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Abstract

In this paper we prove an optimal co-degrees resilience property for the binomial
k-uniform hypergraph model Hk

n,p with respect to perfect matchings. That is, for a
sufficiently large n which is divisible by k, and p > Ck log n/n, we prove that with
high probability every subgraph H ⊆ Hk

n,p with minimum co-degree (meaning, the
number of supersets every set of size k − 1 is contained in) at least (1/2 + o(1))np
contains a perfect matching.

Mathematics Subject Classifications: 97K20, 05C65, 97K30, 05C80

1 Introduction

A perfect matching in a k-uniform hypergraph H is a collection of vertex-disjoint edges,
covering every vertex of V (H) exactly once. Clearly, a perfect matching in a k-uniform
hypergraph cannot exist unless k divides n. From now on, we will always assume that
this condition is met.

As opposed to graphs (that is, 2-uniform hypergraphs) where the problem of finding
a perfect matching (if one exists) is relatively simple, the analogous problem in the hy-
pergraph setting is known to be NP-hard (see [4]). Therefore, it is natural to investigate
sufficient conditions for the existence of perfect matchings in hypergraphs.

A famous result by Dirac [2] asserts that every graph G on n vertices and with min-
imum degree δ(G) > n/2 contains a Hamiltonian cycle (and therefore, by taking alter-
nating edges along the cycle it also contains a perfect matching whenever n is even).
Extending this result to hypergraphs provides us with some interesting cases, as one can
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study ‘minimum degree’ conditions for subsets of any size 1 6 ` < k. That is, given a
k-uniform hypergraph H = (V,E) and a subset of vertices X, we define its degree

d(X) = |{e ∈ E : X ⊆ e}|.

Then, for every 1 6 ` < k we define

δ`(H) = min{d(X) : X ⊆ V (H), |X| = `},

to be the minimum `-degree of H. A natural question is: Given 1 6 ` < k, what is the
minimum m`(n) such that every k-uniform hypergraph on n vertices with δ`(H) > m`(n)
contains a perfect matching?

The above question has attracted a lot of attention in the last few decades. For more
details about previous work and open problems, we will refer the reader to surveys by Rödl
and Ruciński [8] and Keevash [5]. In this paper we restrict our attention to the case where
` = k−1. Following a long line of work in studying this property, which is expanded upon
in the former survey, Kühn and Osthus proved in [6] that every k-uniform hypergraph
with δk−1 > n/2 +

√
2n log n contains a perfect matching. This bound is optimal with an

additive error term of
√

2n log n. Note that one can view this result as follows: Start with
a complete k-uniform hypergraph on n vertices (this clearly contains a perfect matching).
Imagine that an adversary is allowed to delete ‘many’ edges in an arbitrary way, under
the restriction that he/she cannot delete more than r edges that intersect on a subset of
size at least (k−1). What then, is the largest r for which the resulting hypergraph always
contains a perfect matching? We refer to this value as the ‘(k − 1)-local-resilience’ of the
hypergraph. The above mentioned result equivalently shows that such a hypergraph has
‘(k − 1)-local-resilience’ at least n/2−

√
2n log n.

Here we study a similar problem in the random hypergraph setting. Let Hk
n,p be a

random variable which outputs a k-uniform hypergraph on vertex set [n] by including any
k-subset X ∈

(
[n]
k

)
as an edge with probability p, independently. The existence of perfect

matchings in a typical Hk
n,p is a well studied problem with a very rich history. Unlike

for random graphs where finding a ‘threshold’ for the existence of a perfect matching is
quite simple, the problem of finding a ‘threshold’ function p for the existence of a perfect
matching, with high probability, in the hypergraph setting is notoriously hard. After a
few decades of study, in 2008 Johansson, Kahn and Vu [3] finally managed to determine
the threshold. Among their results, one of particular note is that for p > C log n/nk−1,
whp Hk

n,p contains a perfect matching. On the other hand, it is quite simple to show that
if p 6 c log n/nk−1 for some small constant c, then a typical Hk

n,p contains isolated vertices
and thus has no perfect matchings.

