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Abstract

A word is square-free if it does not contain nonempty factors of the form XX.
In 1906 Thue proved that there exist arbitrarily long square-free words over a 3-
letter alphabet. We consider a new type of square-free words with an additional
property. A square-free word is called extremal if it cannot be extended to a new
square-free word by inserting a single letter at any position. We prove that there
exist infinitely many square-free extremal words over a 3-letter alphabet. Some
parts of our construction relies on computer verifications. It is not known if there
exist any extremal square-free words over a 4-letter alphabet.

Mathematics Subject Classifications: 05A05, 05D10

1 Introduction

A square is a nonempty word of the form XX. For instance,

aa, abab, abcabc, abacabac

are examples of squares. A word is square-free if it does not contain a square as a factor
(a subword consisting of consecutive letters). It is easy to check that there are no binary
square-free words of length more than 4. However, there exist ternary square-free words
of any length, as proved by Thue in [9] (see [3]). This result is the starting point of
Combinatorics on Words, a wide discipline with lots of exciting problems, deep results,
and important applications (see [1, 2, 4, 6, 7, 8]).
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In this paper we propose a new problem of extremal nature in this area. Let A be a
fixed alphabet and let W be a finite word over A. An extension of W is any word of the
form W ′xW ′′, where x ∈ A and W = W ′W ′′. A square-free word W is called extremal
over A if there is no square-free extension of W . For instance, the word

H = abcabacbcabcbabcabacbcabc

is the shortest extremal word over alphabet A = {a, b, c}. Our main result asserts that
there exist infinitely many such words.

Theorem 1. There exist infinitely many extremal square-free words over a 3-letter alpha-
bet.

The proof is by recursive construction whose validity is partially based on computer
verifications. We will give it in section 2. In the final section we state some open problems.

2 Proof of the main result

We start with a general result on which our construction is based. Consider a finite
directed graph D on the set of vertices V = {v1, v2, . . . , vn}. Suppose that each vertex
vi is labeled with some word Bi = f(vi) over a fixed alphabet A. We will refer to these
words Bi as blocks.

A walk in D is any sequence W = w1w2 · · ·wt, with wi ∈ V , such that (wi, wi+1) is a
directed edge of D for every i = 1, 2, . . . , t− 1. Every walk W = w1w2 · · ·wt generates in
a natural way the word f(W ) = f(w1)f(w2) · · · f(wt) over alphabet A by concatenating
blocks corresponding to consecutive vertices wi in W . More formally, one may consider
f as a homomorphism from the monoid V ∗ to the monoid A∗ defined by the substitution
f(vi) = Bi.

A walk is square-free if it is a square-free word over alphabet V . We say that a digraph
D is a Thue digraph if for every square-free walk W , the word f(W ) is also square-free
(as a word over A). Let S(D) denote the set of all words over A derived as images of
any square-free walks in D. So, a digraph D is a Thue digraph if S(D) contains only
square-free words. The result below gives sufficient conditions for this property.

Theorem 2. Let D be a digraph on the set of vertices V = {v1, v2, . . . , vn} labeled with
some blocks Bi = f(vi) over alphabet A. Then D is a Thue digraph if the following
conditions are satisfied:

(1) For every square-free walk W = w1w2w3, the word f(W ) is also square-free.

(2) No block Bi is a factor of another block Bj (unless i = j). In particular, blocks Bi

are pairwise different.

(3) For every pair of distinct blocks Bi and Bj, i 6= j, and any factorizations Bi = XX ′

and Bj = Y Y ′, none of the words XY ′ nor X ′Y can be equal to any block Bk, unless
Bk = Bi = X or Bk = Bj = Y .
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Proof. Suppose on the contrary that a square XX appears in some word f(W ), where
W = w1w2 · · ·wt is a square-free walk in D. Assume also that W is a shortest such walk.
So, we may write (see Figure 1):

f(W ) = PP ′f(w2) · · · f(wj)QQ′f(wj+2) · · · f(wt−1)RR′ = PXXR′,

where f(w1) = PP ′,f(wj+1) = QQ′, f(wt) = RR′, and

X = P ′f(w2) · · · f(wj)Q = Q′f(wj+2) · · · f(wt−1)R = X.

