Cooperative colorings of trees and of bipartite graphs

Ron Aharoni^{*}

Department of Mathematics Technion – Israel Institute of Technology Technion City, Haifa 3200003, Israel

ra@tx.technion.ac.il

Maria Chudnovsky[‡]

Mathematics Department Princeton University Princeton, NJ 08544, USA

mchudnov@math.princeton.edu

Eli Berger[†]

Department of Mathematics University of Haifa Mt. Carmel, Haifa 3498838, Israel

berger@math.haifa.ac.il

Frédéric Havet

CNRS, Université Côte d'Azur, I3S, and INRIA Sophia-Antipolis Cedex 06902, France

frederic.havet@inria.fr

Zilin Jiang[§]

Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139, USA

zilinj@mit.edu

Submitted: Aug 20, 2018; Accepted: Jan 20, 2020; Published: Feb 7, 2020 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Given a system (G_1, \ldots, G_m) of graphs on the same vertex set V, a cooperative coloring is a choice of vertex sets I_1, \ldots, I_m , such that I_j is independent in G_j and $\bigcup_{j=1}^m I_j = V$. For a class \mathcal{G} of graphs, let $m_{\mathcal{G}}(d)$ be the minimal m such that every m graphs from \mathcal{G} with maximum degree d have a cooperative coloring. We prove that $\Omega(\log \log d) \leq m_{\mathcal{T}}(d) \leq O(\log d)$ and $\Omega(\log d) \leq m_{\mathcal{B}}(d) \leq O(d/\log d)$, where \mathcal{T} is the class of trees and \mathcal{B} is the class of bipartite graphs.

Mathematics Subject Classifications: 05C15, 05C69

[†]Supported in part by BSF grant no. 2006099 and ISF grant no. 2023464.

^{*}Supported in part by the United States–Israel Binational Science Foundation (BSF) grant no. 2006099, the Israel Science Foundation (ISF) grant no. 2023464 and the Discount Bank Chair at Technion. This paper is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme, under the Marie Skłodowska-Curie grant agreement no. 823748.

[‡]Supported in part by BSF grant no. 2006099, NSF grant DMS-1550991 and US Army Research Office Grant W911NF-16-1-0404.

 $^{^{\}text{S}}$ The work was done when Z. Jiang was a postdoctoral fellow at Technion – Israel Institute of Technology, and was supported in part by ISF grant nos. 409/16, 936/16.

1 Introduction

A set of vertices in a graph is called *independent* if no two vertices in it form an edge. A coloring of a graph G is a covering of V(G) by independent sets. Given a system (G_1, \ldots, G_m) of graphs on the same vertex set V, a cooperative coloring is a choice of vertex sets $\{I_j \subseteq V : j \in [m]\}$ such that I_j is independent in G_j and $\bigcup_{j=1}^m I_j = V$. If all G_j 's are the same graph G, then a cooperative coloring is just a proper vertex coloring of G by m independent sets.

A basic fact about vertex coloring is that every graph G of maximum degree d is (d+1)-colorable. It is therefore natural to ask whether d+1 graphs, each of maximum degree d, always have a cooperative coloring. This was shown to be false:

Theorem 1 (Theorem 5.1 of Aharoni, Holzman, Howard and Sprüssel [AHHS15]). For every $d \ge 2$, there exist d + 1 graphs of maximum degree d that do not have a cooperative coloring.

Using the fundamental result on independent transversals of Haxell [Hax01, Theorem 2], it can be shown that 2d graphs of maximum degree d always have a cooperative coloring. Let m(d) be the minimal m such that every m graphs of maximum degree d have a cooperative coloring. By the above, m(1) = 2 and

$$d+2 \leqslant m(d) \leqslant 2d$$
, for every $d \ge 2$. (1)

The theorem of Loh and Sudakov [LS07, Theorem 4.1] on independent transversals in locally sparse graphs implies that m(d) = d + o(d). Neither the lower bound nor the upper bound in (1) has been improved for general d; even m(3) is not known. However, restricting the graphs to specific classes, better upper bounds can be obtained.

Definition 2. For a class \mathcal{G} of graphs, denote by $m_{\mathcal{G}}(d)$ the minimal m such that every m graphs belonging to \mathcal{G} , each of maximum degree at most d, have a cooperative coloring.