In this note we determine the ‘(k − 1)-local-resilience’ of a typical Hk
n,p. Note that

if p = o(log n/n) then whp there exists a (k − 1)-set of vertices which is not contained
in any edge and therefore, for the study of (k − 1)-resilience, it is natural to restrict
our attention to p > C log n/n (which is significantly above the threshold for a perfect
matching as obtained in [3]). The following theorem gives a complete solution to this
problem for this range of p.
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Theorem 1. Let k ∈ N, let ε > 0, and let C := C(k, ε) be a sufficiently large constant.
Then, for all p > C logn

n
, whp a hypergraph Hk

n,p is such that the following holds: Every
spanning subhypergraph H ⊆ Hk

n,p with δk−1(H) > (1/2+ε)np contains a perfect matching.

Next, we show that the above theorem is asymptotically tight.

Theorem 2. Let k ∈ N, let ε > 0, and let C := C(k, ε) be a sufficiently large constant.
Then, for all p > C logn

n
, any hypergraph Hk

n,p is such that the following holds: Whp there
exists H ⊆ Hk

n,p with δk−1(H) > (1/2− ε)np that does not contain a perfect matching.

Sketch. This proof is based on an idea of Kühn and Osthus outlined in [6]. Fix a partition
of V (H) = V1∪V2 into two sets of size roughly n/2, where |V1| is odd. Now, expose all the
edges of Hk

n,p and let H be the subhypergraph obtained by deleting all the hyperedges that
intersect V1 on an odd number of vertices. Clearly, H cannot have a perfect matching, as
every edge covers an even number of vertices in V1 and |V1| is odd. Now, we demonstrate
that every (k− 1)-subset of vertices still has at least (1/2− ε)np neighbors in H. Indeed,
given any (k − 1) subset X, we distinguish between two cases:

1. |X ∩ V1| is even – as we clearly kept all the edges of the form X ∪ {v}, v ∈ V2, and
since |V2| ≈ n/2, by a standard application of Chernoff’s bounds, X is contained in at
least (1/2− ε)np many such edges as required.

2. |X ∩ V1| is odd – as we clearly kept all the edges of the form X ∪ {v}, v ∈ V1, and
since |V1| ≈ n/2, a similar reasoning as in 1. gives the desired.

All in all, whp the resulting subhypergraph has δk−1(H) > (1/2− ε)np and does not
contain a perfect matching.

2 Notation

For the sake of brevity, we present the following, commonly used notation:
Given a graph G and X ⊆ V (G), let N(X) = ∪x∈XN(x). For two subsets X, Y ⊆

V (G) we define E(X, Y ) to be the set of all edges xy ∈ E(G) with x ∈ X and y ∈ Y , and
set eG(X, Y ) := |E(X, Y )|.

For a k-uniform hypergraph H on vertex set V (H), and for two subsets X, Y ⊆ V (H)
we define

d(X, Y ) = |{e ∈ E(H) : X ⊆ e and e \X ⊆ Y }|.

Given any k-partite, k-uniform hypergraph with parts V (H) = V1 ∪ . . . ∪ Vk of the
same size m we consider all Vi to be disjoint copies of the integers 1 to m, without loss of
generality.

Finally, for every random variable X, we let M(X) be its median.

3 Outline

In this section we give a brief outline of our argument. Consider a typical Hk
n,p, and let

H ⊆ Hk
n,p with δk−1(H) > (1

2
+ε)np. In order to show that H contains a perfect matching,
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we first show that some auxiliary bipartite graph B contains a perfect matching. Then,
we show that every perfect matching in B can be translated into a perfect matching in
H.

To this end, we first find a partition V (H) = V1∪· · ·∪Vk, with all Vi’s having the exact
same size m = n

k
, such that the following property holds: For every subset X ∈

(
[n]
k−1

)
and

for every 1 6 i 6 k we have

dH(X, Vi) ∈ (1± ε) · dH(X)

k
.

