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Abstract

Given a system (G1, . . . , Gm) of graphs on the same vertex set V , a cooperative
coloring is a choice of vertex sets I1, . . . , Im, such that Ij is independent in Gj and⋃m

j=1 Ij = V . For a class G of graphs, let mG(d) be the minimal m such that every
m graphs from G with maximum degree d have a cooperative coloring. We prove
that Ω(log log d) 6 mT (d) 6 O(log d) and Ω(log d) 6 mB(d) 6 O(d/ log d), where T
is the class of trees and B is the class of bipartite graphs.
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1 Introduction

A set of vertices in a graph is called independent if no two vertices in it form an edge.
A coloring of a graph G is a covering of V (G) by independent sets. Given a system
(G1, . . . , Gm) of graphs on the same vertex set V , a cooperative coloring is a choice of
vertex sets {Ij ⊆ V : j ∈ [m]} such that Ij is independent in Gj and

⋃m
j=1 Ij = V . If all

Gj’s are the same graph G, then a cooperative coloring is just a proper vertex coloring of
G by m independent sets.

A basic fact about vertex coloring is that every graph G of maximum degree d is
(d+ 1)-colorable. It is therefore natural to ask whether d+ 1 graphs, each of maximum
degree d, always have a cooperative coloring. This was shown to be false:

Theorem 1 (Theorem 5.1 of Aharoni, Holzman, Howard and Sprüssel [AHHS15]). For
every d > 2, there exist d+ 1 graphs of maximum degree d that do not have a cooperative
coloring.

Using the fundamental result on independent transversals of Haxell [Hax01, Theorem 2],
it can be shown that 2d graphs of maximum degree d always have a cooperative coloring.
Let m(d) be the minimal m such that every m graphs of maximum degree d have a
cooperative coloring. By the above, m(1) = 2 and

d+ 2 6 m(d) 6 2d, for every d > 2. (1)

The theorem of Loh and Sudakov [LS07, Theorem 4.1] on independent transversals in
locally sparse graphs implies that m(d) = d + o(d). Neither the lower bound nor the
upper bound in (1) has been improved for general d; even m(3) is not known. However,
restricting the graphs to specific classes, better upper bounds can be obtained.

Definition 2. For a class G of graphs, denote by mG(d) the minimal m such that every
m graphs belonging to G, each of maximum degree at most d, have a cooperative coloring.

For example, the following was proved:

Theorem 3 (Corollary 3.3 of Aharoni et al. [ABZ07] and Theorem 6.6 of Aharoni et
al. [AHHS15]). Let C be the class of chordal graphs and let P be the class of paths. Then
mC(d) = d+ 1 for all d, and mP(2) = 3.

In this paper, we prove some bounds on mG(d) for two more classes:

Theorem 4. Let T be the class of trees, and let B be the class of bipartite graphs. Then
for d > 2,

log2 log2 d 6mT (d) 6 (1 + o(1)) log4/3 d,

log2 d 6mB(d) 6 (1 + o(1))
2d

ln d
.
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Remark 5. Let F be the class of forests. It is evident that mF(d) > mT (d) as F ⊃ T .
Conversely, when d > 2, given m = mT (d) forests F1, . . . , Fm of maximum degree d, we
can add edges to Fi to obtain a tree F ′i of maximum degree d, and the cooperative coloring
for F ′1, . . . , F

′
m is also a cooperative coloring for F1, . . . , Fm. Therefore mF(d) = mT (d) for

d > 2.

The notions of cooperative coloring and of list coloring have a common generalization:
given a system (G1, . . . , Gm) of graphs with vertex sets V1, . . . , Vm (which are not nec-
cessarily the same vertex set), a cooperative list coloring is then a choice of independent
sets in Gi whose union equals V := V1 ∪ · · · ∪ Vm. The notion of cooperative coloring is
obtained by taking Vi = V , and list colorings are formed when Gi is an induced subgraph
of the same graph G for all i. The upper bounds in Theorem 4 generalize to cooperative
list colorings. For example, our proof of Theorem 4 for bipartite graphs readily gives the
following result.

Theorem 6. For every system (G1, . . . , Gm) of bipartite graphs with maximum degree d
with vertex sets V1, . . . , Vm, there is a cooperative list coloring if for every v ∈ V1 ∪ · · · ∪
Vm, the number of its occurrences in V1, . . . , Vm, that is |{i ∈ [m] : v ∈ Vi}|, is at least
(1 + o(1)) 2d

ln d
.

