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Abstract

It is known that the order of correlation immunity of a nonconstant unbalanced
Boolean function in n variables cannot exceed 2n/3− 1; moreover, it is 2n/3− 1 if
and only if the function corresponds to an equitable 2-partition of the n-cube with
an eigenvalue −n/3 of the quotient matrix. The known series of such functions have
proportion 1 : 3, 3 : 5, or 7 : 9 of the number of ones and zeros. We prove that if a
nonconstant unbalanced Boolean function attains the correlation-immunity bound
and has ratio C : B of the number of ones and zeros, then CB is divisible by 3. In
particular, this proves the nonexistence of equitable partitions for an infinite series
of putative quotient matrices.

We also establish that there are exactly 2 equivalence classes of the equitable
partitions of the 12-cube with quotient matrix [[3, 9], [7, 5]] and 16 classes, with
[[0, 12], [4, 8]]. These parameters correspond to the Boolean functions in 12 variables
with correlation immunity 7 and proportion 7 : 9 and 1 : 3, respectively (the case
3 : 5 remains unsolved). This also implies the characterization of the orthogonal
arrays OA(1024, 12, 2, 7) and OA(512, 11, 2, 6).

Mathematics Subject Classifications: 06E30, 05B15, 05B30

1 Introduction

We study unbalanced Boolean functions with the maximum possible order of correlation
immunity. A function f : {0, 1}n → {0, 1} is called unbalanced if the number of its ones is
different from 0, 2n−1, and 2n. It is called t-th order correlation immune if the number of
ones (equivalently, zeros) (x1, . . . , xn) : f(x1, . . . , xn) = 1 is statistically independent on
the values of any t arguments. Fon-Der-Flaass [5] proved that the correlation-immunity
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order of an unbalanced Boolean function in n variables cannot exceed 2n/3−1; moreover,
any unbalanced Boolean function f of correlation-immunity order 2n/3 − 1 corresponds
to an equitable 2-partition of the n-cube Qn with quotient matrix [[a, b], [c, d]], where
a + b = c + d = n and a − c = −n/3 (a formal definition can be found in Section 2;
here, it is essential that the number of ones of f relates to the number of zeros as c : b).
Nowadays, there are three known families of quotient matrices corresponding to such
functions: [[0, 3T ], [T, 2T ]], [[T, 5T ], [3T, 3T ]] (found in [23]), [[3T, 9T ], [7T, 5T ]] (found
in [7]). For each of the matrices [[0, 3], [1, 2]], [[1, 5], [3, 3]], and [[0, 6], [2, 4]], a function
is unique up to equivalence. Kirienko [13] found that there are exactly two inequivalent
unbalanced Boolean functions in 9 variables attaining the bound on the order of correlation
immunity (the corresponding quotient matrix is [[0, 9], [3, 6]]). Fon-Der-Flaass [7] started
the investigation of the equitable partitions of Q12 attaining the correlation-immunity
bound. It was shown that equitable partitions with quotient matrix [[1, 11], [5, 7]] do
not exist, while equitable partitions with quotient matrix [[3, 9], [7, 5]] were built (see the
construction in Section 5). These results were also important from the framework of the
study of parameters of equitable 2-partitions of the n-cube: they closed the smallest open
cases remaining after the general paper [6]. After that, all quotient matrices of equitable
2-partitions of the n-cube were characterized for any n smaller than 24. For n = 24,
the remaining questionable matrices were [[1, 23], [9, 15]], [[2, 22], [10, 14]], [[3, 21], [11, 13]],
[[5, 19], [13, 11]], [[7, 17], [15, 9]], and it is notable that all these parameters correspond to
unbalanced Boolean functions with extreme order of correlation immunity, 15 = 2n/3−1.

In the present work, we prove a new property of the equitable partitions that meet the
correlation-immunity bound with equality. In particular, our results imply the nonexis-
tence of an equitable partition with quotient matrix [[2, 22], [10, 14]] or [[5, 19], [13, 11]], as
well as any Boolean function with correlation immunity 2n/3−1 and proportion between
the number of ones and the number of zeros 5 : 11, 13 : 19, or any C : B such that CB is
not divisible by 3. Besides that, we provide a characterization of all inequivalent equitable
partitions with the quotient matrices [[3, 9], [7, 5]] and [[0, 12], [4, 8]].

From the theoretical point of view, studying Boolean functions lying on the correlation-
immunity bound with different proportions of the number of ones and zeros is the most
intriguing part of our research. On the other hand, the functions of correlation-immunity
order 2n/3 − 1 with 2n−2 ones are of special interest because of the following two con-
nections, and our classification related with the quotient matrix [[0, 12], [4, 8]] makes a
contribution to their study.

The first connection is with t-resilient functions. A function f : {0, 1}n → {0, 1}m is
called t-resilient if for every ā from {0, 1}m the function

fā(x̄) =

{
1 if f(x̄) = ā
0 if f(x̄) 6= ā

(1)

is correlation immune of order t with 2n−m ones. The resilient functions are important for
applications in cryptography, see e.g. [4]. If m = 2, then t 6 2n/3− 1 [8]. If m = 2 and
t = 2n/3−1, then the functions fā belong to the class of functions we study and correspond
to the equitable partitions of Qn with quotient matrix [[0, 3T ], [T, 2T ]], T = n/3.
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The second connection is with orthogonal arrays. An orthogonal array OA(N, n, 2, t)
(we consider only the binary orthogonal arrays) is a multiset of N vertices on the n-cube
such that the number of its elements (x1, . . . , xn) with prescribed values in any t positions
does not depend on those values, see e.g. [9]. (Often, the elements of an orthogonal array
are considered as being arranged as the rows or the columns of an N × n or n×N array,
respectively). An orthogonal array is simple if it is an ordinary set, without multiplici-
ties more than one. It is straightforward that the simple OA(N, n, 2, t) are in one-to-one
correspondence with the Boolean functions {0, 1}n → {0, 1} of correlation-immunity or-
der t with N ones (actually, the set of ones of such function forms the corresponding
OA(N, n, 2, t)). A result of Bierbrauer [1, Theorem 1] says for OA(N, n, q, t) that

N > qn
(

1− (q − 1)n

q(t+ 1)

)
; (2)

moreover, for a non-simple array the inequality becomes strict, which is straightfor-
ward from the proof, see [1, p. 181, line 4] (note that for the simple binary orthogo-
nal arrays, the bound was proved earlier by Friedman [8, Theorem 2.1]). The arrays
OA(2n−2, n, 2, 2n/3−1) lie on this bound; hence, they are simple and, as follows from the
results of [5], correspond to the equitable partitions with quotient matrix [[0, 3T ], [T, 2T ]],
T = n/3. In particular, the results of our classification imply that there are exactly 16
inequivalent OA(1024, 12, 2, 7) and exactly 37 inequivalent OA(512, 11, 2, 6) (such arrays
are obtained from OA(1024, 12, 2, 7) by shortening). The classification of orthogonal ar-
rays with given parameters is a problem that attracts attention of many researchers, see
the recent works [2], [3], and the bibliography there. We note that the preceding compu-
tational results were successful for smaller t and N than in our case. Futher discussion on
the quotient matrix [[0, 3T ], [T, 2T ]], related equitable partitions, orthogonal arrays, and
Boolean functions can be found in [15].

With the other parameters considered in our paper, the situation is different. The
Fon-Der-Flaass bound was generalized to the binary orthogonal arrays by Khalyavin [12],
who proved that any OA(N, n, 2, t) with N < 2n−1 satisfies t 6 2n/3 − 1. However, this
does not mean that any array lying on this bound is simple (e.g., there is a non-simple
OA(24, 6, 2, 3) [24]). The classification of non-simple orthogonal arrays that meet the
Fon-Der-Flaass–Khalyavin bound is a separate problem, which is not considered in the
current research.

The introductory part of the paper continues with definitions and basic facts (Sec-
tion 2) and Section 3, where we describe the computer tools used for the classification
results. The main theoretical results of the paper are proved in Section 4. Theorem 5
states (in an equivalent formulation) that if the correlation-immunity order of an unbal-
anced Boolean function f lies on the Fon-Der-Flaass bound, then the number of ones of
the derivative f (i)(x̄) = f(x̄) + f(x̄+ ēi) of f in any basic direction ēi, i = 1, . . . , n, does
not depend on the direction. As a consequence, we have a new necessary condition on the
existence of such functions and corresponding equitable 2-partitions (Corollary 6). Sec-
tion 5 contains the characterization of inequivalent equitable 2-partitions of the 12-cube
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with quotient matrix [[3, 9], [7, 5]], based on the combination of theoretical and compu-
tational results, and a description of the original Fon-Der-Flaass construction [7] of such
partitions, including the representation via the Fourier transform. In Section 6, we de-
scribe the computational classification of the equitable partitions of the 12-cube with
quotient matrix [[0, 12], [4, 8]]. The list of the all 16 inequivalent partitions is given in
the appendix. As we mentioned above, the last partitions correspond to the order-7 cor-
relation immune Boolean functions in 12 variables with 210 ones, and to the orthogonal
arrays OA(210, 12, 2, 7). In Section 7, we briefly discuss equitable partitions with quo-
tient matrix [[2, 10], [6, 6]] and the connection of such partitions with orthogonal arrays
OA(1536, 13, 2, 7).