Then, we let H ′ be the k-partite, k-uniform subhypergraph induced by this partition
of V (H).

Now, given some set of permutations π = {π1, π2, · · · , πk−1 }, πi = [m] → Vi, we can
construct a bipartite graph Bπ(H ′) as follows:

The parts of Bπ(H ′) are Vk and

Xπ = {{π1(i), π2(i), . . . , πk−1(i)} | 1 6 i 6 m}.

The edges of Bπ(H ′) consist of all pairs xv ∈ Xπ × Vk, for which x ∪ {v} ∈ E(H ′).
A moment’s thought now reveals that a perfect matching in any such Bπ(H ′) corre-

sponds to a perfect matching in H ′, which itself corresponds to a perfect matching in
H. Therefore, the main part of the proof consists of showing that, with high probability,
there exists a π such that Bπ(H ′) contains a perfect matching.

4 Tools and Preliminary Results

In this section we present some tools to be used in the proof of our main result.

4.1 Chernoff’s inequalities

First, we need the following well-known bound on the upper and lower tails of the binomial
distribution, outlined by Chernoff (see Appendix A in [1]).

Lemma 3 (Chernoff’s inequality). Let X ∼ Bin(n, p) and let E(X) = µ. Then

• P (X < (1− a)µ) < e−a
2µ/2 for every a > 0;

• P (X > (1 + a)µ) < e−a
2µ/3 for every 0 < a < 3/2.

Remark 4. These bounds also hold when X is hypergeometrically distributed with mean
µ.

In addition, we will make use of the following simple bound.

Lemma 5. Let X ∼ Bin(m, q). Then, for all k we have

Pr[X > k] 6
(emq

k

)k
.
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Proof. Note that

Pr[X > k] 6

(
m

k

)
qk 6

(emq
k

)k
as desired.

4.2 Talagrand’s type inequality

Our main concentration tool is the following theorem from McDiarmid [7].

Theorem 6. Given a set S of size m, we let Sym(S) denote the set of all m! permutations
of S. Let {B1, . . . , Bk} be a family of finite non-empty sets, and let Ω =

∏
i Sym(Bi). Let

π = {π1, . . . , πk} be a family of independent permutations, such that for i, πi ∈ Sym(Bi)
is chosen uniformly at random.

Let c and r be constants, and suppose that the nonnegative real-valued function h on
Ω satisfies the following conditions for each π ∈ Ω.

1. Swapping any two elements in any πi can change the value of h by at most 2c.

2. If h(π) = s, there exists a set πproof ⊆ π of size at most rs, such that h(π′) > s for
any π′ ∈ Ω where π′ ⊇ πproof .

Then for each t > 0 we have

Pr[h 6M(h(π))− t] 6 2 exp

(
− t2

16rc2M

)
.

4.3 Hall’s theorem

It is convenient for us to work with the following equivalent version of Hall’s theorem (the
proof is an easy exercise).

Theorem 7. Let G = (A ∪ B,E) be a bipartite graph with |A| = |B| = n. Then, G
contains a perfect matching if and only if the following holds:

1. For all X ⊆ A of size |X| 6 n/2 we have |N(X)| > |X|, and

2. For all Y ⊆ B of size |Y | 6 n/2 we have |N(Y )| > |Y |.

4.4 Properties of random hypergraphs

In this section we collect some properties that a typical Hk
n,p satisfies. First, we show that

all the (k − 1)-degrees are ‘more or less’ the same.

Lemma 8. Let ε > 0 and let k > 2 be any integer. Then, whp we have

(1− ε)np 6 δk−1(H
k
n,p) 6 ∆k−1(H

k
n,p) 6 (1 + ε)np,

provided that p = ω(log n/n).
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Proof. Let us fix some X ∈
(

[n]
k−1

)
. Observe that d(X) ∼ Bin(n− k + 1, p), and therefore

µ := E[d(X)] = (n− k + 1)p.

