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Abstract

In 2010, Bousquet-Mélou et al. defined sequences of nonnegative integers called
ascent sequences and showed that the ascent sequences of length n are in one-
to-one correspondence with the interval orders, i.e., the posets not containing the
poset 2 + 2. Through the use of generating functions, this provided an answer to
the longstanding open question of enumerating the (unlabeled) interval orders. A
semiorder is an interval order having a representation in which all intervals have the
same length. In terms of forbidden subposets, the semiorders exclude 2+2 and 1+3.
The number of unlabeled semiorders on n points has long been known to be the nth

Catalan number. However, describing the ascent sequences that correspond to the
semiorders under the bijection of Bousquet-Mélou et al. has proved difficult. In this
paper, we discuss a major part of the difficulty in this area: the ascent sequence
corresponding to a semiorder may have an initial subsequence that corresponds to
an interval order that is not a semiorder.

We define the hereditary semiorders to be those corresponding to an ascent se-
quence for which every initial subsequence also corresponds to a semiorder. We
provide a structural result that characterizes the hereditary semiorders and use
this characterization to determine the ordinary generating function for hereditary
semiorders. We also use our characterization of hereditary semiorders and the char-
acterization of semiorders of dimension 3 given by Rabinovitch to provide a struc-
tural description of the semiorders of dimension at most 2. From this description,
we are able to determine the ordinary generating function for the semiorders of
dimension at most 2.

Mathematics Subject Classifications: 06A07, 05A15

∗PNNL Information Release: PNNL-SA-130793
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1 Background and Motivation

In this article, we investigate the bijective relationship between interval orders and ascent
sequences introduced by Bousquet-Mélou et al. in [2]. In that paper, the authors an-
swered a classic open question by providing an enumeration of interval orders through a
bijection with nonnegative sequences of integers known as ascent sequences. The number
of semiorders has long been known to be given by the Catalan numbers, but no one has
yet given a description of the subclass of ascent sequences associated to the semiorders
by the bijection of Bousquet-Mélou et al. in terms of ascents. Most problematic is the
fact that it is possible for an ascent sequence to correspond to a semiorder while some
initial subsequence of that ascent sequence corresponds to an interval order that is not
a semiorder. To address this, we define the class of hereditary semiorders as those for
which every initial subsequence of the corresponding ascent sequence corresponds to a
semiorder. The hereditary semiorders can also be nicely described in terms of their in-
terval representation, and this structure further allows us to give a characterization of
the semiorders of dimension 2 in terms of this structure. Rabinovitch proved in [23] that
all semiorders have dimension at most 3. Combined with the work of Kelly in [18] and
Trotter and Moore in [28], this led to a characterization of those of dimension 3. Our
analysis uses that characterization. With these structural results in hand, we are able to
enumerate both the hereditary semiorders and the semiorders of dimension 2.

Interval orders, semiorders, and dimension

Before proceeding to our discussion of interval orders and semiorders, we require a couple
of definitions that apply to all posets. For a poset P = (X,6P ) and x ∈ X, the (open)
down set of x, denoted by D(x), is {y ∈ X : y <P x}. Dually, the up set of x, denoted by
U(x) is {y ∈ X : y >P x}. For a positive integer n, n denotes the totally ordered poset
with n elements. If n and m are positive integers, then n + m denotes the disjoint union
of the posets n and m. The posets 2 + 2 and 1 + 3 are depicted in Figure 1.

2 + 2
1 + 3

Figure 1: The posets 2 + 2 and 1 + 3.

We call a poset P = (X,6P ) an interval order provided that for each x ∈ X there
exists a closed, bounded interval I(x) = [l(x), r(x)] of R such that x <P y if and only
if r(x) < l(y), i.e., the interval of x lies completely to the left of the interval of y.
The collection of intervals associated to P is called an interval representation of P (or
just a representation). An interval order P is called a semiorder provided that P has
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an interval representation in which all intervals have the same (typically unit) length.
The first appearance of what we today recognize as an interval order is in a paper by
Wiener [29]. It wasn’t until 1970, however, that the following theorem was established by
Fishburn.

Theorem 1 (Fishburn [10]). Let P = (X,6P ) be a poset. The following are equivalent:

1. P is an interval order.

2. P does not contain 2 + 2 as a subposet.

3. If x <P y and z <P w, then x <P w or z <P y.

4. The collection of down sets of elements of X is totally ordered by inclusion.

5. The collection of up sets of elements of X is totally ordered by inclusion.

The characterization of semiorders was actually arrived at earlier in the form of a
result in mathematical logic by Scott and Suppes.

Theorem 2 (Scott and Suppes [25]). A poset P is a semiorder if and only if P contains
neither 2 + 2 nor 1 + 3 as a subposet.

In [13], Greenough not only showed that when P = (X,6P ) is an interval order,
the number of distinct down sets of elements of X is equal to the number of distinct
up sets of elements of X but also gave an algorithm for generating a unique interval
representation using the smallest number of endpoints possible. Although they did not
discuss it in this manner, the bijection of Bousquet-Mélou et al. between ascent sequences
and interval orders (described in the next subsection) gives rise to such a representation,
and such a representation will be central to our arguments. Thus, we briefly describe
the algorithm and its critical properties here. To produce the representation, list the
down sets of elements of X as D0 ( D1 ( D2 ( · · · ( Dt−1, where t is the number
of distinct down sets (and hence up sets). Also list the up sets of elements of X as
U0 ) U1 ) U2 ) · · · ) Ut−1. For x ∈ X, we define I(x) = [i, j] where D(x) = Di and
U(x) = Uj. Note that this may map distinct elements x, y ∈ X to the same interval,
which is allowed by our definition of interval representation. This happens if and only
if D(x) = D(y) and U(x) = U(y). In this case, we say that x and y have duplicated
holdings. A poset in which no two elements have duplicated holdings is said to have no
duplicated holdings, sometimes abbreviated NODH.

In this article, we shall refer to the representation produced by the algorithm described
above as the minimal endpoint representation of an interval order P = (X,6P ). Because
of the manner in which the minimal endpoint representation is created, we know that for
each i ∈ {0, . . . , t− 1}, there exist x, y ∈ X such that l(x) = i and r(y) = i. That is,
in a minimal endpoint representation, every integer from 0 to t− 1 occurs as both a left
endpoint and a right endpoint.
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Example 3. To illustrate the algorithm for finding the minimal endpoint representation
of an interval order, consider the poset shown in Figure 2. The down sets and up sets as
ordered by the algorithm are listed below.