2 Definitions and basic facts

Let G = (V,E) be an undirected graph. A partition (C0, . . . , Cτ−1) of the vertex set V
into τ cells is called an equitable partition (equitable τ -partition) with quotient matrix
M = (mij) if for all i, j ∈ {0, . . . , τ − 1} any vertex of Ci has exactly mij neighbors in Cj.
Two partitions (C0, . . . , Cτ−1) and (C ′0, . . . , C

′
τ−1) of V are equivalent if there is a graph

automorphism π such that π(Ci) ∈ {C ′0, . . . , C ′τ−1} for every i from {0, . . . , τ − 1}.
The n-cube Qn = (VQn, EQn) (also known as the Hamming graph H(n, 2)) is a graph

whose vertices are the words of length n over the alphabet {0, 1}, also treated as vectors
over the binary field GF(2). Two vertices are adjacent if and only if they differ in exactly
one coordinate position, which is referred to as the direction of the corresponding edge.
The Hamming distance d(x̄, ȳ) between vertices x̄ and ȳ is the number of coordinates in
which they differ. The weight wt(x̄) of a word x̄ is the number of ones in it. By (x̄, ȳ), we
denote the ordinary inner product of vectors: (x̄, ȳ) = x1y1 + x2y2 + · · · + xnyn. For two
vertices x̄ = (x1, . . . , xn), ȳ = (y1, . . . , yn), we will write x̄ 4 ȳ if xi 6 yi for all i from 1 to
n. We denote by ēi the word with all zeros except one 1 in the i-th position; by 0 and 1,
the all-zero and all-one words, respectively. For x̄, ȳ ∈ VQn, the set Γȳx̄ = {z̄ + ȳ : z̄ 4 x̄}
is a k-face of Qn, where k = wt(x̄) is the dimension of the face.

Any equitable 2-partition of Qn satisfies the following necessary conditions on the
coefficients of its quotient matrix [[a, b], [c, d]] [6], [5]:

(a) a, b, c, d are nonnegative integers such that a+ b = c+ d = n, b > 0, c > 0;

(b)
b+ c

gcd(b, c)
is a power of 2;

(c) if b 6= c, then a− c > −n
3

.

Condition (c) is a special case of the bound t 6 2n/3 − 1 on the order t of correlation
immunity of an unbalanced Boolean function [5]. We say that an equitable 2-partition
with quotient matrix [[a, b], [c, d]] attains the correlation-immunity bound if b 6= c and
a − c = −n/3 (equivalently, b + c = 4n/3). Besides (a)–(c), the only matrix for which
the nonexistence of the corresponding equitable 2-partitions of Qn was established, before

the electronic journal of combinatorics 27(1) (2020), #P1.45 4



the current research, was [[1, 11], [5, 7]] (usually, we also agree that b > c, because this
can always be reached by choosing the order of cells), see [7]. In Section 4, we will prove
a new necessary condition, which rejects the matrix [[1, 11], [5, 7]] as well as an infinite
number of other matrices satisfying (a)–(c).

Some of our results are formulated in terms of real-valued functions defined on the
vertices of the n-cube. Two such functions f1, f2 : VQn → R are equivalent if there is a
permutation π of n coordinate positions and a vector ȳ such that f1(ȳ + πx̄) = f2(x̄) for

all x̄ ∈ VQn. The norm of a function f is ‖f‖ = (
∑

ȳ∈VQn
f(ȳ)2)

1
2 .

Given an eigenvalue λ of the adjacency matrix of a graph G = (V,E), a function
f : V → R is called an eigenfunction or a λ-eigenfunction of G if it is not constantly zero
and for every x ∈ V

λ · f(x) =
∑

y∈V :(x,y)∈E

f(y).

Note that the tuple of values of a λ-eigenfunction is essentially an eigenvector of the
adjacency matrix of G corresponding to the eigenvalue λ.

It is well known and easy to check that the eigenspectrum of Qn is {λi(n) = n− 2i :
i = 0, 1, . . . , n} and the set of functions {χȳ(x̄) = (−1)(x̄,ȳ) : wt(ȳ) = i} is an orthogonal
basis of the λi(n)-eigenspace of Qn for i = 0, 1, . . . , n. Therefore, for a function f defined
on VQn, the following identity holds

f(·) =
∑
ȳ∈VQn

f̂(ȳ)χȳ(·),

where

f̂(ȳ) =
1

2n

∑
z̄∈VQn

f(z̄)(−1)(z̄,ȳ)

is a Fourier coefficient, ȳ ∈ VQn. By the weight of the coefficient f̂(ȳ), we will understand
the weight of ȳ. The next properties of the basis {χȳ : ȳ ∈ VQn} follow instantly from its
definition.

Proposition 1. For x̄, ȳ ∈ VQn the following equalities hold:

(i) χ0 ≡ 1,

(ii) χx̄χȳ = χx̄+ȳ.

We will need the following well-known properties of the basis functions.

Proposition 2. (i) For every k ∈ {0, . . . , n− 1}, every ȳ ∈ VQn of weight n− k, and
every (k + 1)-face Γ, it holds ∑

x̄∈Γ

χȳ(x̄) = 0;

(ii) (see, e.g., [17, Ch. 5, Lemma 2]) for every x̄ and ȳ from VQn, it holds

2n−wt(x̄)
∑
z̄4x̄

χ̂ȳ(z̄) =
∑
z̄4x̄+1

χȳ(z̄). (3)
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Proof. (i) Let Γ = Γz̄
′
z̄ for some words z̄ of weight k+ 1 and z̄′. Since wt(ȳ) = n−k, there

is some coordinate position j where z̄ and ȳ both have 1. Thus, for every x̄ ∈ Γ, we have
χȳ(x̄) + χȳ(x̄+ ēj) = 0.

(ii) By the definition of a Fourier coefficient, χ̂ȳ(z̄) equals 1 if z̄ = ȳ and 0 otherwise.
Thus, the left side of (3) is equal to 2n−wt(x̄) if ȳ 4 x̄ and zero otherwise. In the right
side, we also have

∑
z̄4x̄+1 1 = 2n−wt(x̄) if ȳ 4 x̄. In the remaining case ȳ � x̄, we have 0

by arguments similar to (i).

For a given set V of v elements, a (t, k, v)-covering, t 6 k 6 v, is a set S of k-subsets
of V such that for every t-subset T of V there exists K from S such that T ⊆ K. The
following facts are trivial and well known, see e.g. [22].

Proposition 3. If S be a (t, k, v)-covering of a set V of size v, then

(i) |S| > (v
t)

(k
t)

;

(ii) for every a ∈ V , the set Sa = {K\{a} : a ∈ K ∈ S} is a (t−1, k−1, v−1)-covering
of V \ {a}.

Given an equitable 2-partition (C0, C1) of Qn with quotient matrix [[a, b], [c, d]], by its
associated function we will understand the function f : VQn → R defined as follows:

f(x̄) =

{
b, x̄ ∈ C0

−c, x̄ ∈ C1.

Lemma 4 ([5, 7]). Let (C0, C1) be an equitable 2-partition of Qn with quotient matrix
[[a, b], [c, d]] and associated function f : VQn → R. Then the following identities take
place:

f̂(x̄) = 0 for all x̄ such that wt(x̄) 6= b+ c

2
,

(b− c)f̂(x̄) =
∑

ȳ,z̄: ȳ+z̄=x̄̂

f(ȳ)f̂(z̄) for all x̄ 6= 0,

bc =
∑
ȳ

f̂(ȳ)2.

Proof. Counting the values of f over the neighbours of a given vertex, we find that f is an
(n− b− c)-eigenfunction of Qn. Thus, all its nonzero Fourier coefficients have weight b+c

2
.

By the definition of the associated function, we know that (f − b)(f + c) = 0. Therefore,( ∑
ȳ∈VQn

f̂(ȳ)χȳ − bχ0

)( ∑
ȳ∈VQn

f̂(ȳ)χȳ + cχ0

)
= 0.

After removing parentheses and using Proposition 1, we obtain the remaining equalities.
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The kernel of an equitable 2-partition C = (C0, C1) is the set

ker(C) = {ȳ ∈ VQn : C0 = C0 + ȳ} = {ȳ ∈ VQn : f(x̄+ ȳ) = f(x̄) for all x̄ ∈ VQn}

of all periods of the cells or, equivalently, of the associated function f .

