# Cooperative colorings of trees and of bipartite graphs 

Ron Aharoni*<br>Department of Mathematics Technion - Israel Institute of Technology<br>Technion City, Haifa 3200003, Israel<br>ra@tx.technion.ac.il<br>Maria Chudnovsky ${ }^{\ddagger}$<br>Mathematics Department<br>Princeton University<br>Princeton, NJ 08544, USA<br>mchudnov@math.princeton.edu

Eli Berger ${ }^{\dagger}$<br>Department of Mathematics<br>University of Haifa

Mt. Carmel, Haifa 3498838, Israel
berger@math.haifa.ac.il
Frédéric Havet
CNRS, Université Côte d'Azur, I3S, and INRIA Sophia-Antipolis Cedex 06902, France
frederic.havet@inria.fr

\author{
Zilin Jiang ${ }^{\text {§ }}$ <br> Department of Mathematics <br> Massachusetts Institute of Technology <br> Cambridge, MA 02139, USA <br> ```
zilinj@mit.edu

```
}

Submitted: Aug 20, 2018; Accepted: Jan 20, 2020; Published: Feb 7, 2020
(C) The authors. Released under the CC BY-ND license (International 4.0).

\begin{abstract}
Given a system \(\left(G_{1}, \ldots, G_{m}\right)\) of graphs on the same vertex set \(V\), a cooperative coloring is a choice of vertex sets \(I_{1}, \ldots, I_{m}\), such that \(I_{j}\) is independent in \(G_{j}\) and \(\bigcup_{j=1}^{m} I_{j}=V\). For a class \(\mathcal{G}\) of graphs, let \(m_{\mathcal{G}}(d)\) be the minimal \(m\) such that every \(m\) graphs from \(\mathcal{G}\) with maximum degree \(d\) have a cooperative coloring. We prove that \(\Omega(\log \log d) \leqslant m_{\mathcal{T}}(d) \leqslant O(\log d)\) and \(\Omega(\log d) \leqslant m_{\mathcal{B}}(d) \leqslant O(d / \log d)\), where \(\mathcal{T}\) is the class of trees and \(\mathcal{B}\) is the class of bipartite graphs.
\end{abstract}

Mathematics Subject Classifications: 05C15, 05C69

\footnotetext{
*Supported in part by the United States-Israel Binational Science Foundation (BSF) grant no. 2006099, the Israel Science Foundation (ISF) grant no. 2023464 and the Discount Bank Chair at Technion. This paper is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme, under the Marie Skłodowska-Curie grant agreement no. 823748.
\({ }^{\dagger}\) Supported in part by BSF grant no. 2006099 and ISF grant no. 2023464.
\(\ddagger\) Supported in part by BSF grant no. 2006099, NSF grant DMS-1550991 and US Army Research Office Grant W911NF-16-1-0404.
\({ }^{\S}\) The work was done when Z. Jiang was a postdoctoral fellow at Technion - Israel Institute of Technology, and was supported in part by ISF grant nos. 409/16, 936/16.
}

\section*{1 Introduction}

A set of vertices in a graph is called independent if no two vertices in it form an edge. A coloring of a graph \(G\) is a covering of \(V(G)\) by independent sets. Given a system \(\left(G_{1}, \ldots, G_{m}\right)\) of graphs on the same vertex set \(V\), a cooperative coloring is a choice of vertex sets \(\left\{I_{j} \subseteq V: j \in[m]\right\}\) such that \(I_{j}\) is independent in \(G_{j}\) and \(\bigcup_{j=1}^{m} I_{j}=V\). If all \(G_{j}\) 's are the same graph \(G\), then a cooperative coloring is just a proper vertex coloring of \(G\) by \(m\) independent sets.

A basic fact about vertex coloring is that every graph \(G\) of maximum degree \(d\) is \((d+1)\)-colorable. It is therefore natural to ask whether \(d+1\) graphs, each of maximum degree \(d\), always have a cooperative coloring. This was shown to be false:

Theorem 1 (Theorem 5.1 of Aharoni, Holzman, Howard and Sprüssel [AHHS15]). For every \(d \geqslant 2\), there exist \(d+1\) graphs of maximum degree \(d\) that do not have a cooperative coloring.