D0 = {} U0 = {b, c, d, y}
D1 = {a} U1 = {b, c, d}
D2 = {a, x} U2 = {c, d}
D3 = {a, x, y} U3 = {d}
D4 = {a, c, x, y} U4 = {}

Since D(x) = {} and U(x) = {b, c, d}, the algorithm tells us that in the minimal endpoint
representation, I(x) = [0, 1] by locating the subscripts corresponding to these sets. Simi-
larly, D(y) = {a} and U(y) = {c, d}, so I(y) = [1, 2]. The remaining four intervals of the
minimal endpoint representation are found similarly, and the representation is depicted
at the right in Figure 2.

x

b

a

y

c

d

x b

a y c d

Figure 2: An interval order and its minimal endpoint representation

Notice that when P is a semiorder, its minimal endpoint representation is not neces-
sarily one in which all intervals have the same length. The most straightforward example
of this is 1+2, which is shown in Figure 3 along with its minimal endpoint representation.

x
y

z

x

y z

Figure 3: The poset 1 + 2 and its minimal endpoint representation

While the minimal endpoint representation of a semiorder does not have all intervals
of the same length, there is a straightforward interval containment test to determine if
a minimal endpoint representation of an interval order is one of a semiorder. We will
frequently make use of the following lemma in this paper.

Lemma 4. An interval order P is a semiorder if and only if its minimal endpoint repre-
sentation does not include intervals [a1, b1] and [a2, b2] such that a1 < a2 and b2 < b1.
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Proof. Let P = (X,6P ) be an interval order. For the “only if” direction, we consider the
contrapositive. The existence of intervals satisfying the conditions in the lemma means
that the interval [a2, b2] lies in the interior of [a1, b1]. Suppose that I(x) = [a1, b1] and
I(z) = [a2, b2]. Since the representation is minimal, we know that there are y, w ∈ X such
that r(y) = a1 and l(w) = b1. Then {x, y, z, w} is a 1 + 3 in P , so P is not a semiorder.

For the converse, suppose that P is an interval order that is not a semiorder and let
{x, y, z, w} be a 1 + 3 in P with x incomparable to y, z, w and y < z < w. Notice that

l(x) 6 r(y) < l(z) 6 r(z) < l(w) 6 r(x),

which shows that I(x) and I(z) are the intervals we seek.

The minimal endpoint representation of an interval order can also be encoded in matrix
form. For NODH interval orders, Fishburn called these characteristic matrices in [11].
They have been more recently studied by Dukes and Parviainen in [8]; Dukes et al. in [6];
and Jeĺınek in [17]. In [17], Jeĺınek studied the class of what he calls Fishburn matrices
that extend to the case where duplicated holdings are allowed. Our Lemma 4 can be
recast in terms of matrices as in Proposition 16 of [6]. Because the following work relies
on an understanding of the underlying minimal endpoint representation, we choose not
to further explore the matrix-based approach here.

If P = (X,6P ) is a poset, we say that a total order L on X is a linear extension of P
provided that for all x, y ∈ X, if x 6P y, then x 6 y in L. The dimension of P , denoted
dim(P ), is the least d such that there exist linear extensions L1, L2, . . . , Ld of P such that
(as sets of ordered pairs)

6P = L1 ∩ L2 ∩ · · · ∩ Ld.

In [1], Bogart et al. showed that for every positive integer d, there exists an interval order
having dimension at least d. On the other hand, the situation for semiorders is much
more restricted. Rabinovitch showed in [23] that if P is a semiorder, then dim(P ) 6 3.
Furthermore, dim(P ) = 3 if and only if P contains one of the posets shown in Figure 4.
Rabinovitch’s original version of this result involved a limitation on the height of the
semiorder. The independent work of Kelly in [18] and Trotter and Moore in [28] provided
a complete characterization of the posets of dimension 3. In light of their results, Ra-
binovitch’s three forbidden subposets for a semiorder to have dimension at most 2 was
verified to be complete without limitations as to height, as stated in Corollary 3.3 of
Trotter’s monograph [26].

For more information on interval orders and semiorders, Fishburn’s monograph [11]
is a classic while Trotter’s survey article [27] provides a more recent look. The canonical
work on dimension theory for posets is Trotter’s monograph [26]. The labels on the posets
in Figure 4 follow Trotter’s notation, but we note that there is an error in his list of the
forbidden subposets for a semiorder to have dimension at most 2. On page 197, he lists
FX1 in addition to the three given here, but FX1 is not a semiorder since {b1, a3, b2, c} is
a 1 + 3.
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a1

b1

a2

b2

c

a3

b3

FX2

a1

a2

b1

b2

b3

c

d

H0

a1

a2

a3

b1

b2

b3

c

G0

Figure 4: The three subposets that can force a semiorder to have dimension 3

Ascent sequences and enumeration

Given a sequence (x1, x2, . . . , xi) of integers, the number of ascents in the sequence is
defined to be

asc(x1, . . . , xi) = |{1 6 j < i : xj < xj+1}| .
In [2], Bousquet-Mélou et al. defined an ascent sequence to be a sequence (x1, . . . , xn) of
nonnegative integers such that x1 = 0 and xi ∈ [0, 1 + asc(x1, . . . , xi−1)] for all 2 6 i 6
n. They then defined a map Ψ from (unlabeled) interval orders on n points to ascent
sequences of length n and showed that their function is a bijection. Here, we recast the
inverse of that bijection as a way to construct the minimal endpoint representation of an
interval order on n points from an ascent sequence of length n.

The process of constructing the interval order corresponding to an ascent sequence
proceeds iteratively through the ascent sequence. The simplest ascent sequence, (0),
corresponds to the minimal endpoint representation [0, 0]. To describe the algorithm, we
assume that we have an ascent sequence (x1, . . . , xn) with n > 2 and have constructed the
interval order Q corresponding to the ascent sequence (x1, . . . , xn−1). We retain some of
the notation from [2] by letting `(Q) denote the largest right endpoint of an interval in the
minimal endpoint representation of Q. We also let `∗(Q) denote the smallest left endpoint
of an interval with right endpoint `(Q) (again, in the minimal endpoint representation of
Q). Suppose now that xn = i. We obtain the minimal endpoint representation of the
interval order P corresponding to (x1, . . . , xn) by applying one of the following three
moves:

Move 1 If i 6 `∗(Q) add the interval [i, `(Q)].

Move 2 If i = `(Q) + 1 add [`(Q) + 1, `(Q) + 1].

Move 3 If `∗(Q) < i 6 `(Q),

• Replace every interval [λ, ρ] for which λ < i 6 ρ < `(Q) with [λ, ρ+ 1].

• Replace every interval [λ, ρ] for which i 6 λ 6 ρ 6 `(Q) with [λ+ 1, ρ+ 1].

• Replace every interval [λ, ρ] for which λ < i and ρ = `(Q) with [λ, i].