Hence, by Chernoff’s inequalities we obtain that

Pr[d(X) /∈ (1± ε)µ] 6 2e−
ε2µ
3 = o(1/nk).

All in all, by taking a union bound over all sets
(

[n]
k−1

)
, we conclude that

Pr[∃X ∈
(

[n]

k − 1

)
s.t. d(X) /∈ (1± ε)µ] = o(1).

This completes the proof.

In the proof of our main result we will convert the problem of finding a perfect matching
in H into the problem of finding a perfect matching in some auxiliary bipartite graph. In
order to do so, we wish to partition our hypergraph H ⊆ Hk

n,p into k equal parts satisfying
some ‘degree assumptions’, and then to define our auxiliary bipartite graph based on such
a partition. In the following lemma we show that, given a k-uniform hypergraph H with
‘relatively large’ (k− 1)-degree, a random partition of its vertices into equally sized parts
satisfies these assumptions.

Lemma 9. For every ε > 0 there exists C := C(ε) for which the following holds. Let
H be a k-uniform hypergraph on n vertices, where n is sufficiently large. Suppose that
δk−1(H) > C log n and that n is divisible by k. Then, there exists a partition V (H) =
V1 ∪ . . . ∪ Vk into sets of the exact same size satisfying the following property: For every
subset X ∈

(
[n]
k−1

)
and for every 1 6 i 6 k we have

dH(X, Vi) ∈ (1± ε) · dH(X)

k
.

Proof. Let H be a a k-uniform hypergraph on n vertices, where n is sufficiently large.
Consider the random partition V (H) = V1 ∪ . . . ∪ Vk into sets of the exact same size.
For some fixed X and i, observe that dH(X, Vi) is hypergeometrically distributed with an

expected value of dH(X)
k

. Therefore, we can use Lemma 3 to determine that

Pr[dH(X, Vi) > (1 + ε) · dH(X)

k
] 6 e−ε

2 dH (X)

k
/3 6 e−k logn = n−k,

where the last inequality holds for a large enough C.
By applying a union bound over all possible X’s and i’s, we obtain that the probability

of having such a set and an index i is at most(
n

k − 1

)
kn−k = o(1).

Similarly, we obtain that
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Pr

[
∃X and i : dH(X, Vi) < (1− ε) · dH(X)

k

]
= o(1).

This completes the proof.

Definition 10. Let ε > 0, p ∈ (0, 1], and m ∈ N. A bipartite graph G = (A∪B,E) with
|A| = |B| = m is called (ε, p)-pseudorandom if it satisfies the following properties:

1. δ(G) > (1/2 + ε)mp,

2. for every X ⊆ A and Y ⊆ B with |X| − 1 = |Y | 6 m/10 we have eG(X, Y ) 6
mp|X|/2,

3. for every X ⊆ A and Y ⊆ B with m/10 6 |X|−1 = |Y | 6 m/2 we have eG(X, Y ) 6
(1/2 + ε/2)mp|X|

Definition 11. Let H ′ be a k-partite, k-uniform hypergraph with parts V (H ′) = V1∪. . .∪
Vk of the same size m. Given a set of permutations π = {π1, π2, . . . πk−1}, πi : [m] → Vi,
we construct an auxiliary bipartite graph, Bπ := Bπ(H ′), as follows:

Let Xπ = {{π1(i), π2(i), . . . , πk−1(i)}; 1 6 i 6 m} and Vk be the parts of Bπ. For every
pair xv with x ∈ Xπ and v ∈ Vk, we let xv ∈ E(Bπ) iff x ∪ {v} ∈ E(H ′).

Remark 12. Note that every edge in a given Bπ(H ′) with parts x ∈ Xπ and v ∈ Vk
corresponds to an edge π1(i)∪π2(i) . . . πk−1(i)∪{v} in H ′ for some 1 6 i 6 m. Therefore,
if Bπ(H ′) contains a perfect matching, clearly H ′ contains a perfect matching as well.
Having established this fact, our main goal is to show that there exists a π for which Bπ

contains a perfect matching.