3 Computational tools

Exact covering. The approaches we apply for enumerating equitable partitions of
Q12 (the approaches are completely different for the quotient matrices [[3, 9], [7, 5]] and
[[0, 12], [4, 8]]) include solving instances of the exact covering problem. In general, the
exact covering problem can be formulated as follows. Given elements a1, . . . , ak, natural
numbers α1, . . . , αk, and a collection A = {A1, . . . , Am} of subsets of the set {a1, . . . ,
ak}, find a subcollection A′ of A such that each element ai is contained in exactly αi sets
from A′. Most mathematical packages include methods for finding an exact cover in the
case α1 = · · · = αk = 1, which is solved much effectively in practice than the general
problem. However, our approaches need finding exact covers with different multiplicities.
We exploited the libexact package [11], which can be used in c/c++ programs.

Isomorphism. To find the number of equivalence classes of 2-partitions of the vertices
of Qn from a considered class, or any intermediate objects, we use the standard technique
described in [10, Sect. 3.3]. Namely, sets of vertices of Qn are represented by graphs in
such a manner that two objects are equivalent if and only if the corresponding graphs are
isomorphic. A famous package to work with the graph isomorphism is nauty [18]. The
same approach allows to find the automorphism group of any object we deal with.

Double counting. The following nice approach, described in [10, Sect. 10.2], allows to
partially validate the results of the exhaustive search. Assume that we have finished the
classification of some objects and have found a representative of every equivalence class.
Knowing the order of the automorphism group of each representative, we can calculate
the total number of different objects. If this number does not coincide with the number
of objects found by the exhaustive search, then the search was erroneous. This approach
catches many kinds of systematic and random mistakes, but only works if the result of
the search is not empty. We checked the results of every step of our classification by this
double-counting method.

4 New necessary condition

In this section we provide a new necessary condition of the existence of equitable 2-
partitions of Qn attaining the bound [5] on correlation immunity. Given an equitable
partition of a n-cube, we will say that an edge of the graph is composite if it is incident
to vertices from different cells of the partition.

the electronic journal of combinatorics 27(1) (2020), #P1.45 7



Theorem 5. Let (C0, C1) be an equitable partition of Qn with quotient matrix [[a, b], [c, d]],
b 6= c, attaining the correlation-immunity bound, i.e., a − c = −n

3
. Let f : VQn → R be

the function associated to this partition. The following statements are true:

(i) the value
∑
x̄:xi=0

f̂(x̄)2 does not depend on i ∈ {1, . . . , n};

(ii) the number of composite edges of direction i does not depend on i ∈ {1, . . . , n}.

Proof. (i) Since our partition attains the bound on correlation immunity, we have a− c =

−n
3
. By Lemma 4, we know that f̂(x̄) = 0 if wt(x̄) 6= 2n

3
, and for every x̄ 6= 0, the

following equality holds:

(b− c)f̂(x̄) =
∑

ȳ,z̄: ȳ+z̄=x̄

f̂(ȳ)f̂(z̄); hence, f̂(x̄)2 =
1

b− c
∑

ȳ,z̄: ȳ+z̄=x̄

f̂(x̄)f̂(ȳ)f̂(z̄).

Take some i ∈ {1, . . . , n}. Consider the square of the norm of the subfunction correspond-
ing to xi = 0, where x̄ = (x1, . . . , xn). Our goal is to show that this norm does not depend
on the choice of i.∑

x̄:xi=0

f̂(x̄)2 =
∑
x̄:xi=0

1

b− c
∑

ȳ,z̄: ȳ+z̄=x̄

f̂(x̄)f̂(ȳ)f̂(z̄) =
1

b− c
∑
x̄,ȳ,z̄:

x̄+ȳ+z̄=0
xi=0

f̂(x̄)f̂(ȳ)f̂(z̄)

=
1

3(b− c)

( ∑
x̄,ȳ,z̄:

x̄+ȳ+z̄=0
xi=0

f̂(x̄)f̂(ȳ)f̂(z̄) +
∑
x̄,ȳ,z̄:

x̄+ȳ+z̄=0
yi=0

f̂(x̄)f̂(ȳ)f̂(z̄) +
∑
x̄,ȳ,z̄:

x̄+ȳ+z̄=0
zi=0

f̂(x̄)f̂(ȳ)f̂(z̄)

)
.

We state that∑
x̄,ȳ,z̄:

x̄+ȳ+z̄=0
xi=0

f̂(x̄)f̂(ȳ)f̂(z̄) +
∑
x̄,ȳ,z̄:

x̄+ȳ+z̄=0
yi=0

f̂(x̄)f̂(ȳ)f̂(z̄) +
∑
x̄,ȳ,z̄:

x̄+ȳ+z̄=0
zi=0

f̂(x̄)f̂(ȳ)f̂(z̄) =
∑
x̄,ȳ,z̄:

x̄+ȳ+z̄=0

f̂(x̄)f̂(ȳ)f̂(z̄).

Indeed, for every nonzero term f̂(x̄)f̂(ȳ)f̂(z̄), each of the words x̄, ȳ, z̄ has exactly n
3

zeros and the positions of the zeros do not intersect for x̄, ȳ, and z̄ (which follows from

x̄+ ȳ + z̄ = 0). Therefore, every nonzero summand f̂(x̄)f̂(ȳ)f̂(z̄) in the right side occurs
exactly in one sum in the left side of the equality. This observation proves the last equality
and the first claim of the theorem.

(ii) Let us count the number of composite edges of an arbitrary direction i ∈ {1, . . . , n}.
Clearly, this value equals

1

2(b− c)2

∑
x̄∈VQn

(
f(x̄+ ēi)− f(x̄)

)2
.

Using the Fourier transform, we have that∑
x̄∈VQn

(
f(x̄+ ēi)− f(x̄)

)2
=
∑
x̄∈VQn

(
2
∑

ȳ∈VQn: yi=1̂

f(ȳ)(−1)(x̄,ȳ)

)2

.
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After removing parentheses, dividing by 2n+2, and changing the order of summing, we
have

1

2n

∑
ȳ∈VQn:yi=1

∑
ȳ′∈VQn:y′i=1̂

f(ȳ)f̂(ȳ′)
∑
x̄∈VQn

(−1)(x̄,ȳ+ȳ′) =
∑

ȳ∈VQn:yi=1̂

f(ȳ)2 =
∑
ȳ∈VQn

f̂(ȳ)2 −
∑

ȳ∈VQn:yi=0̂

f(ȳ)2.

By claim (i), the proof is done.

Corollary 6. If there exists an equitable partition of Qn with quotient matrix [[a, b], [c, d]]
attaining the correlation-immunity bound, b 6= c, then either b

gcd(b,c)
or c

gcd(b,c)
is divisible

by 3.

Proof. Let (C0, C1) be an equitable 2-partition of Qn with quotient matrix [[a, b], [c, d]],
b 6= c, attaining the correlation immunity bound. From the definition of an equitable
partition, we see that there are c

b+c
2n vertices in C0. Consequently, there are exactly

bc
b+c

2n−1 composite edges in the graph. By Theorem 5 we conclude that

bc

n(b+ c)
2n−1 ∈ N.

Since our partition attains the bound on correlation immunity, we have a − c = −n
3
.

The degree of the n-cube equals n = a + b; so, we have n = 3
4
(b + c). Substituting this

expression to the number of edges, we prove the required statement.

Corollary 6 implies the nonexistence of an infinite sequence of putative parameters of
equitable 2-partition of Qn for which this question was open before. In particular, it gives
an alternative proof of the nonexistence of equitable 2-partitions of Q12 with quotient
matrix [[1, 11], [5, 7]], which was shown in [7], and the nonexistence of 2-partitions of Q24

with quotient matrices [[2, 22], [10, 14]] and [[5, 19], [13, 11]]:

Corollary 7 (example). There are no equitable 2-partitions of Qn with quotient matrices
[[T, 11T ], [5T, 7T ]] (T = n/12) and [[5T, 19T ], [13T, 11T ]] (T = n/24).

5 The equitable partitions with quotient matrix [[3, 9], [7, 5]]

In this Section we characterize all inequivalent 2-partitions of Q12 with quotient matrix
[[3, 9], [7, 5]].

5.1 General properties

Let (C0, C1) be an equitable 2-partition with quotient matrix [[3, 9], [7, 5]]. By direct
counting, we have |C0| = 7 · 256 and |C1| = 9 · 256. Let f be the associated function:

f(x̄) =

{
9, x̄ ∈ C0

−7, x̄ ∈ C1.
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By Lemma 4, we know that f is an eigenfunction corresponding to the eigenvalue λ8(12) =
−4 and all its nonzero Fourier coefficients have weight 8. Therefore, Proposition 2(i)
guarantees that the sum of values of f over any 5-face equals 0. Consequently, any 5-face
contains exactly 18 vertices from C1 and 14 vertices from C0. Proposition 2(ii) gives us
the identity

16 · f̂(x̄) =
∑
z̄4x̄+1

f(z̄) for all x̄ such that wt(x̄) = 8.