Using the fundamental result on independent transversals of Haxell [Hax01, Theorem 2], it can be shown that \(2 d\) graphs of maximum degree \(d\) always have a cooperative coloring. Let \(m(d)\) be the minimal \(m\) such that every \(m\) graphs of maximum degree \(d\) have a cooperative coloring. By the above, \(m(1)=2\) and
\[
\begin{equation*}
d+2 \leqslant m(d) \leqslant 2 d, \text { for every } d \geqslant 2 \tag{1}
\end{equation*}
\]

The theorem of Loh and Sudakov [LS07, Theorem 4.1] on independent transversals in locally sparse graphs implies that \(m(d)=d+o(d)\). Neither the lower bound nor the upper bound in (1) has been improved for general \(d\); even \(m(3)\) is not known. However, restricting the graphs to specific classes, better upper bounds can be obtained.

Definition 2. For a class \(\mathcal{G}\) of graphs, denote by \(m_{\mathcal{G}}(d)\) the minimal \(m\) such that every \(m\) graphs belonging to \(\mathcal{G}\), each of maximum degree at most \(d\), have a cooperative coloring.

For example, the following was proved:
Theorem 3 (Corollary 3.3 of Aharoni et al. [ABZ07] and Theorem 6.6 of Aharoni et al. [AHHS15]). Let \(\mathcal{C}\) be the class of chordal graphs and let \(\mathcal{P}\) be the class of paths. Then \(m_{\mathcal{C}}(d)=d+1\) for all \(d\), and \(m_{\mathcal{P}}(2)=3\).

In this paper, we prove some bounds on \(m_{\mathcal{G}}(d)\) for two more classes:
Theorem 4. Let \(\mathcal{T}\) be the class of trees, and let \(\mathcal{B}\) be the class of bipartite graphs. Then for \(d \geqslant 2\),
\[
\left.\begin{array}{rl}
\log _{2} \log _{2} d & \leqslant m_{\mathcal{T}}(d)
\end{array} \leqslant(1+o(1)) \log _{4 / 3} d, ~ 子(1)\right) \frac{2 d}{\ln d} . ~ . ~>m_{2} d \leqslant m_{\mathcal{B}}(d) \leqslant(1+o(1)
\]

Remark 5. Let \(\mathcal{F}\) be the class of forests. It is evident that \(m_{\mathcal{F}}(d) \geqslant m_{\mathcal{T}}(d)\) as \(\mathcal{F} \supset \mathcal{T}\). Conversely, when \(d \geqslant 2\), given \(m=m_{\mathcal{T}}(d)\) forests \(F_{1}, \ldots, F_{m}\) of maximum degree \(d\), we can add edges to \(F_{i}\) to obtain a tree \(F_{i}^{\prime}\) of maximum degree \(d\), and the cooperative coloring for \(F_{1}^{\prime}, \ldots, F_{m}^{\prime}\) is also a cooperative coloring for \(F_{1}, \ldots, F_{m}\). Therefore \(m_{\mathcal{F}}(d)=m_{\mathcal{T}}(d)\) for \(d \geqslant 2\).

The notions of cooperative coloring and of list coloring have a common generalization: given a system \(\left(G_{1}, \ldots, G_{m}\right)\) of graphs with vertex sets \(V_{1}, \ldots, V_{m}\) (which are not neccessarily the same vertex set), a cooperative list coloring is then a choice of independent sets in \(G_{i}\) whose union equals \(V:=V_{1} \cup \cdots \cup V_{m}\). The notion of cooperative coloring is obtained by taking \(V_{i}=V\), and list colorings are formed when \(G_{i}\) is an induced subgraph of the same graph \(G\) for all \(i\). The upper bounds in Theorem 4 generalize to cooperative list colorings. For example, our proof of Theorem 4 for bipartite graphs readily gives the following result.

