are greater than k, and it is easy to see that every word
(b1, b2, . . . , bn−1) with 0 ⩽ bk ⩽ n − k determines a unique permutation: Inversion words
are, in this sense, just another “encoding” for permutations.

the electronic journal of combinatorics 27(1) (2020), #P1.39 6



2.5.2 Permutation matrices

A permutation σ ∈ Sn can be represented by an n× n–matrix M with entries

Mi,j = δi,σ(j)

(where δx,y denotes Kronecker’s delta: δx,y = 1 if x = y, δx,y = 0 if x ̸= y; this is the
transpose of the usual permutation matrix). We call this matrix the permutation matrix
of σ: Clearly, it contains precisely one entry 1 in every row and column.

Example 6. Let n = 6 and σ ∈ S6 be the permutation with one–line notation

σ = [6, 3, 1, 4, 2, 5] .

The corresponding permutation matrix is
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0

 ,

and the corresponding inversion word is

(2, 3, 1, 1, 1) .

Note that every permutation matrix is an ASM (which does not contain entries −1),
and that the definition of inversions (3) for ASMs is a generalization of the number of
inversions of a permutation (see also Section 3.2).

3 Inversions in ASMs

3.1 Orientation of cells in ASMs

Definition 7. By a cell in an ASM A we simply mean the position (i, j) (at row i and
column j). If Ai,j = 0, we call this a zero–cell, otherwise a non–zero cell: So, non–zero
cells can be either 1–cells or (−1)–cells.

Observe that for every zero–cell (i, j) in an ASM there must be

• to the left or to the right (or both) of (i, j) a closest non–zero cell in row i, precisely
one of which must be a 1–cell: If this 1–cell lies to the left of (i, j), then call this
cell left–oriented, otherwise right-oriented,

• above or below (or both) (i, j) a closest non–zero cell in column j, precisely one
of which must be a 1–cell: If this 1–cell lies below (i, j), then call this cell down–
oriented, otherwise up-oriented.
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A zero–cell (i, j) is called

• rd–cell, if it is right–oriented and down–oriented.

• lu–cell, if it is left–oriented and up–oriented.

Remark: rd–cells and lu–cells correspond to two of the four vertex states in the six vertex
model which are replaced by zeroes by the well–known bijection between square ice and
alternating sign matrices (the remaining two of the altogether six possible vertex states
are replaced by +1 and −1, see [6, Figure 5]).

3.2 Inversions of matrices

Observe that the rd–cells in the permutation matrix A =
(
δi,σ(j)

)
of some permutation

σ ∈ Sn are in one–to–one correspondence with the inversions of σ: (i, j) is a rd–cell if

• entry 1 in row i is in column y = σ−1 (i) > j (to the right of column j),

• and entry 1 in column j is in row σ (j) > i (below row i).

This is equivalent to
j < y and σ (j) > (i = σ (y)) ,

i.e., (j, y) is an inversion of the permutation σ.
More generally, observe that the fourfold sum (3), which defines the number of inver-

sions of an ASM, may be rewritten as follows

(n,n)∑
(i,l)=(1,1)

(n,n)∑
(k,j)=(i+1,l+1)

Ai,jAk,l.

Now observe that the inner sum is simply the product(
n∑

k=i+1

Ak,l

)(
n∑

j=l+1

Ai,j

)
.

A moment’s thought shows that this product is equal to

[(i, l) is a (−1)–cell or an rd–cell] .

Here, we used Iverson’s bracket:

[assertion] :=

{
1 if the assertion is true,

0 otherwise.

So the number of inversions of an ASM A (according to (3)) is equal to the number of
rd–cells of A plus the number of (−1)–cells of A.
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The left picture shows the two paths constructed for rd–cell (1, 1): The first cell of crossing
of these paths is lu–cell (4, 6), so (1, 1) is mapped to (4, 6).
The right picture shows the two paths constructed for rd–cell (3, 2): The first cell of
crossing of these paths is lu–cell (6, 5), so (3, 2) is mapped to (6, 5). Observe that these
paths also meet (but do not cross) at the −1–cell (5, 4).

Figure 1: The bijection mapping rd–cells to lu–cells.

