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Abstract

A code C in the Hamming graph Γ = H(m, q) is a subset of the vertex set V Γ
of the Hamming graph; the elements of C are called codewords. Any such code C in-
duces a partition {C,C1, . . . , Cρ} of V Γ , where ρ is the covering radius of the code,
based on the distance each vertex is to its nearest codeword. For s ∈ {1, . . . , ρ} and
X 6 Aut(C), if X is transitive on each of C,C1, . . . , Cs, then C is said to be (X, s)-
neighbour-transitive. In particular, C is said to be X-completely transitive if C
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is (X, ρ)-neighbour-transitive. It is known that for any (X, 2)-neighbour-transitive
code with minimum distance at least 5, either i) X is faithful on the set of co-
ordinate entries, ii) C is X-alphabet-almost-simple or iii) C is X-alphabet-affine.
Classifications of (X, 2)-neighbour-transitive codes in the first two categories hav-
ing minimum distance at least 5 and 3, respectively, have been achieved in previous
papers. Hence this paper considers case iii).

Let q = pdm and identify the vertex set of H(m, q) with Fdmp . The main result
of this paper classifies (X, 2)-neighbour-transitive codes with minimum distance at
least 5 that contain, as a block of imrimitivity for the action of X on C, an Fp-
subspace of Fdmp of dimension at most d. When considering codes with minimum
distance at least 5, X-completely transitive codes are a proper subclass of (X, 2)-
neighbour-transitive codes. This leads, as a corollary of the main result, to a solution
of a problem posed by Giudici in 1998 on completely transitive codes.

Mathematics Subject Classifications: 05E18, 94B05, 05B05

1 Introduction

Classifying classes of codes is an important task in error correcting coding theory. The
parameters of perfect codes over prime power alphabets have been classified; see [31] or
[34]. In contrast, for the classes of completely regular and s-regular codes, introduced by
Delsarte [11] as a generalisation of perfect codes, similar classification results have only
been achieved for certain subclasses. Recent results include [3, 4, 5, 6]. For a survey of
results on completely regular codes see [7]. Classifying families of 2-neighbour transitive
codes has been the subject of [15, 16].

A subset C of the vertex set V Γ of the Hamming graph Γ = H(m, q) is called a code,
the elements of C are called codewords, and the subset Ci of V Γ consisting of all vertices of
H(m, q) having nearest codeword at Hamming distance i is called the set of i-neighbours of
C. The definition of a completely regular code C involves certain combinatorial regularity
conditions on the distance partition {C,C1, . . . , Cρ} of C, where ρ is the covering radius.
The current paper concerns the algebraic analogues, defined directly below, of the classes
of completely regular and s-regular codes. Note that the group Aut(C) is the setwise
stabiliser of C in the full automorphism group of H(m, q); precise definitions of notations
are available in Section 2.

Definition 1. Let C be a code in H(m, q) with covering radius ρ, let s ∈ {1, . . . , ρ}, and
X 6 Aut(C). Then C is said to be

1. (X, s)-neighbour-transitive if X acts transitively on each of the sets C,C1, . . . , Cs,

2. X-neighbour-transitive if C is (X, 1)-neighbour-transitive,

3. X-completely transitive if C is (X, ρ)-neighbour-transitive, and,

4. s-neighbour-transitive, neighbour-transitive, or completely transitive, respectively,
if C is (Aut(C), s)-neighbour-transitive, Aut(C)-neighbour-transitive, or Aut(C)-
completely transitive, respectively.
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A variant of the above concept of complete transitivity was introduced for linear
codes by Solé [29], with the above definition first appearing in [23]. Note that non-linear
completely transitive codes do indeed exist; see [21]. Completely transitive codes form a
subfamily of completely regular codes, and s-neighbour-transitive codes are a sub-family of
s-regular codes, for each s. It is hoped that studying 2-neighbour-transitive codes will lead
to a better understanding of completely transitive and completely regular codes. Indeed
a classification of 2-neighbour-transitive codes would have as a corollary a classification
of completely transitive codes.

Completely transitive codes have been studied in [6, 13], for instance. Neighbour-
transitive codes are investigated in [17, 19, 20]. The class of 2-neighbour-transitive codes
is the subject of [15, 16], and the present work comprises part of the second author’s
PhD thesis [24]. Recently, codes with 2-transitive actions on the coordinate entries of
vertices in the Hamming graph have been used to construct families of codes that achieve
capacity on erasure channels [26], and many 2-neighbour-transitive codes indeed admit
such an action; see Proposition 6.

Each vertex of H(m, q) is of the form α = (α1, . . . , αm), where the entries αi come
from an alphabet Q of size q. A typical automorphism of H(m, q) is a composition of two
automorphisms, each of a special type. An automorphism of the first type corresponds
to an m-tuple (h1, . . . , hm) of permutations of Q and maps a vertex α to (αh11 , . . . , α

hm
m ).

An automorphism of the second type corresponds to a permutation of the set M =
{1, . . . ,m} of subscripts and simply permutes the entries of vertices, for example the
map corresponding to the permutation (123) of M maps α = (α1, α2, α3, α4, . . . , αm) to
(α3, α1, α2, α4, . . . , αm). (More details are given in Section 2.1.) It is sometimes helpful to
distinguish between entries in the different positions, and we will refer to the set of entries
occurring in position i as Qi. Then maps of the second type may be viewed as permuting
the subsets Q1, . . . , Qm between themselves in the same way that they permute M .