• Add the interval [i, `(Q) + 1].
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We know that the minimal endpoint representation of Q contains [`∗(Q) , `(Q)], and so
Move 1 adds another maximal element to the poset whose interval extends at least as far
left as `∗(Q) so that `∗(P ) = i. If i = `∗(Q), then Move 1 merely adds another point to the
poset that has [`∗(Q) , `(Q)] as its interval in the minimal endpoint representation. This
gives rise to a pair of points with duplicated holdings. (This use of Move 1 only occurs
when i = xn = xn−1, and this is the only way to create duplicated holdings. We will
frequently use this fact in our enumerative work later in the paper.) Move 2 adds a new
trivial interval that becomes the unique maximal element in P . Move 3 is the problematic
move when it comes to working with semiorders. Its effect is to increase the largest right
endpoint by one so that `(P ) = `(Q)+1 while inserting a new endpoint at i. Any interval
with its left endpoint less than i and its right endpoint at least i has its right endpoint
moved one unit to the right. Any interval that had its left endpoint being i or larger is
shifted to the right by one unit. Any interval that corresponds to a maximal element in
Q (which is equivalent to having right endpoint `(Q)) is truncated by retaining its left
endpoint but making its right endpoint i. A new interval [i, `(Q) + 1] is then inserted,
which ensures that the representation is minimal by having i used as both a left and
right endpoint. We illustrate Move 3 in Figure 5 with intervals in the representation of
Q illustrated above and the corresponding intervals (in the same relative positions) and
new interval (shown uppermost) of P below.

Q

`∗(Q) i `(Q)

P

i = `∗(P ) `(P )

Figure 5: The effect of a Move 3

Example 5. We illustrate the process of constructing the minimal endpoint representa-
tion of the interval order corresponding to the ascent sequence (0, 1, 2, 3, 1, 0, 1, 3). We
will denote by Qi the interval order corresponding to the first i terms of the given as-
cent sequence. We know that Q1 is represented by {[0, 0]} and `(Q1) = `∗(Q1) = 0.
Thus, Q2 is represented by {[0, 0], [1, 1]} through a Move 2. The next two moves are also
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Move 2, which leads us to Q4 being represented by {[0, 0], [1, 1], [2, 2], [3, 3]}. We have
`(Q4) = `∗(Q4) = 3. Thus, to form Q5, we apply Move 1, which adds the interval [1, 3],
giving the representation illustrated in Figure 6. (At each stage, we place a • above the
new interval added at that stage.) We also form Q6 by using Move 1 and have `(Q6) = 3

Q5 •
0 1 2 3

`∗(Q5) `(Q5)

Q6

•

0 1 2 3

`∗(Q6) `(Q6)

Q7

•

0 1 2 3 4

`∗(Q7) `(Q7)

Q8

•

0 1 2 3 4 5

`∗(Q8) `(Q8)

Figure 6: Constructing the minimal endpoint representation of the interval order corre-
sponding to ascent sequence (0, 1, 2, 3, 1, 0, 1, 3)

and `∗(Q6) = 0. This means that Q7 must be formed by using Move 3, as depicted in the
figure. The interval of length two and the three trivial intervals are shifted right, while
the interval [0, 3] is truncated to become [0, 1] and the new interval is [1, 4]. This leaves
us with `(Q7) = 4 and `∗(Q7) = 1, so finishing requires another Move 3. This Move 3

shifts two intervals, stretches no intervals, and truncates two intervals.

Since the work of Bousquet-Mélou et al., a variety of results building on their work
have been published. Many of them relate to pattern-avoiding permutations and special-
ized classes of ascent sequences. However, it is worth highlighting some of those with
connections to posets. For instance, in [20], Kitaev and Remmel enumerated interval or-
ders by number of minimal elements (and other statistics). They also identified a subset
of the ascent sequences that they termed the restricted ascent sequences and showed that
the number of ascent sequences of length n is enumerated by the nth Catalan number.
However, the bijection between ascent sequences and interval orders does not send the
restricted ascent sequences to the semiorders, and the authors were unable to characterize
the interval orders corresponding to the restricted ascent sequences. They did conjecture
a refined version of their generating function for enumeration by number of minimal ele-
ments, which was proved independently by Levande in [21] and Yan in [32]. Dukes et al.
looked at enumeration by the number of indistinguishable elements in [7], while Khamis
enumerated the number of interval orders with no duplicated holdings by height in [19].
The focus of Jeĺınek’s work in [16] was to enumerate the number of self-dual interval or-
ders. Claesson and Linusson looked at connections between various classes of matchings
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and interval orders in [3]. Disanto et al. looked at some problems involving generating
and enumerating series parallel interval orders and semiorders in [5].

As mentioned earlier, the number of semiorders on n points is the nth Catalan number,
as shown by Wine and Freund in [31] and Dean and G. Keller in [4]. Greenough showed
in [13] that the number of semiorders on n points with no duplicated holdings is given by

s(n) =

bn−1
2
c∑

a=0

(
n− 1

a, n− 1− 2a, a

)
−
bn+1

2
c∑

a=2

(
n− 1

a, n+ 1− 2a, a− 2

)
,

where the terms of the sums are multinomial coefficients. More recently, Lewis and Zhang
were able to enumerate the number of graded posets (not interval orders) that do not
contain 1 + 3 in [22], which was followed by the work of Guay-Paquet et al. in [14]. An
enumeration of semiorders by length (one less than the number of elements in a maximum
chain) was given by Hu in [15]. The only work we are aware of that enumerates any class
of posets by dimension is the work of El-Zahar and Sauer in [9], where they provide an
asymptotic enumeration of two-dimensional posets. Our work in the remainder of the
paper will be restricted to unlabeled semiorders. We will proceed to define what we call
the hereditary semiorders and characterize their structure. This structure then gives a
way to access the semiorders of dimension 2. Our enumeration will proceed by looking
at the ascent sequences corresponding to these classes of semiorders. The sequences of
integers produced as a result were not in OEIS prior to this work.

2 Block Structure of Hereditary Semiorders

It is straightforward to verify that the ascent sequence (0, 1, 0, 1, 2, 0) has minimal end-
point representation as an interval order as shown in Figure 7 under the bijection Ψ−1 of
Bousquet-Mélou et al. By Lemma 4, we can tell that this is not a semiorder. Progressing

0 1 2 3

Figure 7: The interval order corresponding to (0, 1, 0, 1, 2, 0)

to the ascent sequence (0, 1, 0, 1, 2, 0, 2) requires a Move 3, however, which destroys the
1 + 3, giving us the minimal endpoint representation depicted in Figure 8. Since no in-
terval is contained in the interior of any other interval, we know that this is a semiorder.
This dilemma leads us to make the following definition.

Definition 6. Let P be a semiorder on n points, and let (x1, . . . , xn) be the ascent
sequence corresponding to P under Ψ. We say that P is hereditary provided that for
every i with 1 6 i 6 n, Ψ−1((x1, . . . , xi)) is a semiorder.
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0 1 2 3 4

Figure 8: The semiorder corresponding to (0, 1, 0, 1, 2, 0, 2)

As we will show, the hereditary semiorders have a particularly nice structure in terms
of their minimal endpoint representations. We describe this structure as being built from
certain fundamental blocks with three types of boundary options for how different blocks
can be combined to form a larger hereditary semiorder.