A conjecture of Alon and Krivelevich [AK98, Conjecture 5.1] states that the choice
number of any bipartite graph with maximum degree d is at most O(log d) (see [AR08]
for a result in this direction). This conjecture would follow if the term (1 + o(1)) 2d

ln d
in

Theorem 6 was strengthened to Ω(log d).
The rest of the paper is organized as follows. In Section 2 and Section 3, we prove

Theorem 4 for trees and bipartite graphs respectively. In Section 4 we discuss a further
generalization of cooperative colorings.

2 Trees

Proof of the lower bound on mT (d). Note that the system T2, consisting of two paths in
Figure 1 (one in thin red, the other in bold blue), does not have a cooperative coloring.

Suppose now that S = (F1, F2, . . . , Fm) is a system of forests on a vertex set V , not
having a cooperative coloring. We shall construct a system Q(S) of m + 1 new forests
F ′1, F

′
2, . . . , F

′
m, F

′
m+1, again not having a cooperative coloring.

The vertex set common to the new forests is V ′ = (V ∪ {z})× V , namely the vertex
set consists of |V |+ 1 copies of V . For every u ∈ V ∪ {z} and every i ∈ [m], take a copy

Figure 1: Construction of two paths without a cooperative coloring.
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Figure 2: Construction of Q(S) = (F ′1, . . . , F
′
m, F

′
m+1) from S = (F1, . . . , Fm).

F u
i of Fi on the vertex set {(u, v) : v ∈ V }. Let F ′i consist of |V |+ 1 disjoint copies of Fi:

F ′i :=
⋃

u∈V ∪{z}

F u
i , for all i ∈ [m].

To these we add the (m + 1)st forest F ′m+1 obtained by joining (z, u) to (u, v) for all
u, v ∈ V . So F ′m+1 is a disjoint union of stars, each with |V | leaves.

Assume that there is a cooperative coloring (I1, I2, . . . , Im, Im+1) for the system Q(S).
Since the forests F u

1 , F
u
2 , . . . , F

u
m do not have a cooperative coloring, Im+1 must contain a

vertex from {u}×V for all u ∈ V ∪{z}. In particular, Im+1 contains a vertex (z, u) ∈ Ik+1

for some u ∈ V and a vertex (u, v) for some v ∈ V . Since (z, u) is connected in F ′m+1 to
(u, v), this is contrary to our assumption that Im+1 is independent.

Note that |V ′| = |V |2 + |V | 6 2 |V |2. Note also that the maximum degree of Q(S) is
attained in F ′m+1, and it is equal to |V |. Recursively define the system Tm := Q(Tm−1)
consisting of m forests for m > 3. Because the base T2 has 4 vertices, one can check
inductively that |V (Tm)| is at most 23·2m−2−1 using |V (Tm)| 6 2 |V (Tm−1)|2. Thus the
maximum degree of Tm is at most 23·2m−3−1 6 22m−1

.
Given the maximum degree d > 2, choose m := dlog2 log2 de. By the choice of m, the

maximum degree of Tm is at most 22
m−1

6 d. By adding a few edges between the leaves in
each forest of Tm, we can obtain a system of m trees of maximum degree d that does not
have a cooperative coloring. This means mT (d) > m > log2 log2 d.

Proof of the upper bound on mT (d). Let (T1, T2, . . . , Tm) be a system of trees of maximum
degree d. We shall find a cooperative coloring by a random construction if m > (1 +
o(1)) log4/3 d.

Choose arbitrarily for each tree Ti a root so that we can specify the parent or a sibling
of a vertex that is not the root of Ti. For each Ti, choose independently a random vertex
set Si, in which each vertex is included in Si independently with probability 1/2. Set

Ri := {v ∈ Si : the parent of v is not in Si, or v is a root} .

Since among any two adjacent vertices in Ti one is the parent of the other, Ri is independent
in Ti.
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We shall show that with positive probability the sets Ri form a cooperative coloring.
For each vertex v, let Bv be the event that v 6∈

⋃m
i=1Ri. If v is the root of Ti, then

Pr (v ∈ Ri) = 1/2; otherwise Pr (v ∈ Ri) = 1/4. In any case, Pr (v 6∈ Ri) 6 3/4, and so
Pr (Bv) 6 (3/4)m. Notice that Bv is only dependent on the events Bu for u that is the
parent, a sibling or a child of v in some Ti. Since the degree of v is at most d, it follows
that Bv is dependent on less than 2md other events. By the symmetric version of the
Lovász Local Lemma (see for example [AS16, Chapter 5]), if

e×
(

3

4

)m

× 2md 6 1, (2)

then with positive probability no Bv occurs, meaning that the sets Ri form a cooperative
coloring. The inequality (2) indeed holds under the assumption that m > (1+o(1)) log4/3 d.