For a subgroup X of automorphisms of H(m, q), the subgroup K of X consisting of
all elements which fix each of the Qi setwise is a normal subgroup of X and is the kernel
of the action X induces on M . Also, for each i ∈ M , the set of elements of X which fix
Qi setwise forms a subgroup Xi of X, and Xi induces a subgroup of permutations of Qi,
which we denote by XQi

i . (Again, more details are given in Section 2.1.)
It was shown in [15] that the family of (X, 2)-neighbour-transitive codes can be sub-

divided into three disjoint sub-families, according properties of the group X (see Propo-
sition 7). We now introduce these sub-families in Definition 2.

Definition 2. Let C be a code in H(m, q) and let X 6 Aut(C). Moreover, let Qi, Xi

and K be as described above. Then C is

1. X-entry-faithful if X acts faithfully on M , that is, K = 1,

2. X-alphabet-almost-simple if K 6= 1, X acts transitively on M , and XQi
i is a 2-

transitive almost-simple group, and,

3. X-alphabet-affine if K 6= 1, X acts transitively on M , and XQi
i is a 2-transitive

affine group.
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Note that Propositions 6 and 7, and the fact that every 2-transitive group is either
affine or almost-simple (see [9, Section 154] or [12, Theorem 4.1B]), ensure that every
2-neighbour-transitive code satisfies precisely one of the cases given in Definition 2.

Those (X, 2)-neighbour transitive codes that are also X-entry-faithful and have min-
imum distance at least 5 are classified in [15]; while those that are X-alphabet-almost-
simple and have minimum distance at least 3 are classified in [16]. Hence, in this paper
we study X-alphabet-affine codes. For such graphs q = pd for some prime p and positive
integer d, and we identify the vertex set of the Hamming graph H(m, q) with the (dm)-
dimensional vector space V = F dm

p . For a nontrivial subspace W of V we denote by TW
the group of translations by elements of W ; recall for a subgroup X of Aut(H(m, q)) (the
automorphism group of H(m, q)), we denote by K the kernel of the action of the group
X on M ; and we note that K = X ∩B where B ∼= Smq is the base group of Aut(H(m, q));
see Section 2.

Definition 3. Let q = pd, V = Fdmp be as above and let W be a non-trivial Fp-subspace of
V . An (X, 2)-neighbour-transitive extension of W is an (X, 2)-neighbour-transitive code
C containing 0 such that TW 6 X, where TW is the group of translations by elements of
W , and W is fixed setwise by K = X ∩ B. Note that TW 6 X and 0 ∈ C means that
W ⊆ C. If C 6= W then the extension is said to be non-trivial.

The main result of this paper, below, classifies all (X, 2)-neighbour-transitive exten-
sions of W , supposing W is a k-dimensional Fp-subspace of V , where k 6 d. Theorem 4
may be seen as a sequel of [15, Theorem 1.1] where, rather than assuming that the ker-
nel K of the action of X on M is trivial, the condition k 6 d limits the size of W ,
implicitly restricting the possibilities for K. The motivation for assuming k 6 d comes
largely from [22, Problem 6.5.4], which proposes investigating hypotheses similar to those
of Theorem 4, but in the context of X-completely transitive codes in H(m, 2); see also
Corollary 5.

Theorem 4. Let V = Fdmp be the vertex set of the Hamming graph H(m, pd) and C be
an (X, 2)-neighbour-transitive extension of a subspace W of V as in Defintion 3, where C
has minimum distance δ > 5 and W is a non-trivial Fp-subspace of V with Fp-dimension
k 6 d. Then p = 2, d = 1, W is the binary repetition code in H(m, 2), and one of the
following holds:

1. C = W with δ = m;

2. C = H, where H is the Hadamard code of length 12, as in Definition 12, with δ = 6;
or,

3. C = P, where P is the punctured code of the Hadamard code of length 12, as in
Definition 12, with δ = 5.

A corollary of Theorem 4 regarding completely transitive codes is stated below. This
result was originally proved in [14, Theorem 10.2] using somewhat different methods,
with the problem first being posed in [22, Problem 6.5.4]. The group Diagm(G), where
G 6 Sym(Q), is defined in Section 2.1.
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Corollary 5. Let C be an X-completely transitive code in H(m, 2) with minimum distance
δ > 5 such that K = X ∩ B = Diagm(S2). Then C is equivalent to one of the codes
appearing in Theorem 4, each of which is indeed completely transitive.

Section 2 introduces the notation used throughout the paper and Section 3 proves the
main results.

2 Notation and preliminaries

Let the set of coordinate entries M and the alphabet Q be sets of sizes m and q, re-
spectively, both m and q integers at least 2. The vertex set V Γ of the Hamming graph
Γ = H(m, q) consists of all functions from the set M to the set Q, usually expressed as
m-tuples. Let Qi

∼= Q be the copy of the alphabet in the entry i ∈ M so that the vertex
set of H(m, q) is identified with the Cartesian product

V Γ =
∏
i∈M

Qi.