Definition 7. The fundamental blocks we use to characterize the hereditary semiorders
are as given below. Throughout, b is a nonnegative integer and k is an integer.

T0 = {[0, 0]}
T b
1 = {[b, b], [b+ 1, b+ 1]}

W b
k = {[b, b], [b+ k, b+ k]} ∪

k−1⋃
i=0

{[b+ i, b+ i+ 1]} for k > 1

Cb
2 = {[b, b], [b, b+ 1], [b, b+ 2], [b+ 1, b+ 2], [b+ 2, b+ 2]}

U b
k =

k−1⋃
i=0

{[b, b+ i], [b+ k − i, b+ k]} for k > 3

Cb
k = {[b, b+ k]} ∪ U b

k for k > 3

We refer to T0 as the trivial block. A nontrivial block is any block that is not T0. We will
occasionally omit the superscript and refer to T1 if the position of the block is clear from
context. If we wish to refer to a generic block of the form W b

k , we will use W . For U b
k, we

will write U , and for Cb
k we will write C. By B, we will mean a block that could either be

a C or a U .

We give sample illustrations of some of the blocks defined in Definition 7 in Figure 9.
Our definitions of the blocks is in terms of sets, but we have already discussed the

fact that a semiorder with duplicated holdings will have multiple elements associated to
the same interval. Because we know how duplicated holdings arise in terms of the ascent
sequence, we will be able to disregard such issues in terms of the block structure, stating
our results in terms of the intervals appearing in the interval representation and implicitly
allowing multiple points of the semiorder to have the same interval associated. We will,
however, be able to readily address duplicated holdings when we get to our enumerative
results later in the paper.

Next we define ways in which blocks can be combined. Note that the sum of the
subscript and superscript on any block gives the largest endpoint of an interval in the
block (and the superscript is the smallest endpoint).

the electronic journal of combinatorics 27(1) (2020), #P1.50 10



0 1 2 3 4

U0
4

0 1 2 3 4

C0
4

0 1 2 3

W 0
3

Figure 9: The blocks U0
4 , C0

4 , and W 0
3

Definition 8. Let Ab
k1

and Ak1+b
k2

be nontrivial blocks. We combine Ab
k1

and Ak1+b
k2

with

a strong boundary, denoted by Ab
k1
|Ak1+b

k2
, by taking the set-theoretic union of the two

blocks. The intersection between these two blocks is only the interval [b + k1, b + k1].
We can join two blocks (neither T b

1 and not both W) with a weak boundary, denoted by
Ab

k1 RAk1+b
k2

, by removing [b+ k1, b+ k1] from Ab
k1
∪Ak1+b

k2
. When Ab

k1
is a C or U and Ak1+b

k2

is a W or Ck1+b
2 , we must also allow a weak boundary with optional element (or optional

interval), which we denote by Ab
k1 R

o
Ak1+b

k2
. The intervals in Ab

k1 R

o
Ak1+b

k2
are the same as

with Ab
k1 RAk1+b

k2
with the addition of the interval [k1 + b− 1, k1 + b+ 1].

Note that weak boundaries are not permitted when one of the blocks is T b
1 , since we

would not be left with a minimal endpoint representation. We also do not permit a weak
boundary between two W , since such a construction would simply produce a W with
larger subscript. From the definitions alone, it is not clear that it is sufficient to define
a weak boundary with optional element only in the restricted cases given in Definition 8.
However, our argument will show that such a boundary cannot occur elsewhere. The
block T0 exists only to account for the antichain poset in which no two distinct points are
comparable to one another, and T0 cannot be combined with other blocks.

Example 9. In Figure 10, we now illustrate the intervals of a semiorder with block
structure

C0
3 R

o
W 3

2 |U5
3 RW 8

1 |T 9
1 .

Notice that the interval [3, 3], which would be present in C0
3 , is absent because of the weak

boundary. The interval [8, 8] is also omitted because of a weak boundary. The interval
[2, 4] that bridges the boundary between the first two blocks is the optional interval.

We are now ready to state and prove our result about the structure of hereditary
semiorders.

Theorem 10. If P is a hereditary semiorder, then intervals in the minimal endpoint
representation of P can be uniquely described using the blocks of Definition 7 combined
with the boundaries of Definition 8.
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C0
3 W 3

2 U5
3 W 8

1 T 9
1

0 1 2 3 4 5 6 7 8 9 10

Figure 10: A sample block decomposition

Proof. Our proof is by induction on n, the number of points in P . Since points with
duplicated holdings do not impact the intervals in the minimal endpoint representation,
we will assume without loss of generality that P has no duplicated holdings. For n = 1, the
only option is a single point, which has minimal endpoint representation of the interval
[0, 0]. This is T0. Now suppose for some positive integer n that if Q is a hereditary
semiorder on n points, then Q can be described in terms of blocks and boundaries. Let P
be a hereditary semiorder on n+ 1 points, and let (x1, . . . , xn, xn+1) be the corresponding
ascent sequence under the bijection Ψ of Bousquet-Mélou et al. Since P is hereditary, we
know that Ψ−1((x1, . . . , xn)) is a semiorder Q on n points. Therefore, by the induction
hypothesis, the intervals in the minimal endpoint representation of Q can be described in
terms of blocks and boundaries. The proof is by cases based first on the last boundary
and block in the block structure of Q and second on the value of α = xn+1.

When the last block is T b
1 (and hence `(Q) = `∗(Q) = b+ 1), the last boundary must

be strong by definition. If α 6 b − 1, then [b, b] lies in the interior of the new interval
added to form P , and so P is not a semiorder by Lemma 4. When α = b, we add the
interval [b, b + 1], and thus the last boundary and block changes from |T b

1 to |W b
1 . The

case α = b + 1 results in duplicated holdings. Finally, when α = b + 2, a Move 2 is used
and the block structure of P ends in |T b

1 |T b+1
1 .

Before getting into the details of the other blocks and boundaries, note that when the
final block has subscript a and superscript b, taking α = a + b + 1 always results in a
Move 2 that adds the trivial interval [b+ a+ 1, b+ a+ 1]. This adds |T b+a

1 to the end of
the block structure of Q to form the block structure of P . Therefore, we will not consider
this situation below.

We now consider when the block structure of Q ends |Cb
a, which implies `∗(Q) = b.

When α = b, the result is duplicated holdings. When α < b, Move 1 is used, adding
the interval [α, a + b]. This places the interval [b, b], which exists because of the strong
boundary, in the interior of the new interval, and so P is not a semiorder. When α satisfies
b + 1 6 α 6 a + b, a Move 3 is applied to construct P . For α = b + 1, this converts the
|Cb

a at the end of the block structure of Q into |U b
a+1 as depicted in Figure 11. When α

satisfies b+ 2 6 α < b+ a, the Move 3 results in an interval order that is not a semiorder.
This is because Move 3 extends the interval [b, α] in Q to the interval [b, α + 1] in P and
truncates the interval [b+ 1, a+ b] in Q to become the interval [b+ 1, α] in P . This results
in one interval contained in the interior of another, violating Lemma 4. When α = b+ a,
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no intervals are truncated but the interval [b+ a, b+ a] becomes [b+ a+ 1, b+ a+ 1] and
the interval [b + a, b + a + 1] is added. This results in the block structure of P ending
Cb

a RW b+a
1 .

b+ 0 b+ 1 b+ 2 b+ 3

Cb
3

b+ 0 b+ 1 b+ 2 b+ 3 b+ 4

U b
4

Figure 11: α = b+ 1 when Q ends |Cb
3

The next case is that the block structure of Q ends |U b
a, which means `∗(Q) = b + 1.