We now wish to demonstrate that given a ‘proper’ k-partite, k-uniform hypergraph
H ′, a randomly chosen π results in a Bπ(H ′) with a sufficiently large minimum degree. As
will be seen soon, the ‘problematic’ random variables that we need to control are dBπ(v),
where v ∈ Vk. In order to prove that these variables concentrate about their expectation,
we will use Theorem 6.

For the sake of simplicity in the following lemma, we define this notation: Suppose
that H ′ is a k-partite, k-uniform hypergraph with parts V (H ′) = V1 ∪ . . . ∪ Vk. Let
Wi := V1 × . . . Vi−1 × Vi+1 × . . .× Vk. For every X ∈ Wi (note that |X| = k − 1) define

δ∗k−1(H
′) := min{d(X, Vi) : X ∈ Wi, and 1 6 i 6 k}.

Lemma 13. Let 0 < α < 1/2 and let m ∈ N be sufficiently large. Let H ′ be a k-partite,
k-uniform hypergraph with parts V (H ′) = V1 ∪ . . . ∪ Vk of the same size m. Suppose
that δ∗k−1(H

′) > 200/α2. Let Bπ be the auxiliary-bipartite graph formed from the set of
permutations π := {π1, id2, . . . , idk−1}, where π1 is a random permutation of V1 and each
idj is the identity permutation of Vj. Let µv = E[dBπ(v)]. Then, for every v ∈ Vk we have

Mv = M(dBπ(v)) ∈ (1± α)µv.
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Remark 14. The above lemma enables us to use µv instead of Mv in Theorem 6 when it
is applied to dBπ(v).

Proof. Consider the Bπ, formed from the set of permutations π := {π1, id2, . . . , idk−1},
where π1 is a random permutation of V1 and each idj is the identity permutation of Vj.
Let v be some element in Vk. For each 1 6 i 6 m, let Ai := {id2(i), id3(i) . . . , idk−1(i)},
and let di(v) be the number of extensions of {v}∪Ai into V1 (that is, the number of edges
e ∈ E(H ′) for which {v} ∪ Ai ⊆ e). Moreover, let dv =

∑
i di(v), and for each i define a

indicator random variable 1i, where 1i = 1 if {π1(i)} ∪ Ai ∪ {v} ∈ E(H ′). Observe that
dBπ(v) =

∑
1i.

Our plan is to compute µv := E[dBπ(v)] and σ2 = V ar(dBπ(v)) and to show that
σ2 6 α2µ2

v/100. The desired result will then be easily obtained as follows: First, note
that by Chebyshev’s inequality we have

P[|dBπ(v)− µv| > αµv] 6
σ2

α2µ2
v

6 1/100.

Since with probability at least 99/100 we have that dBπ(v) ∈ (1±α)µv, we conclude that
the median also lies in this interval.

It remains to compute µv and σ2. Since P[1i = 1] = di(v)
m

, by linearity of expectation
we obtain

µv =
m∑
i=1

E[1i] =
m∑
i=1

di(v)

m
=
dv
m
.

To compute the variance, note that

V ar (dBπ(v)) = V ar

(
m∑
i=1

1i

)
=

m∑
i=1

V ar (1i) + 2
∑
i<j

Cov(1i,1j)

6 µv + 2
∑
i<j

(E[1i1j]− E[1i]E[1j])

6 µv + 2
∑
i<j

(
di(v)dj(v)

m(m− 1)
− di(v)dj(v)

m2

)
= µv + 2

∑
i<j

(
di(v)dj(v)

m2(m− 1)

)

6 µv + 2
m∑
i=1

m∑
j=1

(
di(v)dj(v)

m2(m− 1)

)
6 µv + 2

m∑
i=1

(
di(v)dv

m2(m− 1)

)
= µv +

2d2v
m2(m− 1)

= µv +
2µ2

v

m− 1
.