3.3 Quadruplet of statistics, reformulated

These considerations immediately lead to the following reformulation of the quadruplet
of statistics (p, i, s, q):

Definition of the statistic f :

f for D ∈ Dn: for A ∈ An:

p #(parts equal to n) # (rd–cells in first row)
i #(non–special parts) # (rd–cells)
s #(special parts) # ((−1)–entries)
q #(parts (n− 1)) + # (rows of length (n− 1)) # (lu–cells in last row)

3.4 rd–cells and lu–cells are equinumerous

Observe that for every ASM A the number of rd–cells equals the number of lu–cells. We
show this by a bijection (see Figure 1): For some rd–cell (i, j), we construct two paths,

• both starting at (i, j),

• both proceeding only horizontally to the right or vertically downwards,

• and both changing horizontal/vertical direction of movement whenever they en-
counter a non–zero cell.

One of these paths starts horizontally (to the right), the other starts vertically (down-
wards): The pictures in Figure 1 illustrate this simple idea. Now observe that the paths
starting horizontally must necessarily end vertically, and vice versa. Hence the paths must
eventually cross at some cell, and any such cell of crossing must necessarily be a lu–cell
(the paths could meet but not cross at some (−1)–cell, see the right picture in Figure 1):
Map (i, j) to the first cell of crossing (k, l) thus obtained. By symmetry (reflection at the
second diagonal of A) it is immediately clear that this construction gives a bijection.
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Consider the following two DPPs of dimension 6:

6 6 6 4 2
5 3 2 1

2

6 6 6 5 0
4 3 1

2

The pictures below show the non–intersecting lattice paths corresponding to the above
DPPs:

1

3

1

1

1

3
6 6 6

4

2

5

3

2

1

2

1

1

1

1

1

3
6 6 6

5

0

4

3

1

2

Note that the the right DPP has a zero–padded first row, and that the special parts of
these DPPs correspond to the horizontal steps (at heights > 0) in the “special range”
below the main diagonal y = x (indicated by the gray triangle).

Figure 2: Representation of DPPs as lattice paths.

4 Representation of DPPs as lattice paths

If some row i in a DPP π = (ai,j) is shorter than ai,i − 1, i.e.,

δ = (ai,i − 1)− (µi − i+ 1) > 0,

then we pad this row with δ trailing zeroes (so the length of some row is the number of
non–zero parts in that row.)

Now we employ the well–known encoding of (shifted) tableaux as non–intersecting
lattice paths; i.e., we encode a DPP π = (ai,j) of dimension n with r rows as an r–tuple of
non–intersecting lattice paths in the lattice Z2. For reader’s convenience, we shall describe
the details of this encoding below, but the idea can easily be obtained by looking at the
illustrative example in Figure 2.

These lattice paths shall only use horizontal steps to the right or vertical steps down-
wards, i.e., steps leading from lattice point (x, y) to lattice point (x+ 1, y) or to lattice
point (x, y − 1).

The starting points of these r lattice paths are the points

Si := (0, ai,i) ,

i.e., the lattice path corresponding to row i starts on the vertical axis at height equal to
the first part of row i.
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The ending points of these lattice paths are the points

Ei := (ai,i − 1, 0) ,

i.e., the lattice path corresponding to row i ends on the horizontal axis and consists of
ai,i − 1 horizontal steps at heights corresponding to the parts of row i; including padded
zeroes (if any), which correspond to steps at height 0.

It is easy to see that the set Dn of n–dimensional DPPs is in bijection with the set
of non–intersecting lattice paths as defined above, with no starting point higher than n.
(But note that in this representation, the number of horizontal steps of a path is equal to
the length of the corresponding row plus the number of horizontal steps at height zero.)

4.1 Bijection between inversion words and DPPs without special parts

If we have some (“incomplete”) lattice path p starting in (0, h) and ending in (x, y), where
x ⩽ h−1 and y ⩾ 0, then by the completion of p we mean the path obtained by appending
to p

• y vertical steps (downwards)

• and h− 1− x horizontal steps (at height 0, to the right)