When α < b, we use a Move 1, which adds the interval [α, b + a]. This interval contains
[b, b + 1] in its interior, and so P would not be a semiorder. For α = b, this adds the
interval required to convert the U b

a to a Cb
a while retaining the strong boundary. For

α = b + 1, we produce duplicated holdings. The remaining cases involve Move 3. The
case α = b + a is as with |Cb

a, resulting in the block structure of P ending in U b
a RW b+a

1 .
Because of the definition of Ua

b , we know that a > 3, and thus we must consider α
satisfying b+ 2 6 α 6 a+ b− 1. Here we again use Lemma 4 by noting that the interval
[b+ 1, α] is contained in the interior of [b, α + 1].

The final case involving a strong boundary before the last block of Q is when Q’s block
structure ends with |W b

a . In this case, `∗(Q) = b+ a− 1. When α = b+ a, the W at the
end grows to become |W b

a+1. If α = b + a − 1, we create duplicated holdings. If a > 3,
having α 6 b+ a− 3 is a Move 1 which results in the interval [b+ a− 2, b+ a− 1] being
contained in the interior of [α, b + a], which takes us out of the class of semiorders. For
a ∈ {1, 2}, α < b places the interval [b, b] in the interior of [α, b + a], so P would not be
a semiorder. Thus, it remains only to consider a > 2 and α = b + a − 2. Here, we have
a Move 1 that adds the interval [b + a− 2, b + a]. When a = 2, this converts the |W b

2 at
the end of the block structure of Q into |Cb

2 at the end of the block structure of P . For
a > 2, the block structure of P ends |W b

a−2 RCb+a−2
2 . This is illustrated in Figure 12.

b+ 0 b+ 1 b+ 2 b+ 3 b+ 4

|W b
4

b+ 0 b+ 1 b+ 2 b+ 3 b+ 4

|W b
2 RCb+2

2

Figure 12: Converting |W b
4 to |W b

2 RCb+2
2

To begin consideration of where the last boundary is weak, we assume that Q’s block
structure ends RCb

a. Here `∗(Q) = b. The Move 1 cases are α 6 b. When α = b, we have
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duplicated holdings. If α < b, then since a > 2 the interval [b, b + a − 1] exists and is
contained in the interior of [α, b+ a]; therefore, P is not a semiorder. For α = b+ 1, the
situation is just as with a strong boundary, and the last block of P ’s block structure is

RU b
a+1. When α satisfies b+ 2 6 α 6 a+ b, the two possibilities are just as with |Cb

a.
When Q’s block structure ends RU b

a, the argument is identical to the |U b
a case. Thus,

we proceed to assume that the last boundary and block of Q is RW b
a , which means that

`∗(Q) = b + a − 1. For a > 2 or α > b, the situation is just as when the final boundary
is strong. Thus, we must only consider when a = 1 and α < b. When α 6 b − 2, we
note that the existence of a weak boundary means that the block preceding our W b

1 must
be a C or a U , and thus the minimal endpoint representation of Q contains the interval
[b− 1, b]. This interval is contained in the interior of the new interval [α, b+ 1], and P is
not a semiorder. The final case is α = b−1, which leads us to the necessity of the optional
interval, since the new interval is [b− 1, b+ 1]. Thus, the final block and boundary of P ’s
block structure is R

o
W b

1 .
The previous case has forced us now to consider the situation where the final boundary

and block of Q is R

o
W b

1 , in which case `∗(Q) = b− 1. Here a = 1, so α = b+ a+ 1 = b+ 2
is the same as all other cases. For α = b+ 1, we extend the last W to become R

o
W b

2 . The
case α 6 b−2 creates a nonsemiorder by Lemma 4 as in the case of a weak boundary. For
α = b− 1, we have duplicated holdings. It remains only to consider the case α = b. Note
that the weak boundary preceding the last block of Q must be preceded by a C or a U .
In either case, the interval [b− 2, b] must be present because of the minimum size of such
blocks. In P , this interval becomes [b− 2, b+ 1], and the optional interval is truncated to
[b−1, b]. We now have one interval in the interior of another, and so P is not a semiorder
by Lemma 4.

We now must consider the case where Q’s final boundary and block are R

o
W b

2 , which
gives `∗(Q) = b + 1. Here we have that α = b + a + 1 when α = b + 3. For α = b + 2,
we extend the final W to R

o
W b

3 . When α = b+ 1, we have duplicated holdings. If α = b,
the W at the end of Q’s block structure becomes R

o
Cb

2 in P . For α 6 b − 1, the new
interval is [α, b + 2], which contains in its interior the interval [b, b + 1]. Therefore, P is
not a semiorder.

When a > 3 and Q’s block structure ends R

o
W b

a , the argument proceeds as it did with

RW b
a . Thus, the only case we must still address is when the final block and boundary of

Q’s block structure is R

o
Cb

2. Here `∗(Q) = b. The case α = b+ 3 is taken care of because
α = b + a + 1 here. When α = b + 2, this is the same as the α = b + a case for RW b

a ,
and we have that the block structure for P ends with R

o
Cb

2 RW b+2
1 . This is illustrated in

Figure 13. For α = b+ 1, note that the optional interval [b− 1, b+ 1] extends to become
[b − 1, b + 2], which contains in its interior the interval [b, b + 1] that results from the
Move 3 truncating [b, b + 2]. Thus, P is not a semiorder by Lemma 4. When α = b, we
have duplicated holdings. When α 6 b − 1, the interval [α, b + 2] contains the interval
[b, b+ 1] in its interior, violating Lemma 4. Since this case did not require us to permit a
weak boundary with optional element before any other types of blocks, our proof of the
existence of the block structure is complete.

It remains to show that the block structure of a hereditary semiorder P is unique.
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∗

b− 1 b b+ 1 b+ 2

R

o
Cb

2

∗

b− 1 b b+ 1 b+ 2 b+ 3

R

o
Cb

2 RW b+2
1

Figure 13: Moving on from R

o
Cb

2

To do so, we will identify the location and type of each boundary between blocks. Once
this is done, the blocks between the boundaries are uniquely defined. To identify the
boundaries, we begin by labeling all of the integers between 0 and `(P ) as follows:

t(i) =


s if [i, i] is in the representation

w if i is the endpoint of at least 3 intervals and not in the interior of an interval

z if i is the endpoint of at least 3 intervals and in the interior of an interval

x otherwise.