3 Bipartite graphs

Proof of the lower bound on mB(d). Given d, take m = dlog2 de. Let the vertex set be
{0, 1}m, and for j ∈ [m] let Gj be the complete bipartite graph between V 0

j and V 1
j where

V k
j = {v ∈ {0, 1}m : vj = k} , for k ∈ {0, 1} .

Note that the degree of Gj is 2m−1 6 d.
Suppose that I1, . . . , Im are independent sets in G1, . . . , Gm respectively. As each Gj

is a complete bipartite graph, Ij ⊆ V
kj
j for some kj ∈ {0, 1}. Thus (1 − k1, . . . , 1 − km)

is not in any Ij, and so I1, . . . , Im do not form a cooperative coloring. This means
mB(d) > m > log2 d.

Proof of the upper bound on mB(d). Let G = (G1, . . . , Gm) be a system of bipartite graphs
on the same vertex set V with maximum degree d. By a semi-random construction, we
shall find a cooperative coloring if m > (1 + ε) 2d

ln d
for fixed ε > 0 and d sufficiently large.

We may assume that m = O(d) because of (1). For each j ∈ [m], let (Lj, Rj) be a
bipartition of Gj. Define JL(v) := {j ∈ [m] : v ∈ Lj} and JR(v) := {j ∈ [m] : v ∈ Rj} for
each vertex v ∈ V , and let A := {v ∈ V : |JL(v)| > m/2}. Set B := V \ A. Clearly, we
have

|JL(a)| > m/2, for all a ∈ A; (3a)

|JR(b)| > m/2, for all b ∈ B. (3b)

Consider the following random process.
1. For each a ∈ A, choose j = j(a) ∈ JL(a) uniformly at random, and put a in the set
Ij.

2. For each b ∈ B, choose arbitrarily j ∈ JR(b) \ {j(a) : a ∈ A, (a, b) ∈ E(Gj)} =: J ′R(b)
as long as it is possible, and put b in the set Ij.
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For any a, a′ ∈ A∩Ij , a, a′ ∈ Lj and so (a, a′) 6∈ Gj . This means A∩Ij is independent, and
similarly B ∩ Ij is independent. For any b ∈ B ∩ Ij and (a, b) ∈ E(Gj), by the definition
of J ′R(b), j(a) 6= j and so a 6∈ Ij. Therefore Ij is independent for all j ∈ [m].

To prove the existence of a cooperative coloring it suffices to show that J ′R(b) is
nonempty for all b ∈ B with positive probability. For a vertex b ∈ B, let Eb be the
contrary event, that is, the event that J ′R(b) is empty.

For a fixed b ∈ B, let us estimate from above the probability of Eb. For every j ∈ JR(b),
let Ej be the event that j 6∈ J ′R(b), that is the event that j(a) = j for some a ∈ A that is
a neighbor of b in Gj. For each a ∈ A that is a neighbor of b in Gj, we have

Pr (j(a) = j) =
1

|JL(a)|
(3a)

6
2

m
6

ln d

(1 + ε)d
.

As there are at most d neighbors of b in Gj, we have for sufficiently large d that

1− Pr
(
Ej
)
>

(
1− ln d

(1 + ε)d

)d

> exp (−(1− ε) ln d) = dε−1 >
8 ln d

m
. (4)

We claim that the events Ej , j ∈ JR(b), are negatively correlated. This is easier to see
with the complementary events Ēj, j ∈ JR(b). We have to show that for any choice of
indices j1, . . . , jt ∈ JR(b) there holds

Pr
(
Ej | Ēj1 ∩ Ēj2 ∩ . . . ∩ Ējt

)
> Pr

(
Ej
)
.

The event Ēj1 ∩ Ēj2 ∩ · · · ∩ Ējt means that for all a ∈ A if a is a neighbor of b in Gji then
j(a) 6= ji. Then, for any j 6∈ {j1, . . . , jt}, for those vertices a ∈ A that are neighbors of b
in Gj, knowing that j(a) 6= ji for certain i ∈ [t] increases the probability that j(a) = j,
and therefore increases the probability of Ej.

By the claim, the inequality (4) and the fact that Eb =
⋂

j∈JR(b)E
j, we have

Pr (Eb) 6
∏

j∈JR(b)

Pr
(
Ej
) (3b)

6

(
1− 8 ln d

m

)m
2

6 exp

(
−8 ln d

m
· m

2

)
=

1

d4
.

The event Eb is dependent on less than md2 other events Eb′ , since for such dependence
to exist it is necessary that b′ ∈ B is at distance at most 2 from b in some graph Gj . Thus,
by the Lovász Local Lemma, for the positive probability that none of Eb occurs it suffices
that

e× 1

d4
×md2 6 1,

which indeed holds for d sufficiently large as m = O(d).