To complete the proof let us first observe that since m is sufficiently large we have
2µ2v
m−1 6 α2µ2

v/200. Second, note that since µv > 200/α2 we have that µv 6 α2µ2
v/200.

Plugging these estimates into the last line of the above equation gives us the desired.

the electronic journal of combinatorics 27(1) (2020), #P1.40 8



Lemma 15. For every ε > 0 there exists C := C(ε) for which the following holds for
sufficiently large m ∈ N and p = C logm/m. Let H ′ be a k-partite, k-uniform hypergraph
with parts V (H ′) = V1 ∪ . . .∪ Vk of the same size m. Suppose that δ∗k−1(H

′) > (1
2

+ ε)mp.
Then there exists π := {π1, π2, . . . , πk−1}, πi : [m]→ Vi, s.t. δ(Bπ) > (1

2
+ ε

2
)mp.

Proof. Consider the Bπ, formed from the set of permutations π := {π1, id2, . . . , idk−1},
where π1 is random and idj is the identity permutation for Vj. As δ∗k−1(H

′) > (1
2

+ ε)mp,
it is guaranteed that for all x ∈ Xπ we have (deterministically) that dBπ(x) > (1

2
+ ε)mp.

Consider some v ∈ Vk and observe from the proof of Lemma 13, under the same
notation, that E[dBπ(v)] = dv

m
> (1/2 + ε)mp.

In order to complete the proof, we want to show that the dBπ(v)’s are ‘highly concen-
trated’ using Theorem 6. To this end, let h(π) = dBπ(v) and note that swapping any two
elements of π1 can change h by at most 2. Moreover, note that if h(π) > s, then it is
enough to specify only s elements of V . Therefore, h(π) satisfies the conditions outlined
by Talagrand’s type inequality with c = 1 and r = 1.

Now, let α = ε/100, and observe that by Lemma 13 we have that the median M of
dBπ(v) lies in the interval (1± α)E[dBπ(v)].

Therefore, we have

Pr[h 6 (
1

2
+ ε/2)mp] 6 Pr[h 6 (1− ε/2)E[dBπ(v)]]

and the latter is at most

Pr[h 6 (1− ε/2)(1 + α)M ] 6 Pr[h 6 (1− ε/4)M ].

Now, by Theorem 6 we obtain that

Pr[h 6 (1/2 + ε/2)mp] 6 2 exp

(
−(εM/4)2

16M

)
.

Next, using (again) the fact that M ∈ (1±α)E[dBπ(v)] and that E[dBπ(v)] = Θ(mp) >
C logm, we can upper bound the above right hand side by

2 exp (−Θ(mp)) 6 n−2.

Finally, in order to complete the proof, we take a union bound over all v ∈ Vk and
obtain that whp δ(Bπ) > (1

2
+ ε

2
)mp.

Lemma 16. Let ε > 0, k ∈ N and p > C log n/n, where C := C(ε, k) > 0 is a
sufficiently large constant. Then, a random hypergraph Hk

n,p with high probability sat-
isfies the following: For every k-partite, k-uniform subhypergraph H ′ ⊆ Hk

n,p with parts
V (H ′) = V1 ∪ . . . ∪ Vk of the same size m := n

k
, if δ∗k−1(H

′) > (1/2 + ε)mp, there exists
π := {π1, π2, . . . , πk−1}, πi : [m]→ Vi, s.t. Bπ is (ε/2, p)-pseudorandom.

Proof. Let H ′ be such a subhypergraph. Our goal is to prove the existence of π for which
Bπ is (ε/2, p)-pseudorandom. That is, we want to show that Bπ satisfies the following
properties:
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1. δ(Bπ) > (1/2 + ε/2)mp,

2. for every X ⊆ Xπ and Y ⊆ Vk with |X| − 1 = |Y | 6 m/10 we have eBπ(X, Y ) 6
mp|X|/2,

3. for every X ⊆ Xπ and Y ⊆ Vk with m/10 6 |X| − 1 = |Y | 6 m/2 we have
eBπ(X, Y ) 6 (1/2 + ε/4)|X|mp

Let π be obtained as in Lemma 15, and consider Bπ = (Xπ∪Vk, E). Clearly, Property
1 is satisfied by the conclusion of Lemma 15.