Figure 1: A square in f(W ).

By condition (1), the walk W has at least four vertices, hence, at least one part of the
square must contain a full occurrence of some block. With no loss of generality we may
assume that this happens in the left part. Also we may assume that this part contains as
many blocks as the other part.

Let q ∈ {1, 2, . . . , j} be the smallest index such that wq 6= wj+q. There must be at
least one such index since otherwise the walk W would contain the square

w1w2 · · ·wjw1w2 · · ·wj,

contradicting our assumption. We distinguish two cases.
If q > 1, then either f(wq) is a prefix of f(wj+q) or the other way around, which

contradicts condition (2).

Figure 2: Comparing blocks in the square XX (case 1).

If q = 1, then f(w1) 6= f(wj+1) and we consider two cases. First suppose that the words
P ′ and Q′ have different lengths, and assume that P ′ is longer than Q′. Then we may write
P ′ = Q′X ′, where X ′ is a nonempty suffix of the block f(w1) (see Figure 2). Now, the
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block f(wj+2) must end before f(w2) since otherwise f(w2) would be contained in f(wj+2),
contradicting condition (2). So, we may write f(wj+2) = X ′Y , where f(w2) = Y Y ′. This
contradicts condition (3). If Q′ is longer than P ′, then the reasoning is similar.

Suppose now that the words P ′ and Q′ have equal length, which means that P ′ = Q′.
This implies that all pairs of corresponding inner blocks in the left and the right part of
the square XX must be equal (otherwise one of them would be included in the other,
contradicting condition (2) (see Figure 3)). This implies that t = 2j + 1 and wi = wj+i

for all i = 2, 3, . . . , j, and the walk W can be written as

W = w1w2 · · ·wjwj+1w2 · · ·wjwt = w1Zwj+1Zwt.

In consequence, we get that also Q = R (see Figure 3), which means that f(wj+1) =
QQ′ = RP ′. If f(w1) = f(wt), then we have P = R = Q and P ′ = R′ = Q′, which
implies that f(w1) = f(wj+1) = f(wt). If f(w1) 6= f(wt), then by condition (3) it follows
that either f(wj+1) = f(w1) or f(wj+1) = f(wt). In both cases we get that wj+1 = w1 or
wj+1 = wt which gives a square in the walk W . This completes the proof.

Figure 3: Comparing blocks in the square XX (case 2).

Using the above result we may now prove Theorem 1. First we will construct a Thue
digraph on the set of 12 vertices together with the set of 12 blocks defined as follows.
Consider the following square-free word

N = abacbabcabacbcacbabcabacabcbabcabacbcabcb.

This word is nearly extremal in the following sense. A square-free word W is called nearly
extremal if it has at most two square-free extensions, and these extensions may have only
the form xW or Wy, where x, y ∈ A. The following lemma can be verified by a computer.

Lemma 3. The word N is nearly extremal and the only square-free extensions of N are
cN and Na.

It is clear that each word obtained from N by a permutation of the alphabet and by
reversal is also nearly extremal. Let us denote the six words corresponding to the six
permutations of the alphabet as:

N,Nab, Nac, Nbc, Nabc, Nacb,
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where indices denote nontrivial cycles of these permutations. Let us also denote reversals
of the above six words by:

Ñ , Ñab, Ñac, Ñbc, Ñabc, Ñacb.

Now we may define a digraph DN as depicted in Figure 4. Its vertices are labeled
by the above 12 nearly extremal words. It can be checked that for each directed edge of
DN the corresponding concatenation of blocks gives a square-free word. Moreover, the
following lemma was verified by a computer.

Lemma 4. The digraph DN from Figure 4 is a Thue digraph.

Figure 4: The digraph DN .

Recall that the set S(DN) consists of all words derived as homomorphic images of all
square-free walks in DN .