For example, the following was proved:

Theorem 3 (Corollary 3.3 of Aharoni et al. [ABZ07] and Theorem 6.6 of Aharoni et al. [AHHS15]). Let C be the class of chordal graphs and let \mathcal{P} be the class of paths. Then $m_{\mathcal{C}}(d) = d + 1$ for all d, and $m_{\mathcal{P}}(2) = 3$.

In this paper, we prove some bounds on $m_{\mathcal{G}}(d)$ for two more classes:

Theorem 4. Let \mathcal{T} be the class of trees, and let \mathcal{B} be the class of bipartite graphs. Then for $d \ge 2$,

$$\log_2 \log_2 d \leqslant m_{\mathcal{T}}(d) \leqslant (1+o(1)) \log_{4/3} d,$$
$$\log_2 d \leqslant m_{\mathcal{B}}(d) \leqslant (1+o(1)) \frac{2d}{\ln d}.$$

Remark 5. Let \mathcal{F} be the class of forests. It is evident that $m_{\mathcal{F}}(d) \ge m_{\mathcal{T}}(d)$ as $\mathcal{F} \supset \mathcal{T}$. Conversely, when $d \ge 2$, given $m = m_{\mathcal{T}}(d)$ forests F_1, \ldots, F_m of maximum degree d, we can add edges to F_i to obtain a tree F'_i of maximum degree d, and the cooperative coloring for F'_1, \ldots, F'_m is also a cooperative coloring for F_1, \ldots, F_m . Therefore $m_{\mathcal{F}}(d) = m_{\mathcal{T}}(d)$ for $d \ge 2$.

The notions of cooperative coloring and of list coloring have a common generalization: given a system (G_1, \ldots, G_m) of graphs with vertex sets V_1, \ldots, V_m (which are not neccessarily the same vertex set), a *cooperative list coloring* is then a choice of independent sets in G_i whose union equals $V := V_1 \cup \cdots \cup V_m$. The notion of cooperative coloring is obtained by taking $V_i = V$, and list colorings are formed when G_i is an induced subgraph of the same graph G for all i. The upper bounds in Theorem 4 generalize to cooperative list colorings. For example, our proof of Theorem 4 for bipartite graphs readily gives the following result.

Theorem 6. For every system (G_1, \ldots, G_m) of bipartite graphs with maximum degree d with vertex sets V_1, \ldots, V_m , there is a cooperative list coloring if for every $v \in V_1 \cup \cdots \cup V_m$, the number of its occurrences in V_1, \ldots, V_m , that is $|\{i \in [m] : v \in V_i\}|$, is at least $(1 + o(1))\frac{2d}{\ln d}$.

A conjecture of Alon and Krivelevich [AK98, Conjecture 5.1] states that the choice number of any bipartite graph with maximum degree d is at most $O(\log d)$ (see [AR08] for a result in this direction). This conjecture would follow if the term $(1 + o(1))\frac{2d}{\ln d}$ in Theorem 6 was strengthened to $\Omega(\log d)$.

The rest of the paper is organized as follows. In Section 2 and Section 3, we prove Theorem 4 for trees and bipartite graphs respectively. In Section 4 we discuss a further generalization of cooperative colorings.

2 Trees

Proof of the lower bound on $m_{\tau}(d)$. Note that the system \mathcal{T}_2 , consisting of two paths in Figure 1 (one in thin red, the other in bold blue), does not have a cooperative coloring.

Suppose now that $\mathcal{S} = (F_1, F_2, \ldots, F_m)$ is a system of forests on a vertex set V, not having a cooperative coloring. We shall construct a system $Q(\mathcal{S})$ of m + 1 new forests $F'_1, F'_2, \ldots, F'_m, F'_{m+1}$, again not having a cooperative coloring.

The vertex set common to the new forests is $V' = (V \cup \{z\}) \times V$, namely the vertex set consists of |V| + 1 copies of V. For every $u \in V \cup \{z\}$ and every $i \in [m]$, take a copy

Figure 1: Construction of two paths without a cooperative coloring.

Figure 2: Construction of $Q(\mathcal{S}) = (F'_1, \ldots, F'_m, F'_{m+1})$ from $\mathcal{S} = (F_1, \ldots, F_m)$.