Theorem 6. For every system \(\left(G_{1}, \ldots, G_{m}\right)\) of bipartite graphs with maximum degree \(d\) with vertex sets \(V_{1}, \ldots, V_{m}\), there is a cooperative list coloring if for every \(v \in V_{1} \cup \cdots \cup\) \(V_{m}\), the number of its occurrences in \(V_{1}, \ldots, V_{m}\), that is \(\left|\left\{i \in[m]: v \in V_{i}\right\}\right|\), is at least \((1+o(1)) \frac{2 d}{\ln d}\).

A conjecture of Alon and Krivelevich [AK98, Conjecture 5.1] states that the choice number of any bipartite graph with maximum degree \(d\) is at most \(O(\log d)\) (see [AR08] for a result in this direction). This conjecture would follow if the term \((1+o(1)) \frac{2 d}{\ln d}\) in Theorem 6 was strengthened to \(\Omega(\log d)\).

The rest of the paper is organized as follows. In Section 2 and Section 3, we prove Theorem 4 for trees and bipartite graphs respectively. In Section 4 we discuss a further generalization of cooperative colorings.

\section*{2 Trees}

Proof of the lower bound on \(m_{\mathcal{T}}(d)\). Note that the system \(\mathcal{T}_{2}\), consisting of two paths in Figure 1 (one in thin red, the other in bold blue), does not have a cooperative coloring.

Suppose now that \(\mathcal{S}=\left(F_{1}, F_{2}, \ldots, F_{m}\right)\) is a system of forests on a vertex set \(V\), not having a cooperative coloring. We shall construct a system \(Q(\mathcal{S})\) of \(m+1\) new forests \(F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{m}^{\prime}, F_{m+1}^{\prime}\), again not having a cooperative coloring.

The vertex set common to the new forests is \(V^{\prime}=(V \cup\{z\}) \times V\), namely the vertex set consists of \(|V|+1\) copies of \(V\). For every \(u \in V \cup\{z\}\) and every \(i \in[m]\), take a copy


Figure 1: Construction of two paths without a cooperative coloring.


Figure 2: Construction of \(Q(\mathcal{S})=\left(F_{1}^{\prime}, \ldots, F_{m}^{\prime}, F_{m+1}^{\prime}\right)\) from \(\mathcal{S}=\left(F_{1}, \ldots, F_{m}\right)\).
\(F_{i}^{u}\) of \(F_{i}\) on the vertex set \(\{(u, v): v \in V\}\). Let \(F_{i}^{\prime}\) consist of \(|V|+1\) disjoint copies of \(F_{i}\) :
\[
F_{i}^{\prime}:=\bigcup_{u \in V \cup\{z\}} F_{i}^{u}, \quad \text { for all } i \in[m] .
\]

To these we add the \((m+1)\) st forest \(F_{m+1}^{\prime}\) obtained by joining \((z, u)\) to \((u, v)\) for all \(u, v \in V\). So \(F_{m+1}^{\prime}\) is a disjoint union of stars, each with \(|V|\) leaves.

Assume that there is a cooperative coloring \(\left(I_{1}, I_{2}, \ldots, I_{m}, I_{m+1}\right)\) for the system \(Q(\mathcal{S})\). Since the forests \(F_{1}^{u}, F_{2}^{u}, \ldots, F_{m}^{u}\) do not have a cooperative coloring, \(I_{m+1}\) must contain a vertex from \(\{u\} \times V\) for all \(u \in V \cup\{z\}\). In particular, \(I_{m+1}\) contains a vertex \((z, u) \in I_{k+1}\) for some \(u \in V\) and a vertex \((u, v)\) for some \(v \in V\). Since \((z, u)\) is connected in \(F_{m+1}^{\prime}\) to \((u, v)\), this is contrary to our assumption that \(I_{m+1}\) is independent.