Corollary 5. All words in S(DN) are square-free and nearly extremal.

Proof. By Lemma 4, the set S(DN) consists only of square-free words. Moreover, every
word in S(DN) is a concatenation of blocks that are nearly extremal words. Thus it
cannot be extended at any inner position of a block. By the same reason it cannot be
extended by inserting a letter between any two blocks. Indeed, for any two consecutive
blocks B1B2 occurring in some word from S(DN) there is only one letter x such that B1x
is square-free, and this letter must be the first letter of the next block B2. Hence, for any
letter y, the word B1yx must contain a square.
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We are going to prove that the set S(DN) is infinite. We will need the following general
lemmas.

Lemma 6. Let T = a1a2 · · · as be a square free word over alphabet A = {1, 2, 3}, and
let V1, V2, V3 be three pairwise disjoint alphabets. Then any word of the form W =
W1W2 · · ·Ws is square-free, where Wi is any word over alphabet Vai consisting of pair-
wise distinct letters.

Proof. Indeed, the word W can be seen as an image of T in a multi-substitution, where
for each letter i ∈ A we may put any word over Vi with pairwise distinct letters. Such
substitutions obviously preserve square-freenes since alphabets Vi are pairwise disjoint.

Lemma 7. Let D be a digraph whose vertices can be partitioned into three sets V1, V2,
and V3 so that the following property holds:

(∗) For every pair i, j ∈ {1, 2, 3} and any vertex v ∈ Vi, there is a directed path P =
u1u2 · · ·ut such that u1 = v, {u2, . . . , ut−1} ⊆ Vi, and ut ∈ Vj.

Then there exists arbitrarily long square-free walks in D.

Proof. Let us take any square-free word T = a1a2 · · · as over the alphabet A = {1, 2, 3}.
Let v = v1 be any vertex in Va1 . Let P1 be a directed path satisfying condition (∗),
starting at v1 and ending at some vertex v2 ∈ Va2 . Now take a similar path P2 starting
from v2 and ending at some vertex v3 ∈ Va3 . And so on, until we arrive to some vertex
vs ∈ Vas . In this way, we obtain a walk

W = P ′1P
′
2 · · ·P ′s,

where P ′i = Pi − {vi+1} and P ′s = vs. By Lemma 6, the walk W is square-free.

Lemma 8. There exist arbitrarily long square-free walks in the digraph DN starting and
ending at the vertex labeled with the word N .

Proof. It is not hard to check that the following partition of V (DN) satisfies condition
(∗) of Lemma 7 (see Figure 5):

V1 = {N,Nbc, Ñ , Ñbc}, V2 = {Nab, Nabc, Ñab, Ñabc}, V3 = {Nac, Nacb, Ñac, Ñacb}.

So, by Lemma 7, there exist arbitrarily long square-free walks in DN . We need to show
that they may start and end at the vertex N . To see this take a sufficiently long square-
free word T over the alphabet {1, 2, 3} of the form T = 1U1 such that the word T ′ = T231
is also square-free. Now, we may construct a square free walk W along T like in the proof
of Lemma 7, starting from the vertex N and ending at some vertex v in V1. If v = N
we are done. If not, then we need to extend the walk W slightly. If v = Nbc, then we
make just one step to reach N directly. If v = Ñbc, then we have to go first to Nabc in V2,
next to Ñac in V3, and then jump to N from there (see Figure 5). This gives a square-free
walk, since T ′ is square-free. Finally, if v = Ñ , then we move first to Ñbc and then repeat
the previous three steps from there.
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Figure 5: The digraph DN with vertex partition into three sets.

Corollary 5 and Lemma 8 give immediately the following conclusion.

Corollary 9. There exist infinitely many nearly extremal square-free words over a 3-letter
alphabet.

To prove the assertion of Theorem 1 we need to modify slightly the digraph DN . The
idea is to use two special words:

Q = cbacbcabacbabcabacbcabcbacbc

and
R = acabcacbabcabacbcabcbacabacbcabcb.

The following lemma can be checked by a computer.