For Property 2, let us fix X ⊆ Xπ and Y ⊆ Vk of sizes x and y respectively where
x − 1 = y 6 m/10. We now wish to establish an upper bound for the number of edges
between them. Assume towards contradiction that eBπ(X, Y ) > mpx/2. Observe that
this translates to the following: There exist x disjoint sets F1, . . . , Fx, each of size exactly
k − 1 and a set Y of size x − 1, which is disjoint to all the Fis, such that the number of
edges in Hk

n,p, of the form Fi ∪ {a} where a ∈ Y , is larger than mpx/2. Let us show that
whp Hk

n,p has no such sets, thereby also guaranteeing that whp no such sets exist in any
subhypergraph H ′ ⊆ Hk

n,p.
First, let us fix such F1, . . . , Fx and Y . Observe that the expected number of edges of

the form Fi ∪ {y} in Hk
n,p is exactly xyp. Therefore, by Lemma 5 we obtain

Pr[# such edges > xmp/2] 6

(
2exyp

xmp

)xmp/2
= exp

(
−xmp

2
log

m

2ey

)
.

By applying the union bound over all choice of Fi’s and Y we obtain that the proba-
bility for having such sets which span at least xmp/2 edges of the form discussed above,
is at most

m/10∑
x=mp/2

(
n

k − 1

)x(
n

x

)
exp

(
−xmp

2
log

m

2ey

)

6
m/10∑

x=mp/2

(
en

k − 1

)kx (en
x

)x
exp

(
−xmp

2
log
( m

2ex

))

6
m/10∑

x=mp/2

exp

(
kx log

(
en

k − 1

)
+ x log

(en
x

)
− xmp

2
log
( m

2ex

))

6
m/10∑

x=mp/2

exp

(
(k + 1)x log n− mpx

2
log

(
10

2e

)
+O(1)

)
= o(1)

where the last equality holds if we pick p = C log n/n where C is a sufficiently large
constant to satisfy

mp

2
log

(
10

2e

)
> 2(k + 1) log n
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Therefore, whp Bπ satisfies property 2.
For property 3, let us fix X ⊆ Xπ and Y ⊆ Vk of sizes x and y respectively where

m/10 6 x− 1 = y 6 m/2. We now wish to establish an upper bound for the number of
edges between them. Assume towards contradiction that eBπ(X, Y ) > (1/2 + ε/4)mpx.
Observe that this translates to the following: There exist x disjoint sets F1, . . . , Fx, each
of size exactly k−1 and a set Y of size x−1, which is disjoint to all the Fis, such that the
number of edges in Hk

n,p, of the form Fi∪{a} where a ∈ Y , is larger than (1/2+ε/4)mpx.
Let us show that whp Hk

n,p has no such sets, thereby also guaranteeing that whp no such
sets exist in any subhypergraph H ′ ⊆ Hk

n,p.
First, let us fix such F1, . . . , Fx and Y . Observe that the expected number of edges of

the form Fi ∪ {y} in Hk
n,p is exactly xyp. Therefore, by Lemma 3 we obtain

Pr[# such edges > (1/2 + ε/4)mpx] 6 exp
(
−ε2xyp/40

)
.

By applying the union bound we obtain that the probability to have such sets is at
most

m/2∑
x=m/10

(
n

k − 1

)x(
n

x

)
exp

(
−ε2xyp/40

)
6

m/2∑
x=m/10

n(k−1)xnx exp
(
−ε2xyp/40

)
6

m/2∑
x=m/10

exp
(
(k − 1)x log n+ x log n− ε2x2p/40

)
= o(1)

where the last inequality holds if we pick p = C log n/n where C is a sufficiently large
constant to satisfy

pmε2/400 > 2k log n.