 F_i^u of F_i on the vertex set $\{(u, v) : v \in V\}$. Let F_i' consist of |V| + 1 disjoint copies of F_i :

$$F'_i := \bigcup_{u \in V \cup \{z\}} F^u_i, \quad \text{ for all } i \in [m].$$

To these we add the (m + 1)st forest F'_{m+1} obtained by joining (z, u) to (u, v) for all $u, v \in V$. So F'_{m+1} is a disjoint union of stars, each with |V| leaves.

Assume that there is a cooperative coloring $(I_1, I_2, \ldots, I_m, I_{m+1})$ for the system $Q(\mathcal{S})$. Since the forests $F_1^u, F_2^u, \ldots, F_m^u$ do not have a cooperative coloring, I_{m+1} must contain a vertex from $\{u\} \times V$ for all $u \in V \cup \{z\}$. In particular, I_{m+1} contains a vertex $(z, u) \in I_{k+1}$ for some $u \in V$ and a vertex (u, v) for some $v \in V$. Since (z, u) is connected in F'_{m+1} to (u, v), this is contrary to our assumption that I_{m+1} is independent.

Note that $|V'| = |V|^2 + |V| \leq 2 |V|^2$. Note also that the maximum degree of $Q(\mathcal{S})$ is attained in F'_{m+1} , and it is equal to |V|. Recursively define the system $\mathcal{T}_m := Q(\mathcal{T}_{m-1})$ consisting of m forests for $m \geq 3$. Because the base \mathcal{T}_2 has 4 vertices, one can check inductively that $|V(\mathcal{T}_m)|$ is at most $2^{3 \cdot 2^{m-2}-1}$ using $|V(\mathcal{T}_m)| \leq 2 |V(\mathcal{T}_{m-1})|^2$. Thus the maximum degree of \mathcal{T}_m is at most $2^{3 \cdot 2^{m-3}-1} \leq 2^{2^{m-1}}$.

Given the maximum degree $d \ge 2$, choose $m := \lceil \log_2 \log_2 d \rceil$. By the choice of m, the maximum degree of \mathcal{T}_m is at most $2^{2^{m-1}} \le d$. By adding a few edges between the leaves in each forest of \mathcal{T}_m , we can obtain a system of m trees of maximum degree d that does not have a cooperative coloring. This means $m_{\mathcal{T}}(d) > m > \log_2 \log_2 d$.

Proof of the upper bound on $m_{\mathcal{T}}(d)$. Let (T_1, T_2, \ldots, T_m) be a system of trees of maximum degree d. We shall find a cooperative coloring by a random construction if $m \ge (1 + o(1)) \log_{4/3} d$.

Choose arbitrarily for each tree T_i a root so that we can specify the parent or a sibling of a vertex that is not the root of T_i . For each T_i , choose independently a random vertex set S_i , in which each vertex is included in S_i independently with probability 1/2. Set

 $R_i := \{ v \in S_i : \text{the parent of } v \text{ is not in } S_i, \text{ or } v \text{ is a root} \}.$

Since among any two adjacent vertices in T_i one is the parent of the other, R_i is independent in T_i .

The electronic journal of combinatorics 27(1) (2020), #P1.41

We shall show that with positive probability the sets R_i form a cooperative coloring. For each vertex v, let B_v be the event that $v \notin \bigcup_{i=1}^m R_i$. If v is the root of T_i , then $\Pr(v \in R_i) = 1/2$; otherwise $\Pr(v \in R_i) = 1/4$. In any case, $\Pr(v \notin R_i) \leq 3/4$, and so $\Pr(B_v) \leq (3/4)^m$. Notice that B_v is only dependent on the events B_u for u that is the parent, a sibling or a child of v in some T_i . Since the degree of v is at most d, it follows that B_v is dependent on less than 2md other events. By the symmetric version of the Lovász Local Lemma (see for example [AS16, Chapter 5]), if

$$e \times \left(\frac{3}{4}\right)^m \times 2md \leqslant 1,\tag{2}$$

then with positive probability no B_v occurs, meaning that the sets R_i form a cooperative coloring. The inequality (2) indeed holds under the assumption that $m \ge (1+o(1))\log_{4/3} d$.

3 Bipartite graphs

Proof of the lower bound on $m_{\mathcal{B}}(d)$. Given d, take $m = \lceil \log_2 d \rceil$. Let the vertex set be $\{0,1\}^m$, and for $j \in [m]$ let G_j be the complete bipartite graph between V_j^0 and V_j^1 where

$$V_j^k = \{v \in \{0, 1\}^m : v_j = k\}, \text{ for } k \in \{0, 1\}.$$

Note that the degree of G_j is $2^{m-1} \leq d$.