We have that t(i) = s if and only if i is the location of a strong boundary, since the block
and boundary definitions only allow intervals of length 0 at strong boundaries (including
the implicit strong boundaries at the ends). Next, note that t(i) = w if and only if i is
the location of a weak boundary. (This holds because we do not allow weak boundaries
between W .) We observe that the definition of t tells us that if t(i) = x, then i is not a
boundary. To finish our argument, we will redefine t(i) for those integers i with t(i) = z.
We wish to have t(i) = o if and only if i is the location of a weak boundary with optional
interval and will define the other integers j for which t(j) = z to have t(j) = x. Let i be
the smallest integer in a maximal sequence of consecutive integers with label z. Since a
weak boundary with optional interval must be preceded by a U or a C, we know that i
cannot be the location of a weak boundary with optional interval. This is because the left
endpoint of an optional interval must be the left endpoint of two intervals of the preceding
U or C as well as being in the interior of at least one interval of the preceding block. Thus,
we let t(i) = x, which then tells us that there is a weak boundary with optional element
at i + 1, so we let t(i + 1) = o. If t(i + 2) = z, then we must change t(i + 2) to x, since
we cannot have two weak boundaries with optional intervals at consecutive integers. This
process continues until no integers in [0, `(P )] have label z, which means the boundaries
have all been uniquely determined because all decisions are forced.

A careful reading of the preceding proof will show why the definition of a weak bound-
ary with optional element is so restrictive. In particular, the optional interval is only
introduced when absolutely necessary, and then the argument proceeds to consider what
can develop following an optional interval. The fact that an optional interval can only
be preceded by a C or a U comes from the fact that our first optional interval arises in
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the RW b
1 case, which requires a C or U before it because of the prohibition against weak

boundaries betweenWs. The only other weak boundaries with optional elements arise as
a consequence of building up from the R

o
W b

1 case, and thus cannot be preceded by a W
either.

3 Block Characterization of Dimension 2 Semiorders

We are now prepared to use the blocks and boundaries introduced above to provide
a characterization of the semiorders of dimension 2, which we will eventually use to
enumerate them. We begin with a straightforward lemma that links the moves used to
construct an interval order from an ascent sequence to subposet structure. This will be
useful in connecting to Rabinovitch’s forbidden subposet characterization of the dimension
2 semiorders.

Lemma 11. Let P be a poset. If Q is a subposet of P and P ′ is a poset obtained from P
by Move 1 or Move 2, then Q is a subposet of P ′.

Proof. Since neither Move 1 nor Move 2 changes any of the existing comparabilities in P
to form P ′, P is a subposet of P ′. Thus, Q is a subposet of P ′ as well.

A full description of the block structure of semiorders of dimension 2 will be accom-
plished through a few steps. We begin by showing that all semiorders of dimension 2 are
hereditary.

Theorem 12. Let P be a semiorder. If P is not hereditary, then dim(P ) = 3.

Proof. Let P be a semiorder on n points and let (x1, . . . , xn) = Ψ(P ) be the ascent
sequence corresponding to P . Without loss of generality, we may assume that P has
no duplicated holdings. Since P is not hereditary, there is some largest positive integer
k < n such that Q = Ψ−1((x1, . . . , xk)) is not a semiorder. Since we know that Q′ =
Ψ−1((x1, . . . , xk+1)) is a semiorder, Q′ does not contain 1 + 3. However, Q must contain
1 + 3, since Q is an interval order that is not a semiorder. Therefore, by Lemma 11,
Q′ is not obtained from Q by Move 1 or Move 2. We consider the minimal endpoint
representation of Q. By Lemma 4, this representation has two intervals [a, b] and [c, d]
with [c, d] contained in the interior of [a, b]. Since the Move 3 that obtains Q′ from Q
destroys the 1 + 3, we must have that b = `(Q) and a < xk+1. If xk+1 6 c, then the
minimal endpoint representation of Q′ contains the interval [c+ 1, d+ 1] and the interval
[xk+1, b+ 1], which implies that Q′ is not a semiorder by Lemma 4. If xk+1 > d, then the
minimal endpoint representation of Q′ contains the interval [a, xk+1], which contains [c, d]
in its interior. This would force Q′ to not be a semiorder. Thus, we must have that xk+1

is an integer with c < xk+1 6 d, forcing c 6= d.
Since d < b and we are considering the minimal endpoint representation of Q, there

exists an interval [d, f ] in the representation. Moreover, if f < b, then the minimal
endpoint representation of Q′ contains the interval [d + 1, f + 1], and this interval is
contained in the interior of [xk+1, b + 1]. This would prevent Q′ from being a semiorder,
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so f = b. Also note that there must be an interval [g, c]. If g > a, then the minimal
endpoint representation of Q′ contains the interval [g, c] and the interval [a, xk+1] with
xk+1 > c. This again violates Lemma 4. The structural information we have gleaned so
far is depicted in Figure 14. Using what we know about xk+1, we can draw Figure 15 to
reflect intervals that must exist in Q′. It is straightforward to verify that these intervals
give us the three-dimensional semiorder FX2 from Figure 4.

g a c d b

Figure 14: Intervals that must exist before eliminating 1 + 3

g a c d+ 1xk+1 b b+ 1

Figure 15: Intervals that must exist after eliminating 1 + 3

By assumption, once we have obtained Q′ from (x1, . . . , xk+1), each of the posets
obtained from (x1, . . . , xm) with m > k + 1 is a semiorder. We will show that it is
impossible to eliminate all copies of FX2 subject to this constraint, and thus we must
have dim(P ) = 3. To do so, assume that m is such that R = Ψ−1((x1, . . . , xm)) contains
FX2 and that for all m > m′, Ψ−1((x1, . . . , xm′)) does not contain FX2. We cannot be as
precise about the endpoints as we were above at the first occurrence of FX2, but we do
have the configuration shown in Figure 16. Note that we do not necessarily have that the
endpoints shown as equal (such as r(a1) and l(b2)) are equal. Instead, we merely require
that the intervals overlap.

ca2 b2

a3 b3

b1a1

Figure 16: Intervals forming an FX2 in R

By Lemma 11, we only need to consider the effect of Move 3. If xm+1 6 l(b1), then
the only impact of the Move 3 on these seven intervals is stretching or shifting that does
not impact their relationship to one another, and thus the FX2 is not removed. Note
that if none of b1, c, b3 is maximal in R, then this copy of FX2 cannot be removed. If b1
is maximal in R, then a Move 3 with l(b1) < xm+1 6 l(b3) truncates b1 and moves the
right endpoint of b2’s interval one unit right. This places b1 in the interior of b2, violating
the requirement that we must obtain a semiorder. (If b1 is not maximal in R, a Move 3
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with xm+1 in this range does not remove the FX2.) A Move 3 with xm+1 > r(b2) leaves
a FX2, either consisting of the same points (possibly with truncated intervals) or with
the new interval playing the role of c (and possibly with the intervals for b1 and b3 being
truncated). A Move 3 with xm+1 satisfying l(b3) < xm+1 6 r(b2) must truncate at least
one of b1 and b3 if the FX2 is to be eliminated. However, then the truncated interval
lies in the interior of the stretched interval for b2, and the resulting poset would not be a
semiorder.