Note that \(\left|V^{\prime}\right|=|V|^{2}+|V| \leqslant 2|V|^{2}\). Note also that the maximum degree of \(Q(\mathcal{S})\) is attained in \(F_{m+1}^{\prime}\), and it is equal to \(|V|\). Recursively define the system \(\mathcal{T}_{m}:=Q\left(\mathcal{T}_{m-1}\right)\) consisting of \(m\) forests for \(m \geqslant 3\). Because the base \(\mathcal{T}_{2}\) has 4 vertices, one can check inductively that \(\left|V\left(\mathcal{T}_{m}\right)\right|\) is at most \(2^{3 \cdot 2^{m-2}-1}\) using \(\left|V\left(\mathcal{T}_{m}\right)\right| \leqslant 2\left|V\left(\mathcal{T}_{m-1}\right)\right|^{2}\). Thus the maximum degree of \(\mathcal{T}_{m}\) is at most \(2^{3 \cdot 2^{m-3}-1} \leqslant 2^{2^{m-1}}\).

Given the maximum degree \(d \geqslant 2\), choose \(m:=\left\lceil\log _{2} \log _{2} d\right\rceil\). By the choice of \(m\), the maximum degree of \(\mathcal{T}_{m}\) is at most \(2^{2^{m-1}} \leqslant d\). By adding a few edges between the leaves in each forest of \(\mathcal{T}_{m}\), we can obtain a system of \(m\) trees of maximum degree \(d\) that does not have a cooperative coloring. This means \(m_{\mathcal{T}}(d)>m>\log _{2} \log _{2} d\).

Proof of the upper bound on \(m_{\mathcal{T}}(d)\). Let \(\left(T_{1}, T_{2}, \ldots, T_{m}\right)\) be a system of trees of maximum degree \(d\). We shall find a cooperative coloring by a random construction if \(m \geqslant(1+\) \(o(1)) \log _{4 / 3} d\).

Choose arbitrarily for each tree \(T_{i}\) a root so that we can specify the parent or a sibling of a vertex that is not the root of \(T_{i}\). For each \(T_{i}\), choose independently a random vertex set \(S_{i}\), in which each vertex is included in \(S_{i}\) independently with probability \(1 / 2\). Set
\[
R_{i}:=\left\{v \in S_{i}: \text { the parent of } v \text { is not in } S_{i} \text {, or } v \text { is a root }\right\} .
\]

Since among any two adjacent vertices in \(T_{i}\) one is the parent of the other, \(R_{i}\) is independent in \(T_{i}\).

We shall show that with positive probability the sets \(R_{i}\) form a cooperative coloring. For each vertex \(v\), let \(B_{v}\) be the event that \(v \notin \bigcup_{i=1}^{m} R_{i}\). If \(v\) is the root of \(T_{i}\), then \(\operatorname{Pr}\left(v \in R_{i}\right)=1 / 2\); otherwise \(\operatorname{Pr}\left(v \in R_{i}\right)=1 / 4\). In any case, \(\operatorname{Pr}\left(v \notin R_{i}\right) \leqslant 3 / 4\), and so \(\operatorname{Pr}\left(B_{v}\right) \leqslant(3 / 4)^{m}\). Notice that \(B_{v}\) is only dependent on the events \(B_{u}\) for \(u\) that is the parent, a sibling or a child of \(v\) in some \(T_{i}\). Since the degree of \(v\) is at most \(d\), it follows that \(B_{v}\) is dependent on less than \(2 m d\) other events. By the symmetric version of the Lovász Local Lemma (see for example [AS16, Chapter 5]), if
\[
\begin{equation*}
e \times\left(\frac{3}{4}\right)^{m} \times 2 m d \leqslant 1 \tag{2}
\end{equation*}
\]
then with positive probability no \(B_{v}\) occurs, meaning that the sets \(R_{i}\) form a cooperative coloring. The inequality (2) indeed holds under the assumption that \(m \geqslant(1+o(1)) \log _{4 / 3} d\).