In the right side of the equality we have the sum of values of f over some 4-face of
Q12. This means that f̂(x̄) ∈ { 1

16
(9m − 7(16 −m)) : m = 0, 1, . . . , 16} = {m − 7 : m =

0, 1, . . . , 16}. In particular, f̂(x̄) is integer.
Let us take an arbitrary x̄ of weight 9 and use Proposition 2(ii) one more time:∑

z̄4x̄

f̂(z̄) =
1

8

∑
z̄4x̄+1

f(z̄).

Since the value from the right side of the equation belongs to {1
8
(9m − 7(8 −m)) : m =

0, 1, . . . , 8} = {2m− 7 : m = 0, 1, . . . , 8}, the sum
∑

z̄4x̄ f̂(z̄) is odd. For a given x̄ ∈ VQn

of weight 9, there is at least one z̄ 4 x̄ of weight 8 such that f̂(z̄) is odd. In other words,

the set of quadruples of zero coordinates of the weight-8 vertices z̄ for which f̂(z̄) is odd

forms a (3, 4, 12)-covering T . Our next goal is to describe the set of possible values f̂ can
take.

Applying Lemma 4 to our function, we have

f̂(x̄) = 0, if wt(x̄) 6= 8, (4)

2f̂(x̄) =
∑

ȳ,z̄: ȳ+z̄=x̄

f̂(ȳ)f̂(z̄), if x̄ 6= 0, (5)∑
x̄

f̂(x̄)2 = 63. (6)

Suppose there is ȳ such that |f̂(ȳ)| > 2. Without loss of generality we take

ȳ = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0).

By Theorem 5 we have ∑
x̄:x12=0

f̂(x̄)2 = 21.

By Proposition 3(ii), the elements of our covering T containing the 12-th coordinate

position form a (2, 3, 11)-covering by odd values of f̂ of the set {1, 2, . . . , 11}. Since the

sum of squares equals 21 and |f̂(ȳ)| > 2, we conclude that the size of this covering is not
bigger than 17. By Proposition 3(i), it must be at least 19, and we get a contradiction.

The arguments above prove the following statement.

Lemma 8. Let f be the associated function of an equitable 2-partition of Q12 with quotient
matrix [[3, 9], [7, 5]]. Then f̂(x̄) ∈ {−1, 0, 1} for every x̄ ∈ VQn.
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5.2 Configurations of overcovered triples

As follows from Lemma 8 above, for every triple {i, j, k} of different coordinates the

number of nonzeros x̄ = (x1, . . . , x12) of f̂ such that xi = xj = xk = 0 is odd. Since
the nonzero x̄ has exactly 4 zero coordinates (the quadruple of these coordinates will be
referred to as block), we have a covering of all triples by 63 blocks, a (3, 4, 12) covering.
Consider the multiset A of all triples where the multiplicity of a triple is the number of
blocks covering this triple (we know this number is odd). Reducing the multiplicities by
1, we get a multiset B with the coefficients equal to the number of “overcovering” of the
corresponding triple. All these coefficients are even, and hence we can divide them by 2,
obtaining a multicet C. The elements of C will be called bitriples (naturally, one bitriple
in C corresponds to two triples in B). Taking into account the multiplicities, we have
exactly 16 bitriples. Indeed, 63 blocks cover 4 · 63 = 252 = 220 + 2 · 16 triples in total;
each of 12 · 11 · 10/3! = 220 3-subsets of the set of coordinates is covered, plus each of 16
bitriples is covered twice.

Lemma 9. Every coordinate belongs to exactly 4 bitriples.

Proof. Every coordinate belongs to 21 blocks, which cover 21 · 3 = 63 triples with given
coordinate, taking into account the multiplicities. The number of different such triples is
11 · 10/2 = 55. So, we have (63− 55)/2 bitriples (recall that each of bitriples corresponds
to two overcoverings, by the definition).

Lemma 10. (i) Every two different coordinates belong to an odd number of blocks, (ii) at
least 5.

Proof. Assume that the 1-st and 2-nd coordinates meet in exactly 21 − k blocks. We
know that the number of all blocks is 63; exactly 63 − 42 = 21 of them contain the first
coordinate; exactly 21 − k of them contain the first and the second coordinates. Hence,
exactly k blocks contain the first coordinate and do not contain the second. Similarly,
exactly k blocks contain the second coordinate and do not contain the first.

The sum of all 63 values of f is 9 or −7 (the value of f in 0).
(a) The value of f at 100 is also 9 or −7; therefore, among the 42 nonzeros with 1

in the first coordinate, either a := 17, or a := 21, or a := 25 values −1 and 25, 21, or
17 values +1, respectively (for example, if f(0) = −7 and f(100) = 9, then among 42
nonzeros with 1 in the first coordinate, 25 should have the value −1 and 17 the value 1,
for the sum change by 16 during the sign inverse, which corresponds to the translation of
the partition by the vector 100).

(b) The value of f at 010 is also 9 or −7, therefore, among the 42 nonzeros with 1 in
the second coordinate, either b := 17, or b := 21, or b := 25 values −1 and 25, 21, or 17
values +1, respectively.

(c) The value of f at 110 is also 9 or −7, therefore, among the 2k nonzeros with
different values in the first and the second coordinate, either c = k − 4, or c = k, or
c = k + 4 values −1 and k + 4, k, or k − 4 values +1, respectively.

In the arguments (a), (b), (c), every nonzero occurs twice or does not occur at all (if
it starts with 00). Indeed, if we denote by αi,j the number of nonzeros x̄ = (x1, . . . , x12)
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such that x1 = i, x2 = j, and f(x̄) = −1, then we get a = α1,0 + α1,1, b = α0,1 + α1,1,
c = α0,1 + α1,0. Hence, a + b + c = 2(α1,0 + α0,1 + α1,1) is even. On the other hand,
a+ b+ c ∈ {k+ 30, k+ 34, k+ 38, k+ 42, k+ 46, k+ 50, k+ 54}. It follows that k is even
and 21− k is odd.

(ii) follows from covering of all 10 triples that include the given pair.

Corollary 11. Each two different coordinates belong to an even number of bitriples, 0,
2, or 4.

Proof. Without loss of generality, consider the first two coordinates. every 4-block con-
taining them covers exactly two triples they belong to. So, the number of such 4-blocks
is the half of the number of different triples of form {1, 2, i}, i > 2, plus the number, say
k, of bitriples of such form. That is, (12− 2)/2 + k. By Lemma 10, this number is odd.
Hence, k is even.

Our next goal is to describe possible bitriple systems up to equivalence. We first
assume that there is at least one bitriple of multiplicity 1.

Lemma 12. If there is a bitriple of multiplicity 1, then it belongs to the collection of 8
bitriples {4± 3, 5± 3, 6± 3}, up to a coordinate permutation.

Proof. Without loss of generality assume that we have a bitriple {1, 2, 3} of multiplicity
1. By Corollary 11, there is another bitriple with 1 and 2. Without loss of generality it is
{1, 2, 9}. By Corollary 11, there is another bitriple with 1 and 3. It cannot be {1, 9, 3},
because in that case any choice of the forth bitriple with 1 contradicts Corollary 11. So,
it is {1, 8, 3}, without loss of generality (we did not use 8 before). By Corollary 11, the
fourth element with 1 is {1, 8, 9}.

Again by Corollary 11 and since the multiplicity of {1, 2, 3} is 1, there is another
bitriple with 2 and 3. If it is {9, 2, 3}, then we have bitriples {1, 2, 3}, {1, 2, 9}, {9, 2, 3}
with 9, and the fourth bitriple with 9 contradicts Corollary 11. A similar argument rejects
{8, 2, 3} (with respect to 3). So, without loss of generality, we have {7, 2, 3}.

Now, the fourth bitriple with 3 must be {7, 8, 3}; the fourth bitriple with 2 must be
{7, 2, 9}; the fourth bitriple with 5 must be {7, 8, 9}.