An edge exists between two vertices if and only if they differ as m-tuples in exactly one
entry. Note that S× will denote the set S \ {0} for any set S containing 0. In particular,
Q will usually be a vector-space here, and hence contains the zero vector. A code C is
a subset of V Γ . If α is a vertex of H(m, q) and i ∈ M then αi refers to the value of α
in the i-th entry, that is, αi ∈ Qi, so that α = (α1, . . . , αm) when M = {1, . . . ,m}. For
more in depth background material on coding theory see [10] or [28].

Let α, β be vertices and C be a code in a Hamming graph H(m, q) with 0 ∈ Q a
distinguished element of the alphabet. A summary of important notation regarding codes
in Hamming graphs is contained in Table 1.

Note that if the minimum distance δ of a code C satisfies δ > 2s, then the set of
s-neighbours Cs satisfies Cs = ∪α∈CΓs(α) and if δ > 2s+ 1 this is a disjoint union. This
fact is crucial in many of the proofs below; it is often assumed that δ > 5, in which case
every element of C2 is distance 2 from a unique codeword.

A linear code is a code C in H(m, q) with alphabet Q = Fq a finite field, so that the
vertices of H(m, q) form a vector space V , such that C is an Fq-subspace of V . Given
α, β ∈ V , the usual inner product is given by 〈α, β〉 =

∑
i∈M αiβi. The dual code of C is

C⊥ = {β ∈ V | ∀α ∈ C, 〈α, β〉 = 0}.
The Singleton bound (see [11, 4.3.2]) is a well known bound for the size of a code C

in H(m, q) with minimum distance δ, stating that |C| 6 qm−δ+1. For a linear code C this
may be stated as δ⊥−1 6 k 6 m−δ+1, where k is the dimension of C, δ is the minimum
distance of C and δ⊥ is the minimum distance of C⊥.

A vertex or an entire code from a Hamming graph H(m, q) may be projected into a
smaller Hamming graph H(k, q). For a subset J = {j1, . . . , jk} ⊆ M the projection of
α, with respect to J , is πJ(α) = (αj1 , . . . , αjk). For a code C the projection of C, with
respect to J , is πJ(C) = {πJ(α) | α ∈ C}.
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Notation Explanation
0 vertex with 0 in each entry

(ak, 0m−k) vertex with a ∈ Q first k entries and 0
otherwise

diff(α, β) = {i ∈M | αi 6= βi} set of entries in which α and β differ
supp(α) = {i ∈M | αi 6= 0} support of α

wt(α) = | supp(α)| weight of α
d(α, β) = | diff(α, β)| Hamming distance

Γs(α) = {β ∈ V Γ | d(α, β) = s} set of s-neighbours of α
δ = min{d(α, β) | α, β ∈ C, α 6= β} minimum distance of C
d(α,C) = min{d(α, β) | β ∈ C} distance from α to C
ρ = max{d(α,C) | α ∈ V Γ} covering radius of C
Cs = {α ∈ V Γ | d(α,C) = s} set of s-neighbours of C
{C = C0, C1, . . . , Cρ} distance partition of C

Table 1: Hamming graph notation.

2.1 Automorphisms of a Hamming graph

The automorphism group Aut(Γ ) of the Hamming graph is the semi-direct product BoL,
where B ∼= Sym(Q)m and L ∼= Sym(M) (see [8, Theorem 9.2.1]). Note that B and L
are called the base group and the top group, respectively, of Aut(Γ ). Since we identify Qi

with Q, we also identify Sym(Qi) with Sym(Q). If h ∈ B and i ∈ M then hi ∈ Sym(Qi)
is the image of the action of h in the entry i ∈M . Let h ∈ B, σ ∈ L and α ∈ V Γ . Then
h and σ act on α explicitly via:

αh = (αh11 , . . . , α
hm
m ) and ασ = (α1σ−1 , . . . , αmσ−1 ).

For reasons of readability we often write the image ασ as (α1σ−1 , . . . , αmσ−1). The auto-
morphism group of a code C in Γ = H(m, q) is Aut(C) = Aut(Γ )C , the setwise stabiliser
of C in Aut(Γ ).

Let G be a group acting on a set Ω, ω ∈ Ω and S ⊆ Ω. Then,

1. Gω denotes the subgroup of G stabilising ω,

2. GS denotes the setwise stabiliser of S in G,

3. G(S) denotes the point-wise stabiliser of S in G, and,

4. if G fixes S setwise then GS denotes the subgroup of Sym(S) induced by G.

(For more background and notation on permutation groups see, for instance, [12].) In
particular, let X 6 Aut(Γ ). Then:

1. For x ∈ X, recall that x = hσ where h ∈ B and σ ∈ L. Then xM = σ denotes the
permutation of M induced by x, and we write XM = {xM | x ∈ X}; we call XM
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the action of X on entries. Note that a pre-image x of an element xM of XM need
not fix any vertex of H(m, q).

2. K = K ∩ B is the kernel X(M) of the action of X on entries and is precisely the
subgroup of X fixing M point-wise.

3. If i ∈ M , then Xi denotes the stabiliser of the entry i and any x ∈ Xi is of
the form hσ (h ∈ B and σ ∈ L) where σ fixes i ∈ M . So x = hσ induces the
permutation hi ∈ Sym(Qi) on the alphabet Qi. This defines a homomorphism from
Xi to Sym(Qi) and we denote the image of this homomorphism by XQi

i . We refer
to XQi

i as the action on the alphabet.