\section*{3 Bipartite graphs}

Proof of the lower bound on \(m_{\mathcal{B}}(d)\). Given \(d\), take \(m=\left\lceil\log _{2} d\right\rceil\). Let the vertex set be \(\{0,1\}^{m}\), and for \(j \in[m]\) let \(G_{j}\) be the complete bipartite graph between \(V_{j}^{0}\) and \(V_{j}^{1}\) where
\[
V_{j}^{k}=\left\{v \in\{0,1\}^{m}: v_{j}=k\right\}, \quad \text { for } k \in\{0,1\}
\]

Note that the degree of \(G_{j}\) is \(2^{m-1} \leqslant d\).
Suppose that \(I_{1}, \ldots, I_{m}\) are independent sets in \(G_{1}, \ldots, G_{m}\) respectively. As each \(G_{j}\) is a complete bipartite graph, \(I_{j} \subseteq V_{j}^{k_{j}}\) for some \(k_{j} \in\{0,1\}\). Thus \(\left(1-k_{1}, \ldots, 1-k_{m}\right)\) is not in any \(I_{j}\), and so \(I_{1}, \ldots, I_{m}\) do not form a cooperative coloring. This means \(m_{\mathcal{B}}(d)>m \geqslant \log _{2} d\).

Proof of the upper bound on \(m_{\mathcal{B}}(d)\). Let \(\mathcal{G}=\left(G_{1}, \ldots, G_{m}\right)\) be a system of bipartite graphs on the same vertex set \(V\) with maximum degree \(d\). By a semi-random construction, we shall find a cooperative coloring if \(m \geqslant(1+\varepsilon) \frac{2 d}{\ln d}\) for fixed \(\varepsilon>0\) and \(d\) sufficiently large. We may assume that \(m=O(d)\) because of (1). For each \(j \in[m]\), let \(\left(L_{j}, R_{j}\right)\) be a bipartition of \(G_{j}\). Define \(J_{L}(v):=\left\{j \in[m]: v \in L_{j}\right\}\) and \(J_{R}(v):=\left\{j \in[m]: v \in R_{j}\right\}\) for each vertex \(v \in V\), and let \(A:=\left\{v \in V:\left|J_{L}(v)\right| \geqslant m / 2\right\}\). Set \(B:=V \backslash A\). Clearly, we have
\[
\begin{align*}
& \left|J_{L}(a)\right| \geqslant m / 2, \quad \text { for all } a \in A  \tag{3a}\\
& \left|J_{R}(b)\right| \geqslant m / 2, \quad \text { for all } b \in B \tag{3b}
\end{align*}
\]

Consider the following random process.
1. For each \(a \in A\), choose \(j=j(a) \in J_{L}(a)\) uniformly at random, and put \(a\) in the set \(I_{j}\).
2. For each \(b \in B\), choose arbitrarily \(j \in J_{R}(b) \backslash\left\{j(a): a \in A,(a, b) \in E\left(G_{j}\right)\right\}=: J_{R}^{\prime}(b)\) as long as it is possible, and put \(b\) in the set \(I_{j}\).

For any \(a, a^{\prime} \in A \cap I_{j}, a, a^{\prime} \in L_{j}\) and so \(\left(a, a^{\prime}\right) \notin G_{j}\). This means \(A \cap I_{j}\) is independent, and similarly \(B \cap I_{j}\) is independent. For any \(b \in B \cap I_{j}\) and \((a, b) \in E\left(G_{j}\right)\), by the definition of \(J_{R}^{\prime}(b), j(a) \neq j\) and so \(a \notin I_{j}\). Therefore \(I_{j}\) is independent for all \(j \in[m]\).

To prove the existence of a cooperative coloring it suffices to show that \(J_{R}^{\prime}(b)\) is nonempty for all \(b \in B\) with positive probability. For a vertex \(b \in B\), let \(E_{b}\) be the contrary event, that is, the event that \(J_{R}^{\prime}(b)\) is empty.