(i.e., the completion of p ends in (h− 1, 0)).
Striker’s bijection [10, Lemma 5] between inversion words and DPPs without special

parts corresponds to the following construction.
If the inversion word w = (a1, a2, . . . , an−1) equals (0, 0, . . . , 0), then simply assign to w

the empty DPP (with no lattice path at all). Otherwise we start with the empty DPP, to
which the construction will successively add lattice paths. Let k be the smallest index for
which ak > 0. View w as (the encoding of) a lattice path p which starts at (0, n− k + 1)
and ends at (a1 + a2 + · · ·+ an−1, 0), containing aj horizontal steps at height n − j + 1
for j = k, k+1, . . . , n− 1 (see Figure 3). As long as there is an intersection P = (h, h) of
p with the boundary y = x of the “special region”, cut p at P in two parts p1 (containing
p’s starting point) and p2 (containing p’s ending point), remove any vertical steps at the
beginning of p2, and

• add the completion of p1 to the (representation of the) DPP under construction;

• if p2 contains horizontal steps, the first of which starts at some point Q = (h, h′)
where h′ ⩽ h, then shift p2 by h units to the left (so that it starts at (0, h′)) and set
p equal to this shifted part; else stop the construction.

If the construction has not yet stopped, then p is a lattice path which does not intersect the
boundary y = x: Simply add the completion of p to the DPP and stop the construction.

See Figure 3 for an illustration of this construction: It is easy to see that it gives
always a DPP without special parts and is, in fact, a bijection.
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Consider the inversion word w = (2, 1, 3, 1, 1) and “view” it as the encoding
(6, 6, 5, 4, 4, 4, 3, 2) of the lattice path p shown as thick gray line: The construction “cut
at the boundary y = x, complete and shift” applied to this path gives the three non–
intersecting lattice paths shown as thin black lines; these three paths correspond DPP
6 6 5 4

4 4 3
2

with three rows

4 4

3

2

6 6

5

4

0

4 4

3

2

Figure 3: Illustration of Striker’s bijection.

4.2 Striker’s and Lalonde’s bijection do not respect statistic q

Now it is easy to show by a simple example that neither Lalonde’s nor Striker’s bijection
respect statistic q: Look at Figure 4, where we indicated

• the 1–cells by symbol ,

• the (−1)–cells by symbol ,

• the rd–cells by small equilateral right–angled triangles, where the sides of the right
angle point to the right and downwards,

• and the lu–cells by small equilateral right–angled triangles, where the sides of the
right angle point to the left and upwards.

5 The bijection between DPPs without special parts and per-
mutation matrices

5.1 The statistic q for DPPs without special parts

Observe that if a DPP π ∈ Dn without special parts has a row of length n− 1, this row

• must start with part n

• and must not contain parts smaller than n− 1

(this fact is immediately seen from the lattice path representation of π).
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Consider the 4–dimensional DPP π = 4 4 4
3 2 : q (π) = 2, since π has one part 3 and one

row of length 3.
The lattice path representation of π is shown to the left, the inversion word (needed for
both Lalonde’s and Striker’s bijection) corresponding to π is (3, 1, 1), and the monotone
triangle (needed for Striker’s “intermediate” bijective step [10]) corresponding to π is
shown on the top.
Both Striker’s and Lalonde’s bijection map π to the ASM shown to the right, with statistic
q equal to 3 (the number of lu–cells, indicated by equilateral right–angled triangles, in the
last row is 3). However, a bijection respecting the quadruplet of statistics should map π
to the ASM shown at the bottom, which is the only ASM of dimension 4 with quadruplet
of statistics (3, 5, 0, 2).

4
2 4

2 3 4
1 2 3 4

3/5/0/2

0

1

1

3
4 4 4

3

2

3

1

1

0

3/5/0/3

3

2

0

0

3/5/0/2

Figure 4: Neither Lalonde’s nor Striker’s bijection respect statistic q.
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Stated otherwise: The somewhat complicated condition “existence of a path of length
n− 1” can be simply expressed as

# (parts equal to n) + # (parts equal to n− 1) ⩾ n− 1. (4)

in the case of DPPs without special parts.

5.2 The bijective construction

Given some permutation matrix A (i.e., some ASM without entries −1) of dimension n,
set k = 1, A1 = A, and repeat the following step n− 1 times:

• Note down the number ak of rd–cells in the first row of Ak,

• delete the first row and the column containing the 1 (i.e., column ak + 1),

• rotate the matrix by 180◦,

• let Ak+1 be the (n− k)× (n− k)–matrix thus obtained, and increase k by 1.

(See Figure 5 for an illustration of this construction.)