4. For any Y 6 Xi we write Y Qi = {yQi | y ∈ Y } so that Y Qi 6 XQi 6 Sym(Qi). In
particular, for Y = K = X ∩ B, we have K 6

∏
i∈M KQi , where here K projects

onto each direct factor.

Given a group A 6 Sym(Q) an important subgroup of Aut(Γ ) is the group Diagm(A),
where an element of A acts the same in each entry. Formally, for each a ∈ Sym(Q), let
diagm(a) = (a, a, . . . , a) ∈ B and for each A 6 Sym(Q), define Diagm(A) = {diagm(a) |
a ∈ A}.

It is worth mentioning that coding theorists often consider more restricted groups of
automorphisms, such as the group PermAut(C) = {σ | hσ ∈ Aut(C), h = 1 ∈ B, σ ∈ L}.
The elements of this group are called pure permutations on the entries of the code.

Two codes C and C ′ in H(m, q) are said to be equivalent if there exists some x ∈
Aut(Γ ) such that Cx = {αx | α ∈ C} = C ′. Equivalence preserves many of the important
properties in coding theory, such as minimum distance and covering radius, since Aut(Γ )
preserves distances in H(m, q).

2.2 s-Neighbour-transitive codes

This section presents preliminary results regarding (X, s)-neighbour-transitive codes, de-
fined in Definition 1. The next results give certain 2-homogeneous and 2-transitive actions
associated with an (X, 2)-neighbour-transitive code.

Proposition 6. [15, Proposition 2.5] Let C be an (X, s)-neighbour-transitive code in
H(m, q) with minimum distance δ, where δ > 3 and s > 1. Then for α ∈ C and
i 6 min{s, b δ−1

2
c}, the stabiliser Xα fixes setwise and acts transitively on Γi(α). In

particular, the action of Xα on M is i-homogeneous.

Proposition 7. [15, Proposition 2.7] Let C be an (X, 1)-neighbour-transitive code in
H(m, q) with minimum distance δ > 3 and |C| > 1. Then XQi

i acts 2-transitively on Qi

for all i ∈M .

The next result gives information about the order of the stabiliser of a codeword in
the automorphism group of a 2-neighbour-transitive code and is a strengthening of [15,
Lemma 2.10].
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Lemma 8. Let C be an (X, 2)-neighbour-transitive code in H(m, q) with δ > 5 and 0 ∈ C,
and let i, j ∈M be distinct. Then the following hold:

1. The stabiliser X0,i,j acts transitively on each of the sets Q×i and Q×j .

2. Moreover, X0,i,j has at most two orbits on Q×i ×Q×j , and if X0,i,j has two orbits on
Q×i ×Q×j then both orbits are the same size and X0 acts 2-transitively on M .

3. The order of X0, and hence |X|, is divisible by
(
m
2

)
(q − 1)2.

4. If |X0| =
(
m
2

)
then q = 2.

Proof. Now X0 acts transitively on Γ2(0), by Proposition 6, since δ > 5. Since |Γ2(0)| =(
m
2

)
(q − 1)2, parts 3 and 4 hold. Also, we have that the stabiliser X0,{i,j} of the subset

{i, j} ⊆ M is transitive on the set of weight 2 vertices with support {i, j}. Hence X0,i,j

has at most two orbits on Q×i ×Q×j and if there are two they have equal size. Note that
if X0,i,j has one orbit on Q×i ×Q×j then X0,i,j acts transitively on each of Q×i and Q×j .
Suppose that X0,i,j has two orbits on Q×i ×Q×j , and hence that X0,i,j 6= X0,{i,j}. By
Proposition 6, X0 acts 2-homogeneously on M . Since X0,i,j 6= X0,{i,j}, we have that X0

is in fact 2-transitive on M , proving part 2. Let k be the number of X0,i,j-orbits on Q×i .

Since X0 is 2-transitive on M , it follows that X
Q×
i

0,i,j is permutation isomorphic to X
Q×
j

0,i,j

and hence X0,i,j has the same number of orbits on each of Q×i and Q×j . Since each orbit of
X0,i,j on Q×i ×Q×j is contained in the Cartesian product of an orbit on Q×i with an orbit
on Q×j , it follows that X0,i,j has at least k2 orbits on Q×i ×Q×j . However, k > 2 implies
k2 > 4, contradicting part 2, and hence part 1 holds.

The concept of a design, introduced below, comes up frequently in coding theory. Let
α ∈ H(m, q) and 0 ∈ Q. A vertex ν of H(m, q) is said to be covered by α if νi = αi for
every i ∈M such that νi 6= 0.

Definition 9. A q-ary s-(m, k, λ) design in Γ = H(m, q) is a subset D of vertices of
Γk(0) (where k > s) such that each vertex ν ∈ Γs(0) is covered by exactly λ vertices of
D. The elements of D are called blocks.

When q = 2, that is, in the case of a binary design, then each vertex of D can be
interpreted as the characteristic vector of a k-element subset of {1, . . . ,m}. Thus the set
D can be thought of as a collection of k-element subsets of {1, . . . ,m}, called blocks, and
the “covering condition” becomes the condition that each s-element subset of {1, . . . ,m}
is contained in exactly λ blocks. With this interpretation, these structures are usually
called combinatorial designs.