For a fixed \(b \in B\), let us estimate from above the probability of \(E_{b}\). For every \(j \in J_{R}(b)\), let \(E^{j}\) be the event that \(j \notin J_{R}^{\prime}(b)\), that is the event that \(j(a)=j\) for some \(a \in A\) that is a neighbor of \(b\) in \(G_{j}\). For each \(a \in A\) that is a neighbor of \(b\) in \(G_{j}\), we have
\[
\operatorname{Pr}(j(a)=j)=\frac{1}{\left|J_{L}(a)\right|} \stackrel{(3 \text { a) }}{\leqslant} \frac{2}{m} \leqslant \frac{\ln d}{(1+\varepsilon) d} .
\]

As there are at most \(d\) neighbors of \(b\) in \(G_{j}\), we have for sufficiently large \(d\) that
\[
\begin{equation*}
1-\operatorname{Pr}\left(E^{j}\right) \geqslant\left(1-\frac{\ln d}{(1+\varepsilon) d}\right)^{d} \geqslant \exp (-(1-\varepsilon) \ln d)=d^{\varepsilon-1} \geqslant \frac{8 \ln d}{m} \tag{4}
\end{equation*}
\]

We claim that the events \(E^{j}, j \in J_{R}(b)\), are negatively correlated. This is easier to see with the complementary events \(\bar{E}^{j}, j \in J_{R}(b)\). We have to show that for any choice of indices \(j_{1}, \ldots, j_{t} \in J_{R}(b)\) there holds
\[
\operatorname{Pr}\left(E^{j} \mid \bar{E}^{j_{1}} \cap \bar{E}^{j_{2}} \cap \ldots \cap \bar{E}^{j_{t}}\right) \geqslant \operatorname{Pr}\left(E^{j}\right)
\]

The event \(\bar{E}^{j_{1}} \cap \bar{E}^{j_{2}} \cap \cdots \cap \bar{E}^{j_{t}}\) means that for all \(a \in A\) if \(a\) is a neighbor of \(b\) in \(G_{j_{i}}\) then \(j(a) \neq j_{i}\). Then, for any \(j \notin\left\{j_{1}, \ldots, j_{t}\right\}\), for those vertices \(a \in A\) that are neighbors of \(b\) in \(G_{j}\), knowing that \(j(a) \neq j_{i}\) for certain \(i \in[t]\) increases the probability that \(j(a)=j\), and therefore increases the probability of \(E^{j}\).

By the claim, the inequality (4) and the fact that \(E_{b}=\bigcap_{j \in J_{R}(b)} E^{j}\), we have
\[
\operatorname{Pr}\left(E_{b}\right) \leqslant \prod_{j \in J_{R}(b)} \operatorname{Pr}\left(E^{j}\right) \stackrel{(3 \mathrm{~b})}{\leqslant}\left(1-\frac{8 \ln d}{m}\right)^{\frac{m}{2}} \leqslant \exp \left(-\frac{8 \ln d}{m} \cdot \frac{m}{2}\right)=\frac{1}{d^{4}}
\]

The event \(E_{b}\) is dependent on less than \(m d^{2}\) other events \(E_{b^{\prime}}\), since for such dependence to exist it is necessary that \(b^{\prime} \in B\) is at distance at most 2 from \(b\) in some graph \(G_{j}\). Thus, by the Lovász Local Lemma, for the positive probability that none of \(E_{b}\) occurs it suffices that
\[
e \times \frac{1}{d^{4}} \times m d^{2} \leqslant 1
\]
which indeed holds for \(d\) sufficiently large as \(m=O(d)\).

\section*{4 Cooperative covers}

Cooperative coloring of graphs is a special case of a more general concept.

Definition 7. Given a system \(\left(C_{1}, \ldots, C_{n}\right)\) of (abstract) simplicial complexes, all sharing the same vertex set \(V\), a cooperative cover is a choice of faces \(f_{i} \in C_{i}\) such that \(\bigcup_{i=1}^{n} f_{i}=V\).

A cooperative coloring for \(\left(G_{1}, \ldots, G_{n}\right)\) is the special case in which \(C_{i}\) is the independence complex \(I\left(G_{i}\right)\) of \(G_{i}\), that is, the collection of all independent sets in \(G_{i}\).