Lemma 13. If there is a bitriple of multiplicity 1, then the multiset of bitriples is one of
the following, up to a coordinate permutation:{

{4± 3, 5± 3, 6± 3}, {7± 3, 8± 3, 9± 3}
}
, (7){

{4± 3, 5± 3, 6± 3}, 4·{4, 5, 6}, 4·{10, 11, 12}
}
, (8){

{4± 3, 5± 3, 6± 3}, 2·{4, 5, 9± 3}, 2·{10, 11, 9± 3}
}
, (9){

{4± 3, 5± 3, 6± 3}, 2·{4, 5, 6}, 2·{4, 11, 12}, 2·{10, 5, 12}, 2·{10, 11, 6}
}
. (10)

Proof. By Lemma 12, we have the first 8 bitriples. If there is another, 9-th bitriple
of multiplicity 1, then by the same lemma we have (7). If there is no 9-th bitriple of
multiplicity 1, then the remaining bitriples have multiplicity 2 or 4, and a simple exhaust
search results in (8)–(10).
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If there is no bitriple of multiplicity 1, then the multiplicities of bitriples are 2 or 4.
In this case, we can again divide them by 2, which results in a multiset of 8 triples, call
them bibitriples. Every coordinate is covered by exactly 2 bibitriples. So, if there is no
bibitriples of multiplicity 2, then the 8 bibitriples form a 1-(12, 3, 2) design. If there is
exactly one bibitriple of multiplicity 2, the remaining 6 form a 1-(9, 3, 2) design. If there
is exactly two bibitriples of multiplicity 2, the remaining 6 form a 1-(6, 3, 2) design. The
remaining case is 4 bibitriples of multiplicity 2. The number of 1-(v, 2, 2) designs is known
for v = 12, 9, 6, see http://oeis.org/A110100. In particular, up to permutation of the
coordinates, we have 23, 6, and 2 solutions, respectively.

Finally, we know that the multiset of bibitriples is one of 36 = 4 + 23 + 6 + 2 + 1
equivalence classes.

5.3 Coverings by 4-ples

For each multiset of bitriples, we can find all possible systems of quadruples such that
every triple is included 1+2m times, where m is its multiplicity in the multiset of bitriples.
To do this, we have to solve the corresponding instance of the exact cover problem. This
can be done in seconds on a modern computer (we used the libexact [11] package with
c++). The result is as follows.

Proposition 14. There are exactly 180 equivalence classes of (3, 4, 12) coverings such
that the overcovered triples correspond to one of the 36 equivalence classes of bitriples
mentioned above. Only 5 of 36 equivalence classes of bitriples can be realized in this way;
namely, (7) (112 inequivalent coverings found), (8) (1 covering), (10) (51 coverings),

4× {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}

(1 covering), and

2× {{1, 2, 3}, {1, 5, 6}, {2, 4, 6}, {3, 4, 5}, {7, 8, 9}, {7, 11, 12}, {8, 10, 12}, {9, 10, 11}}

(15 coverings).

5.4 Finding signs of the Fourier coefficients

So, we have got 180 candidates for the set of nonzeros. To find the Fourier coefficient in
each nonzero, we will exploit equations (5), (6). In particular, for x̄ 6= 0, we have

2f̂(x̄) =
∑

ȳ,z̄: ȳ+z̄=x̄̂

f(ȳ)f̂(z̄), or

f̂(x̄) =
∑

ȳ,z̄: ȳ≺z̄, ȳ+z̄=x̂̄

f(ȳ)f̂(z̄), in particular (11)

f̂(x̄) ≡
∑

ȳ,z̄: ȳ≺z̄, ȳ+z̄=x̂̄

f(ȳ)f̂(z̄) mod 2, (12)
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where ≺ denotes lexicographic preceding. The last equation immediately gives a necessary
condition on the set of nonzeros (indeed, for every nonzero x̄, we have f̂(x̄) ≡ 1 mod 2;

so, both parts of (12) do not depend on the sign of f̂). This condition rejects 173 of 180
coverings, as shown in the following computational proposition.

Proposition 15 (computational results). Among the 180 coverings found in Proposi-
tion 14, exactly 7 coverings can correspond to the nonzeros of a {−1, 0, 1}-valued function

f̂ satisfying (12). All these 7 coverings correspond to the set (7) of bitriples.

Now assume that F is the set of nonzeros of f̂ and that the function φ : F → {0, 1}
defines the sign of f̂ in each nonzero:

f̂(x̄) =

{
(−1)φ(x̄) if x̄ ∈ F,
0 if x̄ 6∈ F. (13)

We will show that the 63 values of φ satisfy a system of 212 − 1 linear equations over
GF (2), one equations for each x̄ 6= 0.

Consider any zero x̄ of f̂ different from 0, i.e., f̂(x̄) = 0, x̄ 6= 0. By (12), the number
of pairs {ȳ, z̄} of elements from F such that ȳ + z̄ = x̄ is even (the pairs are unordered;
so, we can always assume ȳ ≺ z̄). Denote this number by p(x̄). From (12) we see that

for p(x̄)/2 pairs we have f̂(ȳ)f̂(z̄) = 1 and for the rest p(x̄)/2 pairs f̂(ȳ)f̂(z̄) = −1. It
follows that the number of −1s among all such xs and xs has the same parity as p(x̄)/2.
Let us write this fact as an equation.∑

ȳ,z̄∈F : ȳ≺z̄, ȳ+z̄=x̄

(φ(ȳ) + φ(z̄)) ≡ p(x̄)

2
mod 2, x̄ 6∈ F ∪ {0}. (14)

Next, consider an arbitrary nonzero x̄ ∈ F . For simplicity assume that f̂(x̄) = 1.
From (12) we see that p(x̄) is odd, and we find from (12) that the number of −1s among

all considered f̂(ȳ) and f̂(z̄) is p(x̄)−1
2

if f̂(x̄) = 1 and p(x̄)+1
2

if f̂(x̄) = −1. We derive the
following identity.

φ(x̄) +
∑

ȳ,z̄∈F : ȳ≺z̄, ȳ+z̄=x̄

(φ(ȳ) + φ(z̄)) ≡ p(x̄)− 1

2
mod 2, x̄ ∈ F. (15)

We see that the 63 values of φ satisfy the system of 4095 equations (14), (15) over the
finite field GF(2) of order 2 (some of the equations (14) are trivial, 0 = 0; so, the actual
system to solve has less than 800 equations). This system can be solved for all of the 7
remaining candidates for F .

Proposition 16 (computational results). Among the 7 sets considered in Proposition 15,
the system of equations (14), (15) is consistent for exactly 2 sets. In each of these 2 cases,
the rank of the system is 44; so, the number of solutions is 263−44 = 219.
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It remains, among the 219 solutions in each of 2 cases, to choose the functions that
correspond to the Fourier transform of {−7, 9}-valued functions. It is doable in a rea-
sonable time; however, the following observation reduces the number of calculations even
more.

Lemma 17. For each i from 1 to 12, define the coordinate function ψi : F → {0, 1} by
the identity ψi(v̄) = vi, where v̄ = (v1, . . . , v12).

(i) If some φ : F → {0, 1} satisfies all equations (14), (15) then φ+ ψi does.

(ii) Moreover, if f̂ , see (13), is the Fourier transform of a {−7, 9}-valued function, then
adding ψi to φ does not change this property.

Proof. (i) It is easy to see that the number of ȳs and z̄s involved in (14) that have 1 in
the i-th position is even. Indeed, if xi = 0, then yi + zi = 0 for every pair (ȳ, z̄) under the
sum. If xi = 1, then yi + zi = 1, but the number p(x̄) of the pairs involved in the sum is
even. Hence, adding ψi does not change the parity of the left side of (14).

The similar argument works for (15) with the only difference that p(x̄) is even, which
is compensated by involving x̄ in the left side.

(ii) It is straightforward from the definition of the Fourier transform that the sum
φ′ = φ + ψi corresponds to the translation f ′(v̄) = f(v̄ + ēi), where ēi has 1 in the i-th
position and 0 in the others.

So, the affine space of the all solutions φ can be partitioned into the cosets of the span
〈ψ1, . . . , ψ12〉 (the span has dimension 11 in one of the remaining cases and dimension 10
in the other), and it is sufficient to test one representative from every coset. Finally we
have found 6 admissible representatives in one of the cases and 12 in the other. It occurs
that in each of two cases, the equitable partitions found are equivalent.

Theorem 18. There are exactly 2 inequivalent equitable partitions of Q12 with quotient
matrix [[3, 9], [7, 5]]. Each of them has the automorphism group of order 48; the sizes of
orbits under the action of the automorphism group are 4830, 2414, 82 for the smallest cell
(in the notation [orbit size][number of orbits]) and 4840, 2416 for the largest cell. One partition
is coordinate transitive (that is, the 12 coordinates form one orbit under the action of
the automorphism group) and the size of its kernel is 2. The other partition has two
coordinate orbits of size 6 and the kernel of size 4.

5.5 Fon-Der-Flaass construction

In this section, we define the equitable partitions constructed by Fon-Der-Flaass [7] and
describe the corresponding Fourier transforms.

First, we color the vertices of Q6 into three colors as follows (symbol ∗ can be replaced
by each of 0 and 1; so, a word like 0∗∗100 represent a set from 4 vertices, which is referred
to as a 2-face).
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Black: 000000, 111111, 000111, 111000.
White: 100000, 011111, 000011, 111100,

010000, 101111, 000101, 111010,
001000, 110111, 000110, 111001.