The following equations can be found, for instance, in [30]. Let D be a combinatorial
s-(m, k, λ) design with |D| = b blocks and let r be the number of blocks containing any
given point. Then mr = bk, r(k − 1) = λ(m− 1) and

b =
m(m− 1) · · · (m− s+ 1)

k(k − 1) · · · (k − s+ 1)
λ. (1)
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The definition below is required in order to state the remaining two results of this
section.

Definition 10. Let C be a code in H(m, q) with covering radius ρ, and s be an integer
with 0 6 s 6 ρ. Then,

1. C is s-regular if, for each i ∈ {0, 1, . . . , s}, each k ∈ {0, 1, . . . ,m}, and every vertex
ν ∈ Ci, the number |Γk(ν) ∩ C| depends only on i and k, and,

2. C is completely regular if C is ρ-regular.

Lemma 11. [15, Lemma 2.16] Let C be an (X, s)-neighbour transitive code in H(m, q).
Then C is s-regular. Moreover, if C has minimum distance δ > 2s and contains 0, then
for each k 6 m the set of codewords of weight k forms a q-ary s-(m, k, λ) design, for some
λ.

Definition 12. [15, Definition 4.1] Let P be the punctured Hadamard 12 code, obtained
as follows (see [28, Part 1, Section 2.3]). First, we construct a normalised Hadamard
matrix H12 of order 12 using the Paley construction.

1. Let M = F11 ∪ {∗} and let H12 be the 12 × 12 matrix with first row v, where
va = −1 if a is a square in F11 (including 0), and va = 1 if a is a non-square in F11

or a = ∗ ∈M , taking the orbit of v under the additive group of F11 acting on M to
form 10 more rows and adding a final row, the vector (−1, . . . ,−1).

2. The Hadamard code H of length 12 in H(12, 2) then consists of the vertices α such
that there exists a row u in H12 or −H12 satisfying αa = 0 when ua = 1 and αa = 1
when ua = −1.

3. The punctured code P of H is obtained by deleting the coordinate ∗ from M . The
weight 6 codewords of P form a binary 2-(11, 6, 3) design, which we denote through-
out by D. The code P consists of the following codewords: the zero codeword,
the vector (1, . . . , 1), the characteristic vectors of the 2-(11, 6, 3) design D, and the
characteristic vectors of the complement of that design, which forms a 2-(11, 5, 2)
design. (Both D and its complement are unique up to isomorphism [32].)

4. The even weight subcode E of P is the code consisting of the zero codeword and
the 2-(11, 6, 3) design.

Proposition 13. [15, Proposition 4.3] Let C be a 2-regular code in H(11, 2) with δ > 5
and |C| > 2. Then one of the following holds:

1. δ = 11 and C is equivalent to the binary repetition code,

2. δ = 5 and C is equivalent to the punctured Hadamard code P, or

3. δ = 6 and C is equivalent to the even weight subcode E of P.
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3 Extensions of the binary repetition code

In this section it will be shown that the hypotheses of Theorem 4 imply that W is the
binary repetition code in H(m, q). From there, all (X, 2)-neighbour-transitive extensions
of the binary repetition code are classified. First, a more general result regarding (X, 2)-
neighbour-transitive codes. Note that a system of imprimitivity for the action of a group
G on a set Ω is a non-trivial partition of Ω preserved by G, and a part of the partition is
called a block of imprimitivity.

Lemma 14. Suppose C is an (X, 2)-neighbour-transitive code with δ > 5 and that ∆ is a
block of imprimitivity for the action of X on C. Then ∆ is an (X∆, 2)-neighbour-transitive
code with minimum distance δ∆ > 5.

Proof. Since ∆ is a block of imprimitivity for the action of X on C, it follows that X∆

is transitive on ∆. Since δ > 5 and ∆ ⊆ C it follows that δ∆ > 5. Since X∆ fixes ∆,
we have that X∆ fixes ∆1 and ∆2. It remains to show that X∆ is transitive on ∆i for
i = 1, 2. Let i ∈ {1, 2} and µ, ν ∈ ∆i. Then, since δ∆ > 5, there exists α, β ∈ ∆ such that
µ ∈ Γi(α) and ν ∈ Γi(β). Moreover, µ, ν ∈ Ci since δ > 5. Hence, there exists x ∈ X
such that µx = ν and, since δ > 5, αx = β and so lies in ∆ ∩∆x. Since ∆ is a block of
imprimitivity, it follows that x fixes ∆ setwise, so that x ∈ X∆. Thus X∆ is transitive on
∆i for i ∈ {1, 2}.

Corollary 15. Let C be an (X, 2)-neighbour-transitive extension of W such that C has
minimum distance δ > 5. Then W is a block of imprimitivity for the action of X on C
and W is (XW , 2)-neighbour-transitive with minimum distance δW > 5.

Proof. Now, K = KW is normal in X and TW 6 KW is transitive on W from which it
follows that W is an orbit of K on C and hence, by [12, Theorem 1.6A (i)], is a block of
imprimitivity for the action of X on C. Thus, the result is implied by Lemma 14.

The next result shows that the binary repetition code is the only 2-neighbour-transitive
code which is a k-dimensional Fp-subspace of V = Fdmp , identified with the vertex set of
H(m, pd), such that 1 6 k 6 d.