Definition 8. Given a hypergraph \(C\) with vertex set \(V\), the edge covering number \(\rho(C)\) is the minimal number of hyperedges from \(C\) whose union is \(V\). For a class \(\mathcal{C}\) of simplicial complexes, let \(n_{\mathcal{C}}(b)\) denote the minimal number \(n\), such that every system \(\left(C_{1}, \ldots, C_{n}\right)\) of simplicial complexes belonging to \(\mathcal{C}\) on the same vertex set \(V\) satisfying \(\rho\left(C_{i}\right) \leqslant b\) for all \(i \leqslant n\), has a cooperative cover. Let \(n_{\mathcal{C}}(b)=\infty\) if no such \(n\) exists.

For example, consider the class \(\mathcal{I}\) of all the independence complexes of graphs. If \(G\) is bipartite, then \(\rho(I(G)) \leqslant 2\). Hence the fact that \(m_{\mathcal{B}}(d) \geqslant \log _{2}(d)\) for all \(d \geqslant 2\) (see Theorem 4) implies \(n_{\mathcal{I}}(2)=\infty\).

There are natural classes \(\mathcal{C}\) of hypergraphs for which \(n_{\mathcal{C}}\) is finite. One of these is the class of simplicial complexes associated to polymatroids, as introduced in [Edm70]. A polymatroid \((V, r)\) is defined via a rank function \(r: 2^{V} \rightarrow \mathbb{N}\), that is submodular, monotone increasing and is 0 on the empty set. A \(k\)-polymatroid is a polymatroid in which every singleton set has rank at most \(k\). For example, a \(k\)-uniform hypergraph \(H\) endowed with the function \(r(E)=|\cup E|\), for every subset of hyperedges \(E\) in \(H\), is a \(k\)-polymatroid.

Following the notation in [LP86, Section 11], given a \(k\)-polymatroid ( \(V, r\) ), a set \(M \subseteq V\) is called a matching if \(r(M)=k|M|\). By the submodularity of the rank function \(r\), the matchings in a \(k\)-polymatroid form a simplicial complex on \(V\), which we call the matching complex of a \(k\)-polymatroid.
Theorem 9. Let \(\mathcal{M}_{k}\) be the class of all the matching complexes of \(k\)-polymatroids. Then \(n_{\mathcal{M}_{k}}(b) \leqslant k b\) for every \(b\).

The proof uses the (homotopic) connectivity \(\eta(C)\) of a complex \(C\). We refer to [AB06, Section 2] for background. We shall use the following two topological tools. Given a complex \(C\) on \(V\) and \(U \subseteq V\), we denote by \(C[U]\) the simplicial subcomplex induced on \(U\).

Theorem 10 (Topological Hall's theorem). Let \(C\) be a simplicial complex on the vertex set \(V\) and let \(\bigcup_{i=1}^{m} W_{i}\) be a partition of \(V\). If for all \(I \subseteq[m]\)
\[
\eta\left(C\left[\bigcup_{i \in I} W_{i}\right]\right) \geqslant|I|
\]
then \(C\) contains a face \(\sigma\) such that \(\left|\sigma \cap W_{i}\right|=1\) for all \(i \in[m]\).
Theorem 11. If \(C\) is a matching complex on \(V\) of a \(k\)-polymatroid, then the connectivity \(\eta(C)\) of \(C\) is at least \(\nu(C) / k\), where \(\nu(C)\) is the maximal size of faces in \(C\).

The above formulation of Theorem 10 first appeared in [Mes01], attributed to the first author of the present paper (see the remark after Theorem 1.3 in [Mes01]). Theorem 11 is an unpublished result of the first two authors. The special case, where the \(k\)-polymatroid is the sum of \(k\) matroids on the same vertex set, is proved in [AB06, Theorem 6.5].