4 Cooperative covers

Cooperative coloring of graphs is a special case of a more general concept.
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Definition 7. Given a system (C1, . . . , Cn) of (abstract) simplicial complexes, all sharing
the same vertex set V , a cooperative cover is a choice of faces fi ∈ Ci such that

⋃n
i=1 fi = V .

A cooperative coloring for (G1, . . . , Gn) is the special case in which Ci is the indepen-
dence complex I(Gi) of Gi, that is, the collection of all independent sets in Gi.

Definition 8. Given a hypergraph C with vertex set V , the edge covering number ρ(C)
is the minimal number of hyperedges from C whose union is V . For a class C of simplicial
complexes, let nC(b) denote the minimal number n, such that every system (C1, . . . , Cn)
of simplicial complexes belonging to C on the same vertex set V satisfying ρ(Ci) 6 b for
all i 6 n, has a cooperative cover. Let nC(b) =∞ if no such n exists.

For example, consider the class I of all the independence complexes of graphs. If G
is bipartite, then ρ(I(G)) 6 2. Hence the fact that mB(d) > log2(d) for all d > 2 (see
Theorem 4) implies nI(2) =∞.

There are natural classes C of hypergraphs for which nC is finite. One of these is the
class of simplicial complexes associated to polymatroids, as introduced in [Edm70]. A
polymatroid (V, r) is defined via a rank function r : 2V → N, that is submodular, monotone
increasing and is 0 on the empty set. A k-polymatroid is a polymatroid in which every
singleton set has rank at most k. For example, a k-uniform hypergraph H endowed with
the function r(E) = |∪E|, for every subset of hyperedges E in H, is a k-polymatroid.

Following the notation in [LP86, Section 11], given a k-polymatroid (V, r), a set M ⊆ V
is called a matching if r(M) = k |M |. By the submodularity of the rank function r, the
matchings in a k-polymatroid form a simplicial complex on V , which we call the matching
complex of a k-polymatroid.

Theorem 9. LetMk be the class of all the matching complexes of k-polymatroids. Then
nMk

(b) 6 kb for every b.

The proof uses the (homotopic) connectivity η(C) of a complex C. We refer to [AB06,
Section 2] for background. We shall use the following two topological tools. Given a
complex C on V and U ⊆ V , we denote by C[U ] the simplicial subcomplex induced on U .

Theorem 10 (Topological Hall’s theorem). Let C be a simplicial complex on the vertex
set V and let

⋃m
i=1Wi be a partition of V . If for all I ⊆ [m]

η

(
C

[⋃
i∈I

Wi

])
> |I| ,

then C contains a face σ such that |σ ∩Wi| = 1 for all i ∈ [m].

Theorem 11. If C is a matching complex on V of a k-polymatroid, then the connectivity
η(C) of C is at least ν(C)/k, where ν(C) is the maximal size of faces in C.

The above formulation of Theorem 10 first appeared in [Mes01], attributed to the first
author of the present paper (see the remark after Theorem 1.3 in [Mes01]). Theorem 11 is
an unpublished result of the first two authors. The special case, where the k-polymatroid
is the sum of k matroids on the same vertex set, is proved in [AB06, Theorem 6.5].
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Proof of Theorem 9. Let n = kb, and let C1, . . . , Cn be simplicial complexes associated to
k-polymatroids (V, r1), . . . , (V, rn) on the same vertex set V such that the edge covering
number of each Ci is at most b. Let C be the join of C1, . . . , Cn on V × [n], that is,

C :=

{
n⋃

i=1

σi × {i} : σi ∈ Ci for all i ∈ [n]

}
.

A cooperative cover can be viewed as a face σ ∈ C such that |σ ∩ ({v} × [n])| = 1 for all
v ∈ V . By the topological Hall’s theorem, it suffices to prove that

η (C[U × [n]]) > |U | for all U ⊆ V.

Let U be a subset of V . Note that Ci[U ] is the matching complex of the k-polymatroid
(U, ri|U). By Theorem 11, η(Ci[U ]) > ν(Ci[U ])/k. Since ν(Ci[U ]) is the maximal size of
faces in Ci[U ] and the edge covering number of Ci[U ] is at most b, we obtain ν(Ci[U ])b > |U |,
and so η(Ci[U ]) > |U | /(kb). Notice that C[U × [n]] is the join of C1[U ], . . . , Cn[U ]. Using
the superadditivity of η with respect to the join operator and Theorem 11, we obtain the
required condition for the topological Hall’s theorem

η(C[U × [n]]) >
n∑

i=1

η(Ci[U ]) >
n∑

i=1

|U |/(kb) = |U | .

Remark 12. It is of interest to explore the sharpness of this result.
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