Lemma 16. Let q = pd and V = Fdmp be the vertex set of the Hamming graph H(m, q)
and let W be a k-dimensional Fp-subspace of V , with 1 6 k 6 d, such that W is an
(X, 2)-neighbour-transitive code with minimum distance δ > 5. Then q = 2 and W is the
binary repetition code in H(m, 2).

Proof. We claim that δ = m. As any (X, 2)-neighbour transitive code is also 2-regular,
by Lemma 11, and 0 ∈ W , proving the claim implies the result, by [15, Lemma 2.15].
Suppose for a contradiction that δ < m. It follows that there exists a weight δ codeword
α ∈ W and distinct i, j ∈ M such that αi = 0 and αj 6= 0. Now, X0,i,j acts transitively
on Q×j , by Lemma 8, so that for all non-zero a ∈ Fdp there exists some xa ∈ X0,i,j such

that αxa ∈ W with (αxa)j = a. As a ranges over all non-zero a ∈ Fdp this gives pd − 1
distinct codewords. Since |W | = pk 6 pd, and 0 ∈ W , it follows that |W | = pd and k = d.
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Note that since αi = 0 and xa ∈ X0,i,j this implies that every element of W has i-th
entry 0. By Proposition 6, X0 is, in particular, transitive on M . Hence, there exists some
y = hσ ∈ X0, with h ∈ B and σ ∈ L, such that jσ = i. Thus αy ∈ W with (αy)i 6= 0.
This gives a contradiction, proving the claim that δ = m.

Lemma 16 implies part 1 of Theorem 4 and also that, given the hypotheses of Theo-
rem 4, it can be assumed that q = 2 and W is the repetition code in H(m, 2).

Lemma 17. Let C be an (X, 2)-neighbour-transitive extension of W , where W is the
repetition code in H(m, 2), with δ > 5. Then X0

∼= XM
0 = XM

W , K = TW and XW =
TW oX0.

Proof. Let W be the repetition code in H(m, 2). If x = hσ ∈ X0, with h ∈ B and σ ∈ L,
then q = 2 implies hi = 1 for all i ∈ M . Thus X0

∼= XM
0 . By Corollary 15, W is a block

of imprimitivity for the action of X on C, from which it follows that XW = TW o X0,
since TW acts transitively on W . Thus, X0

∼= XM
0 = XM

W and K = TW .

Lemma 18. Suppose C is a non-trivial (X, 2)-neighbour transitive extension of the rep-
etition code W in H(m, 2), where C has minimum distance δ > 5. Then δ 6= m, XM

acts 2-transitively on M and XM
W acts 2-homogeneously on M . Moreover, if XM

W acts
2-transitively on M then XM

i,j has a normal subgroup of index 2, where i, j ∈ M and
i 6= j.

Proof. First, note that ω ∈ W if and only if ωi = ωj for all i, j ∈M . Since C 6= W there
exists a codeword α ∈ C \W and distinct i, j ∈ M such that αi = 0 and αj = 1, since
otherwise α ∈ W . Note that this implies that δ 6= m. Let J = {i, j} ⊆M and consider the
projection code P = πJ(C). Now, πJ(W ) = {(0, 0), (1, 1)} ⊆ P and πJ(α) = (0, 1) ∈ P .
Also, β = α + (1, . . . , 1) ∈ C, since TW 6 X, which implies πJ(β) = (1, 0) ∈ P . Thus, P
is the complete code in the Hamming graph H(2, 2). By [15, Corollary 2.6], X{i,j} acts
transitively on C, from which it follows that XP

{i,j} acts transitively on P . Thus |P | = 4

divides |XP
{i,j}| and hence also divides |X|. By Lemma 17, K = TW so that |K| = 2. Thus

2 divides |X/K|. Proposition 6 and [12, Exercise 2.1.11] then imply that X/K = XM is
2-transitive.

By Corollary 15, W is (XW , 2)-neighbour-transitive. Thus, by Proposition 6, XM
W is

2-homogeneous on M . Suppose XM
W is 2-transitive on M . Since XP

W,{i,j} contains K and

interchanges i and j, |XP
W,{i,j}| is divisible by 4. Now, |XP

{i,j}| 6 8, since Aut(H(2, 2)) =

(S2× S2) o S2. Furthermore, |XP
{i,j} : XP

W,{i,j}| = 2, since XP
{i,j} acts transitively on P .

Thus XP
{i,j} = (S2× S2) o S2, and so |XP

i,j| = 4. Let H be the kernel of the action of Xi,j

on P . Since the only non-identity element of K = TW acts non-trivially on P , we deduce
that |KP | = 2 and H ∩K = 1. Hence,

XP
i,j

KP
∼=
Xi,j/H

HK/H
∼=
Xi,j

HK
∼=
Xi,j/K

HK/K
∼=
XM
i,j

HM
.

Therefore, XM
i,j has a quotient of size 2, since |XP

i,j/K
P | = 2, and thus HM is a normal

subgroup of XM
i,j of index 2.
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The socle of a finite group is the product of all its minimal normal subgroups. If C is
an (X, 2)-neighbour-transitive extension of the binary repetition code W in H(m, 2) then
the next two results show that the socles of XM and XM

W cannot be equal and that the
socle of XM cannot be Am.

Lemma 19. Let W be the repetition code in H(m, 2) and C be a non-trivial (X, 2)-
neighbour-transitive extension of W with δ > 5. Then soc(X/K) 6= soc(XW/K).