Gray: 0∗∗100, 1∗∗011, 1001∗∗, 0110∗∗,
12 ∗0∗010, ∗1∗101, 010∗1∗, 101∗0∗,

2-faces ∗∗0001, ∗∗1110, 001∗∗1, 110∗∗0.

Next, color Q12 as f12(ū, v̄) := f6(ū+ v̄).
It remains to separate gray vertices into white and black. For every 2-face B from the

twelve 2-faces above, with ∗s in the i-th and j-th position, we color (ū, v̄) = (u1, . . . , v6)
such that ū+ v̄ ∈ B with respect to the parity u1 + u2 + u3 + u4 + u5 + u6 + vi + vj (by
black/white or white/black; so we have the choice for each 2-face). In such a way, we
obtain 212 different black/white colorings of the vertices of Q12; the corresponding vertex
partitions are equitable with quotient matrix [[3, 9], [7, 3]] [7].

By Proposition 2(ii) the Fourier coefficient at z̄ (e.g., z̄ = 010011101111) is pro-
portional (with 1/16) to the sum of f over the corresponding 4-face (e.g., respectively,
∗0∗∗000∗0000). So, the coefficients are straightforward to find. We omit technical details
and describe the 212 possibilities corresponding to the 212 partitions constructed above.
The nonzeros of one possible Fourier transform, with the corresponding signs, are the
following:[
ū
v̄

]
:
[
001 111
001 111

]
−
[
010 111
010 111

]
−
[
100 111
100 111

]
−
[
111 001
111 001

]
+
[
111 010
111 010

]
+
[
111 100
111 100

]
+[

011 011
011 011

]
+
[
011 101
011 101

]
+
[
011 110
011 110

]
+
[
101 011
101 011

]
+
[
101 101
101 101

]
+
[
101 110
101 110

]
+
[
110 011
110 011

]
+
[
110 101
110 101

]
+
[
110 110
110 110

]
+[

000 110
111 111

]
+
[
001 111
110 110

]
+
[
010 111
101 110

]
−
[
011 110
100 111

]
−
[
100 111
011 110

]
−
[
101 110
010 111

]
−
[
110 110
001 111

]
+
[
111 111
000 110

]
+[

000 101
111 111

]
+
[
001 111
110 101

]
−
[
010 111
101 101

]
+
[
011 101
100 111

]
−
[
100 111
011 101

]
−
[
101 101
010 111

]
+
[
110 101
001 111

]
−
[
111 111
000 101

]
+[

000 011
111 111

]
+
[
001 111
110 011

]
−
[
010 111
101 011

]
−
[
011 011
100 111

]
+
[
100 111
011 011

]
+
[
101 011
010 111

]
−
[
110 011
001 111

]
−
[
111 111
000 011

]
+[

110 000
111 111

]
+
[
111 001
110 110

]
−
[
111 010
110 101

]
+
[
110 011
111 100

]
−
[
111 100
110 011

]
+
[
110 101
111 010

]
−
[
110 110
111 001

]
+
[
111 111
110 000

]
−[

101 000
111 111

]
+
[
111 001
101 110

]
+
[
111 010
101 101

]
−
[
101 011
111 100

]
−
[
111 100
101 011

]
+
[
101 101
111 010

]
+
[
101 110
111 001

]
−
[
111 111
101 000

]
−[

011 000
111 111

]
+
[
111 001
011 110

]
+
[
111 010
011 101

]
+
[
011 011
111 100

]
+
[
111 100
011 011

]
−
[
011 101
111 010

]
−
[
011 110
111 001

]
−
[
111 111
011 000

]
−

.

In each of the last six groups, all the signs can be inversed. Additionally, in each of
the last six groups, one can apply the coordinate permutation (4 10)(5 11)(6 12) to all
8 nonzeros. The last transformation, applied to one group, switches between the two
equivalence classes of the equitable partitions.

6 [[0, 12], [4, 8]] and related structures: classification

The equitable partitions of the 12-cube with quotient matrix [[0, 12], [4, 8]] (or, equiva-
lently, the orthogonal arrays OA(1024, 12, 2, 7), as was mentioned in the introduction)
can be classified utilizing rather straightforward approach, a local exhaustive search, us-
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ing the exact-covering software. Let S be the quotient matrix [[0, 12], [4, 8]]. We say that
the pair of disjoint sets P0, P1 of vertices is an r-local (equitable) partition if P0 ∪ P1 are
the all words of weight at most r and the neighborhood of every vertex of weight less than
r satisfy the local condition from the definition of the equitable partition.

So, there are exactly two 0-local partitions, ({0}, ∅) and (∅, {0}). For each of them,
there is only one 1-local partition, up to isomorphism.

Proposition 19. Up to isomorphism, there are exactly 94 two-local partitions (P0, P1)
with 0 ∈ P0, and exactly 6, with 0 ∈ P1.

Proof. Let 0 ∈ P0. In this case, all weight-1 words are in P1. Consider the graph Γ on
the 12 weight-1 words, where two vertices are adjacent if in the 12-cube they are adjacent
to a common weight-2 word from P0. So, the weight-2 words from P0 are in one-to-
one correspondence with the edges of Γ (indeed, a weight-2 word has exactly 2 weight-1
neighbors). Next, we see that Γ is a cubic graph (indeed, every weight-1 word is in P1

and hence has exactly 4 neighbors from P0; one of them is 0, the other 3 correspond to
edges of Γ). The number of unlabelled connected cubic graphs on 4, 6, 8, and 12 vertices
is 1, 2, 5, 85, respectively, see http://oeis.org/A002851. So, the number of connected
and disconnected cubic graphs on 12 vertices is 85 + 5 + 3 + 1 = 94.

Let 0 ∈ P1. Without loss of generality, all weight-1 words with 1 in the first 8
coordinates are assumed to be in P1, the other 4 in P0. The last four words have no
neighbors in P0; so, any weight-2 word in P0 has two weight-1 neighbors in P1 and can be
considered as an edge of some graph Γ′ on 8 vertices (weight-1 words of P1). From the
quotient matrix, we see that Γ′ is regular of degree 4; so, its complement is cubic. There
are 1 disconnected and 5 connected cubic graphs of order 8.

The search of the 3-local partitions was done by solving instances of the exact covering
problem. We fix some 2-local partition (P0, P1) and consider the weight-2 words in P1

as the “points”. To each “point” x̄, we assign the multiplicity µ = 4 − λ, where λ is
the number of its weight-1 neighbors from P0. To each weight-3 word ȳ that has no
neighbors from P0, we assign a “set” s(ȳ) of 3 “points”, namely the 3 weight-2 neighbors
of ȳ. With the chosen “points”, their multiplicities, and the “sets”, we have an instance
Cov(P0, P1) of the exact-covering problem. Straightforwardly from the definitions, we
have the following one-to-one correspondence.

Proposition 20. Given a 2-local partition (P0, P1), the 3-local partitions (R0, R1) such
that P0 ⊂ R0 and P1 ⊂ R1 are in one-to-one correspondence with the solutions S of
Cov(P0, P1). Namely, S = {s(ȳ) | ȳ ∈ R0\P0}.

In such a way, for each of 94+6 non-isomorphic 2-local partitions, using libexact, we
found all 3-local continuations. After the isomorph rejection, we found all non-isomorphic
3-local partitions. The same approach allows to proceed the next step in finding the 4-local
partitions. The results are checked using the double-counting approach (see Section 3).

Proposition 21 (computational results). The number of non-isomorphic 3-local parti-
tions (P0, P1) with 0 ∈ P0 and 0 ∈ P1 is 34 and 222, respectively. For 4-local partitions,
the number is 37 and 81, respectively.
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The remaining part of the classification is based on the fact that the sum of the values
of the {12,−4}-valued eigenfunction corresponding to a putative equitable partition (with
considered parameters) over any 5-face is zero. Using this condition, one can uniquely
reconstruct an eigenfunction by its values on the words of weight at most 4 (actually, it is
sufficient to know the values on the weight-4 words, see [25, Theorem 3]). It occurs that
every 4-local partition continues to a complete equitable partition (we have no theoretical
proof of this fact).

Theorem 22 (computational results). There are exactly 16 equivalence classes of equi-
table partitions (P0, P1) of the 12-cube with quotient matrix [[0, 12], [4, 8]]. In one of them,
P0 is a linear (or affine) subspace of the 12-cube; two are “full-rank”, i.e., the affine
span of P0 is the whole 12-cube; the other 13 are “semilinear”, that is, the affine span
of P0 consists of a half of the vertices of the 12-cube. See the appendix for the list of
representatives.

Remark 23. For the classification, it is sufficient to consider only the local partitions that
meet 0 ∈ P0, or only the local partitions that meet 0 ∈ P1. However, as the both ways
were successful, we described in Propositions 19 and 21 the intermediate results for each
of them.