Lemma 10. The words QN and NR are square-free and each have only one square-free
extension, namely QNa and cNR.

Now we may add two new vertices to our digraph DN with labels Q and R, and join Q
to N and N to R by directed edges. Denote this modified digraph as D∗N . The following
lemma can also be verified by a computer.

Lemma 11. The digraph D∗N is a Thue digraph.

To construct extremal words of length exceeding any given constant it is enough to
take a sufficiently long square-free walk W in D∗N starting at Q and ending in R. Such a
walk exists by Lemma 8 and Lemma 11. The word E = f(W ) corresponding to this walk
will have the form E = QNYNR, where NYN is a nearly extremal word by Corollary 5.
Hence, by Lemma 10, the word E is extremal. This completes the proof of Theorem 1.
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3 Discussion

A natural question is whether an analogue of Theorem 1 holds for larger alphabets. Notice
that if we have four letters at a disposal, then there are two potential possibilities for
extension of a square-free word at every inner position. Actually, our computer experiment
failed in finding extremal words over four letters of length up to 100. Perhaps there are
no such words at all. On the other hand, it is known [2] that every square-free word (over
any alphabet) is a prefix of a maximal square-free word, that is, a word non-extendable
by attaching a single letter at the beginning or at the end.

Conjecture 12. There are no extremal square-free words over 4-letter alphabet.

The conjecture states, in other words, that every square-free word over four letters
can be extended to a new square-free word by inserting a single letter at some position.

The concept of extremal words can be considered for any fixed pattern (or even for
any property of words which is monotone on factors). To state a general conjecture on
extremal words we recall briefly basic notions of pattern avoidance (see [2, 5, 8]).

Let V be an alphabet of variables. A pattern P = p1p2 . . . pr, with pi ∈ V, is any
nonempty word over V. A word W realizes a pattern P if it can be split into nonempty
factors W = W1W2 . . .Wr so that Wi = Wj if and only if pi = pj, for all i, j = 1, 2, . . . , r.
A word W avoids a pattern P if no factor of W realizes P . For instance, a square-free
word avoids a pattern P = xx. A pattern P is avoidable if there exist arbitrarily long
words over some finite alphabet avoiding P . A complete characterizations of avoidable
patterns was provided independently by Zimin [10] and Bean, Ehrenfeucht and McNulty
[2].

Now, given a fixed pattern P , we may define extremal P -avoiding words analogously
as in the case of squares. The following conjecture seems plausible.

Conjecture 13. For every avoidable pattern P there exists a constant k = k(P ) such
that the set of extremal P -avoiding words over k-letter alphabet is finite.

We conclude the paper with another related question. Consider the following greedy
way of generating square-free words. Given a fixed ordered alphabet A, we start with
the first letter from A and continue by inserting at the rightmost position of the actual
word the earliest possible letter so that the new word is square-free. For instance, for
the alphabet A = {1, 2, 3} this greedy procedure starts with the following sequence of
square-free words:

1, 12, 121, 1213, 12131, 121312, 1213121, 12131231.

The last word was obtained by inserting 2 at the penultimate position of the previous
word.

We conjecture that the above procedure never stops. To state it formally, let us define
recursively a sequence of nonchalant words Gi over the alphabet Ak = {1, 2, . . . , k} by
putting G1 = 1, and letting Gi+1 = G′ixG

′′
i to be a square-free extension of Gi such that

G′′i is the shortest possible suffix of Gi and x ∈ Ak is the earliest possible letter.
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Conjecture 14. The sequence of nonchalant words over Ak is infinite for every k > 3.

The results of a computer experiment for k = 3 supports this conjecture; a nonchalant
word of length 5000 was obtained by the above greedy procedure. Moreover, the algorithm
never moved back by more that 15 positions. Therefore the following conjecture seems
plausible.

Conjecture 15. The sequence of nonchalant words over Ak converges to an infinite word
for every k > 3.

Here are the first 70 terms of the presumably infinite limit word for k = 3:

1213123132123121312313231213123212312131231321231213123212312132123132 . . .
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