Proof of Theorem 9. Let \(n=k b\), and let \(C_{1}, \ldots, C_{n}\) be simplicial complexes associated to \(k\)-polymatroids \(\left(V, r_{1}\right), \ldots,\left(V, r_{n}\right)\) on the same vertex set \(V\) such that the edge covering number of each \(C_{i}\) is at most \(b\). Let \(C\) be the join of \(C_{1}, \ldots, C_{n}\) on \(V \times[n]\), that is,
\[
C:=\left\{\bigcup_{i=1}^{n} \sigma_{i} \times\{i\}: \sigma_{i} \in C_{i} \text { for all } i \in[n]\right\} .
\]

A cooperative cover can be viewed as a face \(\sigma \in C\) such that \(|\sigma \cap(\{v\} \times[n])|=1\) for all \(v \in V\). By the topological Hall's theorem, it suffices to prove that
\[
\eta(C[U \times[n]]) \geqslant|U| \text { for all } U \subseteq V .
\]

Let \(U\) be a subset of \(V\). Note that \(C_{i}[U]\) is the matching complex of the \(k\)-polymatroid \(\left(U,\left.r_{i}\right|_{U}\right)\). By Theorem 11, \(\eta\left(C_{i}[U]\right) \geqslant \nu\left(C_{i}[U]\right) / k\). Since \(\nu\left(C_{i}[U]\right)\) is the maximal size of faces in \(C_{i}[U]\) and the edge covering number of \(C_{i}[U]\) is at most \(b\), we obtain \(\nu\left(C_{i}[U]\right) b \geqslant|U|\), and so \(\eta\left(C_{i}[U]\right) \geqslant|U| /(k b)\). Notice that \(C[U \times[n]]\) is the join of \(C_{1}[U], \ldots, C_{n}[U]\). Using the superadditivity of \(\eta\) with respect to the join operator and Theorem 11, we obtain the required condition for the topological Hall's theorem
\[
\eta(C[U \times[n]]) \geqslant \sum_{i=1}^{n} \eta\left(C_{i}[U]\right) \geqslant \sum_{i=1}^{n}|U| /(k b)=|U| .
\]

Remark 12. It is of interest to explore the sharpness of this result.

\section*{References}
[AB06] Ron Aharoni and Eli Berger. The intersection of a matroid and a simplicial complex. Trans. Amer. Math. Soc., 358(11):4895-4917, 2006.
[ABZ07] Ron Aharoni, Eli Berger, and Ran Ziv. Independent systems of representatives in weighted graphs. Combinatorica, 27(3):253-267, 2007.
[AHHS15] Ron Aharoni, Ron Holzman, David Howard, and Philipp Sprüssel. Cooperative colorings and independent systems of representatives. Electron. J. Combin., 22(2):\#P2.27, 2015.
[AK98] Noga Alon and Michael Krivelevich. The choice number of random bipartite graphs. Ann. Comb., 2(4):291-297, 1998.
[AR08] Omid Amini and Bruce Reed. List colouring constants of triangle free graphs. In The IV Latin-American Algorithms, Graphs, and Optimization Symposium, volume 30 of Electron. Notes Discrete Math., pages 135-140. Elsevier Sci. B. V., Amsterdam, 2008.
[AS16] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley Series in Discrete Mathematics and Optimization. John Wiley \& Sons, Inc., Hoboken, NJ, fourth edition, 2016.
[Edm70] Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pages 69-87. Gordon and Breach, New York, 1970.
[Hax01] P. E. Haxell. A note on vertex list colouring. Combin. Probab. Comput., 10(4):345347, 2001.
[LP86] L. Lovász and M. D. Plummer. Matching theory, volume 121 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam; North-Holland Publishing Co., Amsterdam, 1986. Annals of Discrete Mathematics, 29.
[LS07] Po-Shen Loh and Benny Sudakov. Independent transversals in locally sparse graphs. J. Combin. Theory Ser. B, 97(6):904-918, 2007. arXiv:0706. 2124.
[Mes01] Roy Meshulam. The clique complex and hypergraph matching. Combinatorica, 21(1):89-94, 2001.```