Therefore, whp Bπ satisfies property 3. We can conclude that whp Bπ satisfies all
three properties, and is (ε/2, p)-pseudorandom. This completes the proof.

Now that we know we can construct an (ε/2, p)-pseudorandom bipartite graph Bπ

from every subhypergraph H with the properties outlined above, we will make use of the
following lemma to show that every such Bπ must also contain a perfect matching. A
similar proof appears in [9].

Lemma 17. Every (ε, p)-pseudorandom bipartite graph contains a perfect matching.

Proof. Let G = (A∪B,E) be an (ε, p)-pseudorandom bipartite graph with |A| = |B| = m.
If G does not contain a perfect matching, then it must violate the condition in Theorem 7.
That is, without loss of generality, there exists some X ⊆ A of size x 6 m/2 and Y ⊆ B
of size x− 1 such that NG(X) ⊆ Y . In particular, as δ(G) > (1/2 + ε)mp by property 1,

the electronic journal of combinatorics 27(1) (2020), #P1.40 11



it follows that eG(X, Y ) > (1/2 + ε)mpx. In order to complete the proof we show that G
does not contain two such sets for all 1 6 x 6 m/2.

We distinguish between three cases: First, assume x 6 mp/2. As |Y | 6 x < (1/2 +
ε)mp 6 δ(G), it follows that NG(X) 6⊆ Y .

Second, assume that mp/2 6 x 6 m/10. By property 2, eG(X, Y ) 6 mpx/2 <
(1/2+ε)mpx, which is clearly a contradiction. Lastly, consider the case m/10 6 x 6 m/2.
By property 3, eG(X, Y ) 6 (1/2+ε/2)xmp < (1/2+ε)mpx, which is also a contradiction.
This completes the proof.

5 Proof of Theorem 1

Now we are ready to prove Theorem 1.

Proof. Let k ∈ N, ε > 0 and p > C log n/n, for a sufficiently large C. Observe that, by
Lemma 8, whp a hypergraph Hk

n,p satisfies

(1− ε)np 6 δk−1(H
k
n,p) 6 ∆k−1(H

k
n,p) 6 (1 + ε)np.

Let H ⊆ Hk
n,p be any subhypergraph with δk−1(H) > (1/2 + ε)np. We wish to show

that H contains a perfect matching.
To this end, as was previously explained in the outline, we will construct a bipartite

graph in such a way that each perfect matching of this graph corresponds to a perfect
matching of H.

To do so, let α > 0 where (1−α)(1/2 + ε) > 1/2 + ε/2, and let us take a partitioning
[n] = V1∪ . . .∪Vk into sets of the exact same size for which the following holds: For every
subset X ∈

(
[n]
k−1

)
and for every 1 6 i 6 k we have

dH(X, Vi) ∈ (1± α) · dH(X)

k
.

In particular, for all X ∈
(

[n]
k−1

)
and all 1 6 i 6 k, we have

dH(X, Vi) > (1/2 + ε/2)mp,

where m = n
k
. The existence of such a partitioning is guaranteed by Lemma 9.

Next, let H ′ be the resulting k-partite, k-uniform subhypergraph induced by the above
partitioning. Recall that

δ∗k−1(H
′) := min{d(X, Vi) : X ∈ Wi, and 1 6 i 6 k},

where Wi = V1 × . . .× Vi−1 × Vi+1 × . . .× Vk.
Clearly, δ∗k−1(H

′) > (1/2 + ε/2)mp. Therefore, Lemma 16 guarantees that there exists
an auxiliary bipartite graph Bπ(H ′) (as defined in 11) that is (ε/4, p)-pseudorandom. By
Lemma 17, such a Bπ would contain a perfect matching and therefore, by Remark 12, H ′

must also contain a perfect matching. This completes the proof.
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