Suppose that I_1, \ldots, I_m are independent sets in G_1, \ldots, G_m respectively. As each G_j is a complete bipartite graph, $I_j \subseteq V_j^{k_j}$ for some $k_j \in \{0, 1\}$. Thus $(1 - k_1, \ldots, 1 - k_m)$ is not in any I_j , and so I_1, \ldots, I_m do not form a cooperative coloring. This means $m_{\mathcal{B}}(d) > m \ge \log_2 d$.

Proof of the upper bound on $m_{\mathcal{B}}(d)$. Let $\mathcal{G} = (G_1, \ldots, G_m)$ be a system of bipartite graphs on the same vertex set V with maximum degree d. By a semi-random construction, we shall find a cooperative coloring if $m \ge (1 + \varepsilon)\frac{2d}{\ln d}$ for fixed $\varepsilon > 0$ and d sufficiently large. We may assume that m = O(d) because of (1). For each $j \in [m]$, let (L_j, R_j) be a bipartition of G_j . Define $J_L(v) := \{j \in [m] : v \in L_j\}$ and $J_R(v) := \{j \in [m] : v \in R_j\}$ for each vertex $v \in V$, and let $A := \{v \in V : |J_L(v)| \ge m/2\}$. Set $B := V \setminus A$. Clearly, we have

$$|J_L(a)| \ge m/2$$
, for all $a \in A$; (3a)

$$|J_R(b)| \ge m/2$$
, for all $b \in B$. (3b)

Consider the following random process.

- 1. For each $a \in A$, choose $j = j(a) \in J_L(a)$ uniformly at random, and put a in the set I_j .
- 2. For each $b \in B$, choose arbitrarily $j \in J_R(b) \setminus \{j(a) : a \in A, (a, b) \in E(G_j)\} =: J'_R(b)$ as long as it is possible, and put b in the set I_j .

For any $a, a' \in A \cap I_j$, $a, a' \in L_j$ and so $(a, a') \notin G_j$. This means $A \cap I_j$ is independent, and similarly $B \cap I_j$ is independent. For any $b \in B \cap I_j$ and $(a, b) \in E(G_j)$, by the definition of $J'_R(b), j(a) \neq j$ and so $a \notin I_j$. Therefore I_j is independent for all $j \in [m]$.

To prove the existence of a cooperative coloring it suffices to show that $J'_R(b)$ is nonempty for all $b \in B$ with positive probability. For a vertex $b \in B$, let E_b be the contrary event, that is, the event that $J'_R(b)$ is empty.

For a fixed $b \in B$, let us estimate from above the probability of E_b . For every $j \in J_R(b)$, let E^j be the event that $j \notin J'_R(b)$, that is the event that j(a) = j for some $a \in A$ that is a neighbor of b in G_j . For each $a \in A$ that is a neighbor of b in G_j , we have

$$\Pr\left(j(a)=j\right) = \frac{1}{|J_L(a)|} \stackrel{\text{(3a)}}{\leqslant} \frac{2}{m} \leqslant \frac{\ln d}{(1+\varepsilon)d}$$

As there are at most d neighbors of b in G_j , we have for sufficiently large d that

$$1 - \Pr\left(E^{j}\right) \ge \left(1 - \frac{\ln d}{(1 + \varepsilon)d}\right)^{d} \ge \exp\left(-(1 - \varepsilon)\ln d\right) = d^{\varepsilon - 1} \ge \frac{8\ln d}{m}.$$
 (4)

We claim that the events E^j , $j \in J_R(b)$, are negatively correlated. This is easier to see with the complementary events \overline{E}^j , $j \in J_R(b)$. We have to show that for any choice of indices $j_1, \ldots, j_t \in J_R(b)$ there holds

$$\Pr\left(E^{j} \mid \bar{E}^{j_{1}} \cap \bar{E}^{j_{2}} \cap \ldots \cap \bar{E}^{j_{t}}\right) \geqslant \Pr\left(E^{j}\right).$$

The event $\overline{E}^{j_1} \cap \overline{E}^{j_2} \cap \cdots \cap \overline{E}^{j_t}$ means that for all $a \in A$ if a is a neighbor of b in G_{j_i} then $j(a) \neq j_i$. Then, for any $j \notin \{j_1, \ldots, j_t\}$, for those vertices $a \in A$ that are neighbors of b in G_j , knowing that $j(a) \neq j_i$ for certain $i \in [t]$ increases the probability that j(a) = j, and therefore increases the probability of E^j .