Theorem 8. The sequence of (n− 1) numbers (a1, a2, . . . , an−1) obtained by the construc-
tion described above has the following properties:

• 0 ⩽ ai ⩽ n− i for i = 1, 2, . . . , n− 1, i.e., (a1, a2, . . . , an−1) is an inversion word,

• a1 = p (A),

• a2 = q (A)− [q (A) + p (A) ⩾ n],

• a1 + a2 + · · ·+ an−1 = i (A).

Moreover, this construction gives a bijection between permutation matrices and inversion
words.

Proof. It is clear that 0 ⩽ ak ⩽ n− k, since ai is (by construction) the number of rd–cells
in the first row of an (n− k + 1) × (n− k + 1) permutation matrix, and this number
cannot exceed n− k.

By construction, we also have a1 = p (A).
Of the q (A) lu–cells in the last row of A, precisely one will be deleted in the first step

of our construction if and only if q (A) + p (A) ⩾ n: By the rotation at the end of the
first step, precisely these “surviving” lu–cells will turn up as the rd–cells in the first row
of the matrix at the beginning of the second step, whose number will give a2.

Finally, if there are ak rd–cells in the first row of the (n+ 1− k)× (n+ 1− k)–matrix
Ak at the beginning of step k, then the column ak +1 of Ak contains precisely ak lu–cells,
since the submatrix given by rows 2 to n+1−k and columns 1 to ak must contain precisely
ak 1–cells. So in every step, the number of deleted rd–cells equals the number of deleted
lu–cells, and after n− 1 steps,

the electronic journal of combinatorics 27(1) (2020), #P1.39 14



• all of the rd–cells and lu–cells of A (recall that their number is twice the number of
rd–cells) have been deleted,

• and half of these cells have been noted down during the construction; their number
is equal to a1 + · · ·+ an−1.

It is easy to see that the mapping from permutation matrices to inversion words thus
obtained is injective, whence it is a bijection.

Now we simply employ Striker’s bijection [10] between inversions words and DPPs
without special parts: This bijection maps an inversion word (a1, a2, . . . , an−1) to a DPP
π of dimension n without special parts and with precisely ai parts (n+ 1− i), whence we
obtain

• i (π) = a1 + a2 + · · ·+ an−1,

• p (π) = a1,

• q (π) = a2 + [a2 + a1 ⩾ n− 1].

(the last assertion is due to the simple characterization (4)).

Theorem 9. The bijection Ψ : A0
n → D0

n established by the combination of Theorem 8
and Striker’s bijection respects the triplet of statistics (p, i, q).

Proof. The assertion is obvious for i and p, so it remains to show this for q: Letting
ϵ := [q (A) + a1 ⩾ n], we have a2 = q (A)− ϵ and thus obtain

q (π) = q (A)− ϵ+ [(q (A)− ϵ) + a1 ⩾ n− 1] .

We have to consider two cases:

• ϵ = 1 ⇐⇒ q (A) + a1 ⩾ n: This implies [q (A)− ϵ+ a1 ⩾ n− 1] = ϵ.

• ϵ = 0 ⇐⇒ q (A) + a1 < n: Observe that q (A) + a1 = q (A) + p (A) = n− 1 is not
possible for a permutation matrix A, since this would imply that the entries 1 in the
first and last row appear in the same column. So we must have q (A) + a1 < n− 1
in this case, whence we again obtain [q (A)− ϵ+ a1 ⩾ n− 1] = ϵ.

So in both cases, we have q (π) = q (A).

5.3 An open question

Our construction was successful because we have the “translation” (4) of the (somewhat
complicated) condition

DPP π of dimension n has a row of length n− 1

for DPPs without special parts to an obvious (and quite simple) corresponding condition
for matrices without entries −1.

In the search for a “natural” bijection between ASMs and DPPs, it might be helpful
to identify such “corresponding condition” for general matrices.
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Starting with the 7 × 7 permutation matrix corresponding to the permutation σ =
(3, 2, 5, 7, 1, 6, 4), the pictures show the 6 steps of the bijective construction: The rows
and columns to be deleted are indicated by thick gray lines. The inversion word thus
obtained is (4, 2, 1, 1, 0, 1).

Step 1: a1 = 4.

Step 2: a2 = 2.

Step 3: a3 = 1.

Step 4: a4 = 1.

Step 5: a5 = 0.

Step 6: a6 = 1.

Figure 5: Illustration of the steps of the bijective construction.
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