Remark 24. The local search algorithm described in this section can be applied for find-
ing equitable partitions with different parameters (in different graphs). However, we
failed in the classification of the equitable partition of the 12-cube with quotient matrices
[[2, 10], [6, 6]] and [[3, 9], [7, 5]] using the same approach. The corresponding instances of
the exact-covering problem occur to be too large to solve with known tools.

The equitable partitions considered in the current section are related with several
classes of combinatorial configurations. The following lemma summarizes several known
results about such relations.

Lemma 25. The objects from the following classes are in one-to-one correspondence:

(I) the equitable partitions of the n-cube with quotient matrix

(
0 n
c n− c

)
, c < n;

(II) the orthogonal arrays OA(N, n, 2, t), where t =
n+ c

2
−1 and N = 2n

(
1− n

2(t+ 1)

)
(so, the parameters attain the bound (2));

(III) the orthogonal arrays OA(N/2, n− 1, 2, t− 1);

(IV), (V) the equitable partitions of the (n− 1)-cube with quotient matrices 0 c− 1 n− c
c− 1 0 n− c
c c n− 2c− 1

 and

 c− 1 n− c 0
c n− 2c− 1 c
0 n− c c− 1

 , respectively ;

(VI) the completely regular codes in Qn−1 with the intersection array (n− c, c; c, n− c).
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By the definition, a completely regular code with the intersection array (c1, . . . , cr;
b0, . . . , br−1) is a set of vertices such that the distance partition with respect to it is equi-
table with tridiagonal quotient matrix, (c1, . . . , cr) and (b0, . . . , br−1) being the subdiagonal
and the superdiagonal; so, the correspondence between (V) and (VI) is straightforward.
The connection between (I) and (II) is noted in [19, 20]. (III), (IV), and (VI) are related
in [16]. It is known [21, Proposition 2.3] that for odd t, the arrays OA(N/2, n−1, 2, t−1)
are in one-to-one correspondence with the self-complementary arrays OA(N, n, 2, t) (a set
C of vertices of Qn is self-complementary if C = C + 1); on the other hand, the array
of type (II) must be self-complementary because of the distance invariance of equitable
partitions, see e.g. [14].

Once, for n = 12 and c = 4 we have representatives of all 16 equivalence classes of
partitions of type (I), it is rather straightforward to find the number of equivalence classes
of objects of types (II)–(VI).

Theorem 26. There are exactly 16 inequivalent orthogonal arrays OA(1024, 12, 2, 7).
There are exactly 37 inequivalent objects from each of the following families: orthogo-
nal arrays OA(512, 11, 2, 6); completely regular codes in Q11 with the intersection array
(8, 4; 4, 8); equitable partitions of Q11 with quotient matrices [[0, 3, 8], [3, 0, 8], [4, 4, 3]] and
[[3, 8, 0], [4, 3, 4], [0, 8, 3]], respectively.

Remark 27. Unifying the first two cells of a 3-partition with quotient matrix [[0, 3, 8],
[3, 0, 8], [4, 4, 3]], we obtain an equitable 2-partition with quotient matrix [[3, 8], [8, 3]].
However, not all 2-partitions with quotient matrix [[3, 8], [8, 3]] can be obtained in such a
way.

7 [[2, 10], [6, 6]]: discussion, connection with OA(1536, 13, 2, 7)

The remaining quotient matrix related with equitable partitions of H(n, 2) that attain the
correlation-immunity bound and were not discussed in details above is [[2, 10], [6, 6]]. The
corresponding equitable partitions are of some special combinatorial interest because the
first cell of such partition induces a collection of disjoint cycles in the Hamming graph. We
failed to make the complete classification of such partitions using any approach described
here directly. However, the computational algorithm from Section 6 can be modified,
dividing the classification into more steps depending on the value of some coordinate. This
way can be successful, but requires relatively large amount of computational resources.
Hopefully, the classification will be finished within several months, and at this moment
we can only announce that there are more than 80 equivalence classes of such partitions.
In this section, we briefly discuss the length of cycles induced by such a partition and
mention the relation with the quotient matrix [[0, 13], [3, 10]], which corresponds to the
orthogonal arrays OA(1536, 13, 2, 7).

7.1 Cycle lengths

As one can see from the first coefficient of the quotient matrix [[2, 10], [6, 6]], the first cell
of a corresponding equitable partition induces a regular subgraph of Q12 of degree 2, i.e.,
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the union of disjoint cycles. Any theoretical information on the structure of a partition
could simplify the classification; so, it is important to understand if the size of cycles is
a constant or it can vary. In the following proposition, we show that there are partitions
that induce both 4-cycles and 8-cycles. Another conclusion that can be made from it
is that the simple construction [6, Prop. 1(c)] that multiplies the quotient matrix by an
integer number can produce inequivalent equitable partitions if one varies the addition,
treating the vertex set of the n-cube as different Z4 modules.

Proposition 28. For every i from {0, 1, 2, 3}, there is an equitable partition of Q12 with
quotient matrix [[2, 10], [6, 6]] such that the first cell induces 128 · (3 − i) cycles of length
4 and 64 · i cycles of length 8.

Proof. (i) We start with i = 0 and construct a required partition (D0, D1) using the
doubling construction [6, Proposition 1(c)]: if (P0, P1) is an equitable partition of Q6 with
quotient matrix [[1, 5], [3, 3]], then (D0, D1) is defined by

Di = {(x̄, ȳ) | x̄+ ȳ ∈ Pi}.

Now consider an arbitrary vertex (x̄, ȳ) from D0. Let z̄ = x̄+ ȳ ∈ P0, and let z̄+ ēj be the
only neighbor of z̄ from P0. Then (x̄, ȳ), (x̄+ ēj, ȳ), (x̄+ ēj, ȳ + ēj), (x̄, ȳ + ēj) belong to
D0 and form a 4-cycle. So, every element of D0 lies in a cycle of length 4 with elements
from D0.

(ii) Let i = 3. Again, we start with the partition (P0, P1) and use the same construction
but with different addition:

Di = {(x̄, ȳ) | x̄⊕ ȳ ∈ Pi}.

Here, the sum of (x1, . . . , x6)⊕(y1, . . . , y6) is defined by pairs of coordinates: (x2j−1, x2j)⊕
(y2j−1, y2j) = φ(φ−1(x2j−1, x2j) + φ−1(y2j−1, y2j)), where φ: 0 → 00, 1 → 01, 2 → 11,
3 → 10 is the Gray map from Z4 = Z/4Z to GF(2)2. It is straightforward that the
construction doubled the parameters of the quotients matrices for this modification as
well as in the case of usual addition. Again, consider an arbitrary vertex (x̄, ȳ) such that
z̄ = x̄ + ȳ and z̄ + ēj are from from P0. We see that (x̄, ȳ), (x̄ ⊕ ēj, ȳ), (x̄ ⊕ ēj, ȳ 	 ēj),
(x̄⊕ ēj⊕ ēj, ȳ	 ēj), (x̄⊕ ēj⊕ ēj, ȳ	 ēj	 ēj), (x̄	 ēj, ȳ	 ēj	 ēj), (x̄	 ēj, ȳ⊕ ēj), (x̄, ȳ⊕ ēj)
belong to D0 and form a 8-cycle. So, every element of D0 lies in a cycle of length 8 with
elements from D0.

(iii) For arbitrary i, we use the same construction with the “mixed” addition, the Z4

addition in the first 2i coordinates and the usual addition in the remaining ones. The
first cell P0 of (P0, P1) consists of 12 edges, 2 edges of each direction. The edges of the
first 2i directions correspond to 8-cycles in D0, while the remaining edges correspond to
4-cycles. Counting the number of cycles is straightforward.

7.2 [[0, 13], [3, 10]] and OA(1536, 13, 2, 7)

The parameters of orthogonal arrays OA(1536, 13, 2, 7) lie on the Bierbrauer–Friedman
bound (2); hence, such arrays are simple. Moreover, as was observed in [19, 20], any
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array on this bound corresponds to an equitable 2-partition with the first coefficient
of the quotient matrix being 0. It is straightforward to see that the quotient matrix
corresponding to OA(1536, 13, 2, 7) is [[0, b], [c, d]] = [[0, 13], [3, 10]] (indeed, 0+b = c+d =
13 and c : (b+c) = 1536 : 213); equitable partitions with this quotient matrix are known to
exist [6, Proposition 2] and moreover, the recent classification result [16] says that they are
all equivalent. By the argument similar to Remark 27, the “projection” of such a partition
gives an equitable partition of Q12 with quotient matrix [[2, 10], [6, 6]]. It occurs that only
3 (of more than 80) inequivalent equitable partitions with quotient matrix [[2, 10], [6, 6]]
are related with OA(1536, 13, 2, 7) in such a way. Further studying of the exceptional
properties of these three partitions can potentially give a tip how to construct other
orthogonal arrays attaining bound (2) from equitable partitions. For example, putative
OA(7 · 220, 25, 2, 15) are equivalent to putative equitable partitions with quotient matrix
[[0, 25], [7, 18]] and related to equitable partitions with quotient matrix [[6, 18], [14, 10]],
which are known to exist (this matrix is a multiple of [[3, 9], [7, 5]], considered in the current
paper); so, one can try to construct OA(7 · 220, 25, 2, 15) starting from 2× [[3, 9], [7, 5]].