By the claim, the inequality (4) and the fact that $E_b = \bigcap_{j \in J_B(b)} E^j$, we have

$$\Pr(E_b) \leqslant \prod_{j \in J_R(b)} \Pr(E^j) \stackrel{(3b)}{\leqslant} \left(1 - \frac{8\ln d}{m}\right)^{\frac{m}{2}} \leqslant \exp\left(-\frac{8\ln d}{m} \cdot \frac{m}{2}\right) = \frac{1}{d^4}$$

The event E_b is dependent on less than md^2 other events $E_{b'}$, since for such dependence to exist it is necessary that $b' \in B$ is at distance at most 2 from b in some graph G_j . Thus, by the Lovász Local Lemma, for the positive probability that none of E_b occurs it suffices that

$$e \times \frac{1}{d^4} \times md^2 \leqslant 1,$$

which indeed holds for d sufficiently large as m = O(d).

4 Cooperative covers

Cooperative coloring of graphs is a special case of a more general concept.

```
THE ELECTRONIC JOURNAL OF COMBINATORICS 27(1) (2020), #P1.41
```

Definition 7. Given a system (C_1, \ldots, C_n) of (abstract) simplicial complexes, all sharing the same vertex set V, a *cooperative cover* is a choice of faces $f_i \in C_i$ such that $\bigcup_{i=1}^n f_i = V$.

A cooperative coloring for (G_1, \ldots, G_n) is the special case in which C_i is the independence complex $I(G_i)$ of G_i , that is, the collection of all independent sets in G_i .

Definition 8. Given a hypergraph C with vertex set V, the *edge covering number* $\rho(C)$ is the minimal number of hyperedges from C whose union is V. For a class C of simplicial complexes, let $n_{\mathcal{C}}(b)$ denote the minimal number n, such that every system (C_1, \ldots, C_n) of simplicial complexes belonging to C on the same vertex set V satisfying $\rho(C_i) \leq b$ for all $i \leq n$, has a cooperative cover. Let $n_{\mathcal{C}}(b) = \infty$ if no such n exists.

For example, consider the class \mathcal{I} of all the independence complexes of graphs. If G is bipartite, then $\rho(I(G)) \leq 2$. Hence the fact that $m_{\mathcal{B}}(d) \geq \log_2(d)$ for all $d \geq 2$ (see Theorem 4) implies $n_{\mathcal{I}}(2) = \infty$.

There are natural classes \mathcal{C} of hypergraphs for which $n_{\mathcal{C}}$ is finite. One of these is the class of simplicial complexes associated to polymatroids, as introduced in [Edm70]. A *polymatroid* (V, r) is defined via a rank function $r: 2^V \to \mathbb{N}$, that is submodular, monotone increasing and is 0 on the empty set. A *k*-polymatroid is a polymatroid in which every singleton set has rank at most k. For example, a *k*-uniform hypergraph H endowed with the function $r(E) = |\cup E|$, for every subset of hyperedges E in H, is a *k*-polymatroid.

Following the notation in [LP86, Section 11], given a k-polymatroid (V, r), a set $M \subseteq V$ is called a *matching* if r(M) = k |M|. By the submodularity of the rank function r, the matchings in a k-polymatroid form a simplicial complex on V, which we call the *matching* complex of a k-polymatroid.

Theorem 9. Let \mathcal{M}_k be the class of all the matching complexes of k-polymatroids. Then $n_{\mathcal{M}_k}(b) \leq kb$ for every b.

The proof uses the (homotopic) connectivity $\eta(C)$ of a complex C. We refer to [AB06, Section 2] for background. We shall use the following two topological tools. Given a complex C on V and $U \subseteq V$, we denote by C[U] the simplicial subcomplex induced on U.

Theorem 10 (Topological Hall's theorem). Let C be a simplicial complex on the vertex set V and let $\bigcup_{i=1}^{m} W_i$ be a partition of V. If for all $I \subseteq [m]$

$$\eta\left(C\left[\bigcup_{i\in I}W_i\right]\right) \geqslant |I|\,,$$

then C contains a face σ such that $|\sigma \cap W_i| = 1$ for all $i \in [m]$.