Having shown that we cannot eliminate the last occurence of an FX2 after the last
occurrence of a 1+3, we can therefore conclude that if P is not hereditary, then dim(P ) =
3 as claimed.

We now know that our search for semiorders of dimension at most 2 can be restricted
to the hereditary semiorders. Thus, we will proceed to consider the three forbidden
subposets of Figure 4 and what restrictions we must place upon the block structure of a
hereditary semiorder in order to exclude them.

Lemma 13. Let P be a hereditary semiorder. If P contains FX2, then the block structure
of P requires an optional interval.

Proof. First note that b2 is incomparable to a1, a3, b1, and b3, but {a1, a3, b1, b2, b3} is
not a 5-element antichain. Therefore, the interval corresponding to b2 in the minimal
endpoint representation of P must have positive length. Since a3, b1, and b2 are pairwise
incomparable, their intervals must overlap. Let x be an integer in the intersection of the
intervals for a3, b1, and b2. Since a3 < b3, we have that x < l(b3). Similarly, r(a1) < x.
Thus r(a1), x, and l(b3) are all distinct points in the interval for b2. Hence, this interval
has length at least 2. If b2 is an optional interval in the block structure, then we are done.
If b2 is not an optional interval, then since its length is at least 2, it must lie in a C or a
U . Furthermore, at least one endpoint of b2 must be the endpoint of the block containing
b2. Since b1 is incomparable to c and b2 < c, we must have that the interval of b1 extends
to the right of r(b2). Since a3 is incomparable to a2 and a2 < b2, we must also have that
the interval of a3 extends to the left of l(b2). Since x lies in both the interval of a3 and
that of b1, this forces one of b1 and a3 to have its endpoints in two different blocks, and
therefore, there must be an optional interval.

Lemma 14. Let P be a hereditary semiorder. If P contains H0, then the block structure
of P requires an optional interval.

Proof. As before, we will assume that we are working with the minimal endpoint repre-
sentation of P . Since b2 is incomparable to a1, a2, c, and d, but a1 < a2, we must have
that the length of b2’s interval is at least 1. Since b1 < b2 but b1 is incomparable to d, we
must have l(d) < l(b2). Similarly, since b2 < b3 and b3 is incomparable to c, we must have
r(b2) < r(c). Since a1 < a2 but both a1 and a2 are incomprable to d, we must have that
the interval of d extends left of the interval of a2. This gives l(a2) 6 r(d). Further, the
interval of a2 must leave room for the interval of a1 to intersect that of b2, which requires
l(b2) < l(a2). Combining these inequalities gives l(b2) < l(a2) 6 r(d). We may now
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conclude that l(b2) lies in the interior of d. By the dual argument, we have that r(b2) lies
in the interior of c. By the minimality of the representation, this forces the intervals of c
and d to each have length at least 2. If either of these is an optional interval, then we are
done. If not, then they cannot belong to a W because of their intervals’ lengths. Thus,
the endpoints of b2 lie in the interiors of two different blocks, which is only possible if b2
is an optional interval.

Lemma 15. If P is a hereditary semiorder containing a C somewhere other than the first
or last block, then at least one of the blocks adjacent to the C is T1 or P contains G0.

Proof. Suppose that P is a hereditary semiorder containing Cb
n with b 6= 0 and at least

one following block. We also assume that neither neighboring block is T1. Then the Cb
n

contains the intervals [b, b+ n], [b, b+ 1], and [b+ 1, b+ n]. The preceding block contains
an interval containing the interval [b−1, b] and an interval with right endpoint b−1. The
succeeding block contains an interval containing [b+n, b+n+ 1] and an interval with left
endpoint b + n + 1. These intervals, which are depicted in Figure 17, form a copy of G0

in P .

a2 a3

c

a1

b1 b2 b3

b− 1 b b+ 1 · · · b+ n b+ n+ 1

Figure 17: A C with neighbors other than T1 forcing G0

Lemma 16. If P is a hereditary semiorder and the block structure of P requires an
optional interval, then dim(P ) = 3.

Proof. The proof is by straightforward case analysis based on what the blocks on either
side of a weak boundary with optional interval can be. Recall that a weak boundary with
optional interval must be preceded by a C or a U and must be followed by a W or a Cb

2,
which limits the cases required. The cases and which forbidden subposet is produced are
listed below.

1. Cb
n R

o
Cb+n

2 for n > 2 and U b
n R

o
Cb+n

2 for n > 3 both produce FX2.

2. Cb
n R

o
W b+n

1 for n > 2 and U b
n R

o
W b+n

1 for n > 3 both produce H0.

3. Cb
2 R

o
W b+2

m with m > 2 produces H0.

4. Cb
n R

o
W b+n

m and U b
n R

o
W b+n

m with n > 3 and m > 2 both produce FX2.

The first case is illustrated in Figure 18. Note that if the Cb
2 is followed by a weak

boundary, there is some interval from the next block with its left endpoint at b + n that
can be used as c. A similar situation applies if the block before the weak boundary is Cb−2

2
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ca2

b2

a3 b3

b1a1

Figure 18: Intervals forming an FX2 with R

o
Cb+n

2

preceded by a weak boundary. Figure 18 is drawn to be general enough to encompass a
C or U as the preceding block, and note that some intervals not involved in the FX2 are
omitted.

The third case is illustrated in Figure 19. Again, a weak boundary before the Cb
2 is not

a problem, since there must be an interval from the previous block with its right endpoint
at b. Figure 19 can be readily extended to the left in the style of Figure 18 to cover the
second case as well, provided that one turns b3 into an interval of length 0 (or uses an
interval from the next block if the following boundary is weak).

b1

a1

b3

a2

c

b2

d

Figure 19: Intervals forming a H0 with Cb
2 R

o
W b+2

m and m > 2

The final case is not illustrated, but it is straightforward to verify after noting that
the optional interval and the first two intervals of length 1 from the W are b1, b3, and c
(in order by increasing left endpoint).

We are now ready to assemble the preceding results to prove the block characterization
of semiorders of dimension at most 2.

Theorem 17. Let P be a semiorder. The dimension of P is at most 2 if and only if all
of the following hold:

1. P is hereditary,

2. the block structure of P does not require optional elements, and

3. if the block structure of P contains a C somewhere other than the first or last block,
then at least one of the blocks adjacent to the C is T1.