Proof. Let H 6 X such that K < H and H/K = soc(X/K). Note that this implies
that H E X. By Lemma 17, XW = K o X0. Suppose H/K = soc(XW/K), and note
that by Lemma 18, XM

W = XW/K acts 2-homogeneously on M and XM ∼= X/K acts
2-transitively on M with the same socle.

By considering vertices as characteristic vectors of subsets of M , we may identify
the set of all subsets of M with the vertex set V ∼= Fm2 of H(m, 2). By Lemma 17,
K = TW ∼= Z2. Consider the quotient of H(m, 2) by the orbits of K, thereby identifying
each subset J of M with its complement J̄ . In particular, W is identified with {∅,M}.
This gives induced actions of X, XW and X0 on the set:

O =
{
{J, J̄} | J ∈ C

}
.

Note that O is a set of partitions of M , and x ∈ X \XW does not necessarily fix {|J |, |J̄ |}.
Since the single non-trivial element of K maps J ⊆ M to J̄ , for each J , it follows that
K fixes every element of O. Thus, K is in the kernel X(O) of the action of X on O. If
x ∈ X \XW , then {∅,M}x 6= {∅,M}, so that X(O) 6 XW . By Lemma 17, XW = KoX0.
It follows that X(O)/K E XW/K, and, since H/K = soc(XW/K), either X(O)/K = 1, or
H/K E X(O)/K.

Suppose that H/K 6 X(O)/K. Note that, by assumption, C 6= W . As H/K fixes
O element-wise, H/K fixes the non-trivial partition {J, J̄}, for each J ∈ C \W . Since
H/K = soc(XW/K) acts transitively on M , we have that H/K acts imprimitively on
M and |J | = |J̄ |, so that 2 divides m and δ = m/2. By [25], a 2-homogeneous but not
2-transitive group has odd degree, and hence the fact that 2 | m implies that X0 acts
2-transitively on M . By [9, Section 134 and Theorem IX, p. 192], a 2-transitive group
with an imprimitive socle has a normal subgroup of prime power order. Thus, by [12,
Section 7.7], we deduce that XM

W is affine and, since 2 | m, we have that XM
W 6 AGLd(2)

and M ∼= Fd2. Since XM
W and XM have the same socle, XM is also an affine 2-transitive

group. Now, if U = {J, J̄} is fixed by the group of translations of Fd2 acting on M , then
either J or J̄ is a (d − 1)-space of M . Let i = 0 ∈ M . Then XW,i acts transitively
on M \ {i}, that is, on the set of 1-spaces of M . Since each 1-space is orthogonal to
a (d − 1)-space, it follows that XW,i also acts transitively on the set of (d − 1)-spaces
of M . This implies |O \ {∅,M}| = 2d − 1, the number of (d − 1)-spaces in M . Thus,
|C| = 2d|W |. Now K 6 XW 6 X implies |C|/|W | = |X|/|XW | = |XM |/|XM

W |, that is,
|XM | = 2d|XM

W |. This gives a contradiction, as there is no finite transitive linear group
acting on 2d−1 points with an index 2d subgroup that remains transitive on 2d−1 points
(see [27, Hering’s Theorem]). Thus, X(O)/K = 1.
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G H degree
Z7 o Z3 PSL3(2) 7
Z11 o Z5 PSL2(11) or M11 11
Z23 o Z11 M23 23
PSL2(7) AGL3(2) 8

A7 A8 15
PSL2(11) M11 11

PSL2(11) or M11 M12 12
PSL2(23) M24 24

Table 2: Groups G < H 6 Sm where H is 2-transitive, G is 2-homogeneous, soc(H) 6= Am

and soc(G) 6= soc(H); see [15, Proposition 4.4 and Table 3].

By Lemma 18, XM acts 2-transitively on M . Since H/K = soc(X/K), it follows that
H/K acts transitively on M . As X acts transitively on O, the stabiliser in X/K of any
element of O is conjugate in X/K to the stabiliser XW/K of {∅,M} ∈ O. It follows
from this that H/K fixes every element of O, since H/K E X/K and H 6 XW/K.
If H/K fixes each element of O then H/K 6 X(O)/K, giving a contradiction. Thus
soc(X/K) 6= soc(XW/K).

Lemma 20. Let C be a non-trivial (X, 2)-neighbour-transitive extension of W with δ > 5,
where W is the repetition code in H(m, 2). Then soc(XM) 6= Am.

Proof. Suppose soc(XM) = Am. By Lemma 18, XW/K ∼= XM
W is a 2-homogeneous

group and thus primitive, and, by Lemma 19, soc(XW/K) 6= soc(X/K). By Lemma 17,
|C| = |X : X0| = 2|X : XW | = 2|X/K : XW/K|. Now, [2] (see also [33, Theorem 14.2])
gives a lower bound on the index of a primitive non-trivial subgroup G of the symmetric
group Sm, with G not containing the alternating group, of | Sm : G| > b(m+ 1)/2c!. Since
XM
W is primitive and X/K ∼= Am or Sm, it follows that

|C| = 2|X/K : XW/K| > t|X/K : XW/K| = | Sm : XM
W | > b(m+ 1)/2c!,

where t = 1 or 2. However, by the Singleton bound we have |C| 6 2m−δ+1 6 2m−4.
Combining these two inequalities, we have b(m + 1)/2c! 6 2m−4, which does not hold
when m > 5.