Appendix

Below we list all 16 inequivalent equitable partitions (P0, P1) with quotient matrix [[0, 12], [4, 8]].
The parameters are listed in the following order: rank, i.e., the dimension of the affine span of
P0 (10, 11, or 12); the order of the automorphism group, i.e., of the stabilizer of P0 in Aut(Q12);
the orbit sizes, for P0, then for P1; the subspace Ker (the “kernel”, given by a basis) and a set
Repr (the set of representatives of cosets of the kernel) such that P0 = {k+r|k ∈ Ker, r ∈ Repr}
(the kernel Ker is the maximal subspace for which such decomposition is possible). The binary
words of length 12 are represented by hexadecimal numbers, e.g. 0a1 = 0000 1010 0001.

1. Rank: 10, |Aut| = 84934656, orbits: 1024; 3072;
Ker: 〈003, 005, 009, 030, 050, 090, 300, 500, 900, 111〉,
Repr: {000}.

2. Rank: 11, |Aut| = 1179648, orbits: 1024; 1024, 2048;
Ker: 〈300, 500, 900, 111, 222, 444, 888, 00f〉,
Repr: {000, 003, 005, 081}.

3. Rank: 11, |Aut| = 393216, orbits: 1024; 1024, 2048;
Ker: 〈300, 500, 900, 111, 222, 444, 888, 003〉,
Repr: {000, 005, 009, 048}.

4. Rank: 11, |Aut| = 147456, orbits: 2×128, 768; 2×128, 768, 2×1024;
Ker: 〈300, 500, 900, 111, 222, 444, 888〉,
Repr: {000, 003, 005, 006, 00a, 00c, 00f, 018}.

5. Rank: 11, |Aut| = 49152, orbits: 2×512; 2×6, 3×512, 1024;
Ker: 〈900, c00, 300, 444, 222, 099〉,
Repr: {000, 003, 005, 006, 00a, 00c, 017, 018, 030, 03c, 04b, 050, 0a0, 0c0, 188, 809}.
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6. Rank: 11, |Aut| = 24576, orbits: 2×512; 2×512, 2×1024;
Ker: 〈900, 300, 500, 144, 111, 0aa〉,
Repr: {000, 003, 005, 006, 00a, 00c, 018, 01e, 027, 030, 060, 081, 096, 0c0, 488, 828}.

7. Rank: 11, |Aut| = 196608, orbits: 2×512; 2×512, 2048;
Ker: 〈900, c00, 300, 033, 066, 0cc〉,
Repr: {000, 003, 006, 00c, 012, 018, 048, 069, 224, 428, 4e1, 805, 809, 80a, 811, 814}.

8. Rank: 11, |Aut| = 9216, orbits: 64, 3×192, 384; 64, 128, 3×192, 6×384;
Ker: 〈900, 300, 500, 144, 4bb〉,
Repr: {000, 003, 005, 006, 00a, 00c, 017, 018, 02e, 030, 035, 03c, 04b, 050, 059, 05a,

060, 069, 072, 081, 09c, 0a0, 0c0, 809, 811, 812, 821, 822, 828, 882, 888, 890}.

9. Rank: 11, |Aut| = 24576, orbits: 2×256, 512; 2×256, 3×1024;
Ker: 〈900, 300, 500, 0aa, 055〉,
Repr: {000, 003, 005, 006, 00a, 00c, 018, 027, 030, 036, 03c, 060, 06c, 081, 0b1, 0c0,

166, 2b4, 40f, 809, 811, 812, 814, 821, 822, 824, 828, 82d, 842, 848, 884, 890}.

10. Rank: 11, |Aut| = 147456, orbits: 1024; 256, 768, 2×1024;
Ker: 〈900, 300, 500, 847, 1b8〉,
Repr: {000, 003, 005, 006, 00c, 018, 01b, 022, 02b, 02d, 030, 035, 048, 059, 05a, 060,

069, 071, 081, 08b, 090, 0c0, 809, 80a, 811, 812, 814, 821, 824, 850, 882, 884}.

11. Rank: 11, |Aut| = 147456, orbits: 256, 768; 256, 768, 2048;
Ker: 〈900, 300, 500, 0aa, 055〉,
Repr: {000, 003, 006, 00c, 00f, 012, 018, 021, 030, 036, 039, 048, 060, 081, 084, 0c0,

1b1, 21e, 2cc, 472, 496, 805, 809, 80a, 811, 814, 822, 824, 828, 82d, 842, 890}.

12. Rank: 11, |Aut| = 18432, orbits: 256, 2×384; 2×256, 2×384, 2×768;
Ker: 〈900, c00, 300, fff〉,
Repr: {000, 003, 006, 00c, 00f, 011, 017, 018, 028, 02b, 02d, 030, 035, 036, 03a, 044,

04b, 04d, 053, 056, 059, 05a, 05c, 060, 063, 066, 06a, 071, 081, 082, 09a, 0c0,
155, 178, 1b1, 1c6, 247, 2cc, 41b, 46c, 472, 805, 809, 80a, 812, 814, 81d, 81e,
821, 822, 824, 82e, 841, 842, 848, 850, 884, 888, 88b, 890, 896, 8a0, 8c3, 8d8}.

13. Rank: 11, |Aut| = 6144, orbits: 4×128, 2×256; 4×64, 6×128, 8×256;
Ker: 〈900, c00, 300, fff〉,
Repr: {000, 003, 006, 00c, 00f, 011, 017, 018, 028, 02b, 02d, 030, 035, 036, 03a, 044,

04b, 04e, 053, 055, 059, 05a, 05c, 060, 063, 069, 072, 081, 082, 099, 09a, 0c0,
133, 1e4, 247, 256, 26a, 278, 427, 439, 46c, 4c3, 805, 809, 80a, 812, 814, 81d,
81e, 821, 822, 824, 82e, 841, 842, 848, 84d, 850, 871, 874, 884, 888, 890, 8a0}.

14. Rank: 11, |Aut| = 18432, orbits: 256, 768; 3×256, 3×768;
Ker: 〈900, c00, 300, fff〉,
Repr: {000, 003, 006, 00c, 00f, 011, 018, 01d, 027, 028, 02d, 030, 033, 036, 03a, 044,

04b, 04e, 053, 055, 056, 059, 05a, 060, 063, 069, 06a, 081, 082, 08b, 09a, 0c0,
199, 21b, 21e, 22b, 235, 23c, 247, 278, 2a3, 46c, 472, 4b2, 805, 809, 80a, 812,
814, 817, 821, 822, 824, 82e, 841, 842, 848, 850, 871, 884, 888, 890, 8a0, 8c6}.
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15. Rank: 12, |Aut| = 32768, orbits: 1024; 1024, 2048;
Ker: 〈111, 222, 444, 888, 003, 840〉,
Repr: {000, 04c, 009, 005, 054, 090, 030, 060, 051, 066, 06a, 01d, 03a, 036, 02c, 07c}.

16. Rank: 12, |Aut| = 49152, orbits: 1024; 3072;
Ker: 〈00f, 0f0, f00, 333〉,
Repr: {000, 005, 050, 500, 550, 505, 055, 555, 021, 028, 041, 048, 210, 280, 410, 480,

102, 802, 104, 804, 126, 146, 826, 846, 261, 461, 268, 468, 612, 614, 682, 684,
016, 086, 206, 406, 160, 860, 062, 064, 601, 608, 620, 640, 111, 118, 181, 811,
881, 818, 188, 888, 013, 083, 130, 830, 301, 308, 516, 586, 165, 865, 651, 658}.
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immunity. Sib. Èlektron. Mat. Izv., 4:292–295, 2007. In Russian. English translation:
https://arxiv.org/abs/1403.8091.

[8] J. Friedman. On the bit extraction problem. In Foundations of Computer Science, IEEE
Annual Symposium on, pages 314–319, Los Alamitos, CA, USA, 1992. IEEE Computer
Society. doi:10.1109/SFCS.1992.267760.

[9] A. S. Hedayat, N. J. A. Sloane, and J. Stufken. Orthogonal Arrays. Theory
and Applications. Springer Series in Statistics. Springer, New York, NY, 1999.
doi:10.1007/978-1-4612-1478-6.
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