Theorem 11. If C is a matching complex on V of a k-polymatroid, then the connectivity $\eta(C)$ of C is at least $\nu(C)/k$, where $\nu(C)$ is the maximal size of faces in C.

The above formulation of Theorem 10 first appeared in [Mes01], attributed to the first author of the present paper (see the remark after Theorem 1.3 in [Mes01]). Theorem 11 is an unpublished result of the first two authors. The special case, where the k-polymatroid is the sum of k matroids on the same vertex set, is proved in [AB06, Theorem 6.5].

Proof of Theorem 9. Let n = kb, and let C_1, \ldots, C_n be simplicial complexes associated to k-polymatroids $(V, r_1), \ldots, (V, r_n)$ on the same vertex set V such that the edge covering number of each C_i is at most b. Let C be the join of C_1, \ldots, C_n on $V \times [n]$, that is,

$$C := \left\{ \bigcup_{i=1}^{n} \sigma_i \times \{i\} : \sigma_i \in C_i \text{ for all } i \in [n] \right\}.$$

A cooperative cover can be viewed as a face $\sigma \in C$ such that $|\sigma \cap (\{v\} \times [n])| = 1$ for all $v \in V$. By the topological Hall's theorem, it suffices to prove that

$$\eta \left(C[U \times [n]] \right) \ge |U| \text{ for all } U \subseteq V.$$

Let U be a subset of V. Note that $C_i[U]$ is the matching complex of the k-polymatroid $(U, r_i|_U)$. By Theorem 11, $\eta(C_i[U]) \ge \nu(C_i[U])/k$. Since $\nu(C_i[U])$ is the maximal size of faces in $C_i[U]$ and the edge covering number of $C_i[U]$ is at most b, we obtain $\nu(C_i[U])b \ge |U|$, and so $\eta(C_i[U]) \ge |U|/(kb)$. Notice that $C[U \times [n]]$ is the join of $C_1[U], \ldots, C_n[U]$. Using the superadditivity of η with respect to the join operator and Theorem 11, we obtain the required condition for the topological Hall's theorem

$$\eta(C[U \times [n]]) \geqslant \sum_{i=1}^{n} \eta(C_i[U]) \geqslant \sum_{i=1}^{n} |U|/(kb) = |U|. \qquad \Box$$

Remark 12. It is of interest to explore the sharpness of this result.

References

- [AB06] Ron Aharoni and Eli Berger. The intersection of a matroid and a simplicial complex. Trans. Amer. Math. Soc., 358(11):4895–4917, 2006.
- [ABZ07] Ron Aharoni, Eli Berger, and Ran Ziv. Independent systems of representatives in weighted graphs. *Combinatorica*, 27(3):253–267, 2007.
- [AHHS15] Ron Aharoni, Ron Holzman, David Howard, and Philipp Sprüssel. Cooperative colorings and independent systems of representatives. *Electron. J. Combin.*, 22(2):#P2.27, 2015.
- [AK98] Noga Alon and Michael Krivelevich. The choice number of random bipartite graphs. Ann. Comb., 2(4):291–297, 1998.
- [AR08] Omid Amini and Bruce Reed. List colouring constants of triangle free graphs. In The IV Latin-American Algorithms, Graphs, and Optimization Symposium, volume 30 of Electron. Notes Discrete Math., pages 135–140. Elsevier Sci. B. V., Amsterdam, 2008.
- [AS16] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, fourth edition, 2016.

- [Edm70] Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pages 69–87. Gordon and Breach, New York, 1970.
- [Hax01] P. E. Haxell. A note on vertex list colouring. Combin. Probab. Comput., 10(4):345– 347, 2001.
- [LP86] L. Lovász and M. D. Plummer. Matching theory, volume 121 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam; North-Holland Publishing Co., Amsterdam, 1986. Annals of Discrete Mathematics, 29.
- [LS07] Po-Shen Loh and Benny Sudakov. Independent transversals in locally sparse graphs. J. Combin. Theory Ser. B, 97(6):904–918, 2007. arXiv:0706.2124.
- [Mes01] Roy Meshulam. The clique complex and hypergraph matching. *Combinatorica*, 21(1):89–94, 2001.