The main theorem can now be proved.

Proof of Theorem 4. Suppose C is an (X, 2)-neighbour-transitive extension of W with
δ > 5, where W is a k-dimensional Fp-subspace of V = Fdmp and 1 6 k 6 d. By Lemma 16,
W is the binary repetition code (not just an equivalent copy of it, since 0 ∈ W ) and thus
q = 2. If C = W then C is a trivial extension of W and outcome 1 holds. Suppose
the extension is non-trivial. Then, by Lemma 18, δ 6= m, XM acts 2-transitively on M
and either XM

W is 2-transitive and XM
i,j has an index 2 normal subgroup, or XM

W acts 2-
homogeneously, but not 2-transitively, on M . Also, by Lemma 19, the socles of XM and
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XM
W are not equal, and, by Lemma 20, soc(XM) 6= Am. Thus, by [15, Proposition 4.4],

the possibilities for XM and XM
W are as in Table 2.

Now TW 6 X implies that if there exists some weight k codeword in C, then there is
also a weight m − k codeword. Thus δ 6 m/2 and δ > 5 implies m > 10. In particular,
XM 6= PSL3(2) or AGL3(2). Suppose XM ∼= PSL2(11) and m = 11. Then δ = 5
and, by Proposition 13, C is either the punctured Hadamard code P or the even weight
subcode E of the punctured Hadamard code. The even weight subcode of the punctured
Hadamard code is not invariant under TW , so C 6= E . Moreover, as in the proof of [15,
Proposition 4.3], the only copy of PSL2(11) in Aut(P) fixes 0, and hence XM

0
∼= PSL2(11).

This implies that XM
W = PSL2(11), by Lemma 17, and thus XM = XM

W , a contradiction.
Suppose m = 23, XM ∼= M23 and XM

W
∼= Z23 o Z11. By Lemma 17, XW = TW oX0

and K = TW , so that |X0| = |XM
W | which gives |C| = |X|/|X0| = 2|XM |/|XM

W |, and hence
|C| = 80640. However, this contradicts the bound of |C| 6 24106 for a code of length 23
with δ 6 5 from [1, Table I and Theorem 1].

Suppose m = 15, XM ∼= A8 and XM
W
∼= A7. Then XM

i,j
∼= A6 is simple, contradicting

Lemma 18.
Suppose m = 11, XM ∼= M11 and XM

W
∼= PSL2(11). Then, by Proposition 13, C is

either the punctured Hadamard code P or the even weight subcode of P . The even weight
subcode of P is not invariant under TW , so C = P . The automorphism group of P is
X = Aut(P) ∼= 2×M11 with X0

∼= PSL2(11) and K = TW . By [18, Theorem 1.1] P is an
(X, 2)-neighbour-transitive extension of W , as in outcome 3.

Suppose m = 12, XM ∼= M12 and XM
W
∼= M11 or PSL2(11). If XM

W
∼= PSL2(11) then,

as the index of PSL2(11) in M12 is 144, we have |C| = 288. However, since δ > 5, the
Singleton bound gives |C| 6 2m−δ+1 6 256. Thus XM

W
∼= M11 and |C| = 24. If weight 5

codewords exist then, by Lemma 11 and (2.1), there are

b =
v(v − 1)λ

k(k − 1)
=

12 · 11λ

5 · 4
=

3 · 11λ

5

of them, for some λ divisible by 5. Since λ > 5 implies b > 33 > |C| = 24, it follows that
λ = 0. Thus δ > 6, and as δ 6 m/2 = 6, it follows that δ = 6. The Hadamard code
H of length 12 with X = Aut(H) ∼= 2.M12, X0

∼= M12 and K = TW is then the unique
(X, 2)-neighbour-transitive extension of W with these parameters, by [18, Theorem 1.1],
as in outcome 2.

Finally, suppose m = 24, XM ∼= M24 and XM
W
∼= PSL2(23). Then XM

i,j
∼= M22 is simple,

contradicting Lemma 18.

Finally, the proof of Corollary 5 is given below.

Proof of Corollary 5. Suppose C is X-completely transitive with minimum distance δ > 5
such that K = Diagm(S2), and assume that 0 ∈ C. The fact that δ > 5 implies that
C2 is non-empty and thus C is (X, 2)-neighbour-transitive. Since K E X and X acts
transitively on C, it follows from Lemma 14 that the orbit ∆ = 0K of 0 under K is an
(X∆, 2)-neighbour-transitive code. Since K = Diagm(S2) we have that |∆| = 2 and ∆
has minimum distance m. Thus, since any 2-neighbour-transitive code is 2-regular, [15,
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Lemma 2.15] implies that ∆ is the binary repetition code in H(m, 2). Hence, q = 2,
Q ∼= Z2 and C satisfies the hypotheses of Theorem 4, and so is one of the codes listed
there. The binary repetition code has automorphism group Diagm(S2) o Sym(M) and is
seen to be completely transitive by identifying the vertices of H(m, 2) with the subsets
of M . By [18, Theorem 1.1], the Hadamard code of length 12 and its punctured code are
completely transitive. This completes the proof.
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[4] J. Borges, J. Rifà, and V. A. Zinoviev. On linear completely regular codes with
covering radius ρ = 1, construction and classification. arXiv:0906.0550, 2009.
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