Proof. We first assume that P is a semiorder and dim(P ) 6 2 and will prove that the three
statements hold. The first statement is the contrapositive of Theorem 12. The second
statement is the contrapositive of Lemma 16. Since dim(P ) 6 2, P does not contain G0,
and therefore the third statement follows from Lemma 15.
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Now suppose that P is a semiorder for which all three statements hold. We will show
that dim(P ) 6 2. The first two statements and the contrapositives of Lemmas 13 and
14 show that P does not contain FX2 or H0. For a contradiction, we now assume that
P has dimension 3. By what we’ve already shown, this means that P must contain G0.
We will now show that the third statement must be violated by finding a C with two
neighboring blocks that are not T1. Since c is incomparable to a2, a3, b1, and b2 but
a2 < a3, we know that the length of c’s interval in the minimal endpoint representation
must be at least 1. Since there are no duplicated holdings amongst the seven points of
G0, all intervals must be distinct. Furthermore, since an interval contained in the interior
of aW is incomparable to only two other intervals but c is incomparable to 4 points from
G0, we know that one endpoint of c’s interval is on the boundary between two blocks. By
duality, we may assume without loss of generality that this endpoint is l(c).

Since a1 < c and b1 is incomparable to both c and a1, we must have that a1 and b1
both lie in a block before the one containing c and that r(b1) = l(c) because there are
no optional intervals. Since b1 has a larger up set than a2 but is incomparable to a2,
we know that r(b1) < r(a2). Thus, a2 belongs to the same block as c and l(c) = l(a2)
because of the lack of optional intervals. Since a2 has a larger up set than c, we know
that r(a2) < r(c). Since b2 is incomparable to a2, we can thus conclude that l(b2) < r(c).
If r(b2) > r(c), then we know by the lack of optional elements that r(b2) must be the
right end of the block containing c, a2, and b2. Since b2 < b3, this means that b3 must lie
in a subsequent block. We now notice that a3 is incomparable to b3 and c, and thus r(b2)
lies in the interior of a3’s interval, which requires that a3 cross the boundary of a block,
contradicting the lack of optional intervals. Thus, we must have r(b2) = r(c) is the right
boundary of the block containing c. Since c has both its endpoints on the boundary of its
block, we must have that c, a2, and b2 lie in a C. Recognizing that a3 is incomparable to
both c and b3 and b1 is incomparable to both c and a1 shows that neither of the adjacent
blocks to the C can be T1, and our proof is complete.

4 Enumeration of Hereditary Semiorders

We are now prepared to use the block structure in order to enumerate the hereditary
semiorders. The difficulty in building a generating function to complete this task is that
there are restrictions on how the blocks can be combined using the various boundaries.
In particular, we recall that a T b

1 may not be combined using a weak boundary, two
consecutive W may not be combined using a weak boundary, a W may not be followed
by a weak boundary with optional element, and a weak boundary with optional element
may only preceed a W or a Cb

2. We will use notation inspired by regular expressions to
give a compact way of describing the ways in which blocks are arranged. The components
of our notation are +, ∗, and ?, used as superscripts. A superscript + will denote one or
more consecutive occurrences of the entity to which the + is attached. A ∗ means that
zero or more consecutive occurrences of the entity are allowed. A ? means that at most
one occurrence of the entity is allowed. When a + is used between two strings (rather
than a superscript), each pattern is allowed. All of our boundaries will be assumed to be
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weak unless explicitly shown in the notation. Recall from Definition 7 that we will use B
to refer to a block that could be either a C or a U .

We will break up the block structure of a hereditary semiorder based upon the occur-
rences of strong boundaries and the occurences of weak boundaries with optional intervals.
Because a strong boundary is determined based on the presence of an interval of length 0
and such an interval must be present at the left of the first block of a hereditary semiorder
and at the right of the last block, we will treat the the two ends of a block structure as if
there are strong boundaries there. If we first consider the situation where no weak bound-
aries with optional intervals are allowed, then it suffices to break the full block structure
up into the pieces between strong boundaries. We represent this as Xss =W?(B+W)∗B∗.
Essentially, between two strong boundaries, we can view the blocks as divided further by
the occurrences of the W , which may not be adjacent (since all boundaries inside this
string are weak). Between Ws, we must have at least one B. Notice that this structure
allows for there to be no blocks between two strong boundaries, which is what creates
a T b

1 . We may further repeat the pattern Xss as many times as required, which then
introduces strong boundaries into the overall block structure.

When an optional interval is present, we may trace backward from that weak boundary
with optional interval until we reach either another weak boundary with optional interval
or a strong boundary (including the beginning of the block structure). Thus, we will
now describe two further subpatterns, one to cover what can occur between a strong
boundary and the first ensuring weak boundary with optional interval (denoted Xso)
and the other to cover what occurs between two weak boundaries with optional intervals
(denoted Xoo). To construct Xso, note that the block before a weak boundary with optional
element must be a B, and certainly many of them are permitted, so Xso must end with
B+. Other than needing to end with a B, this case looks much like Xss, in that we see
isolated W with strings of B in between, and an initial W may or may not occur. Thus,
Xso = W ?(B+W)∗B+. When both ends of a string of blocks joined by weak boundaries
are weak boundaries with optional intervals, the situation is more complicated. The weak
boundary with optional interval may be followed by a W , in which case the structure
proceeds just as with Xso, since the final block of the pattern must be a B to allow for the
trailing weak boundary with optional interval. This means Xoo must allowW(B+W)∗B+.
We may also follow the weak boundary with optional interval with Cb

2. Since this block is
itself a B, this could be the end of the pattern, proceeding immediately to another weak
boundary with optional interval. If not, we then see the remainder divided up by W ,
ensuring that the last block before the weak boundary with optional interval is a B. This
gives us Cb

2B∗(WB+)∗, which combines with the case where the first block after the weak
boundary with optional interval is W to give us

Xoo =W(B+W)∗B+ + Cb
2B∗(WB+)∗.

As we proceed through the block structure, we must eventually reach an occurrence of
a weak boundary with optional interval where the next meaningful boundary is a strong
boundary (possibly the one at the end of the block structure). Thus, we need a pattern to
describe what happens in such a case, which we denote by Xos. Again, the weak boundary
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with optional interval may be followed by a W or a Cb
2. The former case gives rise to

W(B+W)∗B∗, much like in Xoo, but here we end with B∗ because the next boundary
is strong, and so we may end with a W . When beginning with a Cb

2, the situation is
also analogous to Xoo, but we must allow a W at the end, which gives Cb

2B∗(WB+)∗W?.
Combining these yields

Xos =W(B+W)∗B∗ + Cb
2B∗(WB+)∗W?.

We now have all the pieces necessary to create a pattern that describes the block
structure of all hereditary semiorders. We first note that a weak boundary with optional
interval may occur in the form Xso R

oXos, or we may place several copies of Xoo (with
weak boundaries with optional intervals on each side) in between the Xso and the Xos.
This means we will need to see Xso R

o
(Xoo R

o
)∗Xos in the overall pattern. Since there may

be multiple strong boundaries before the first weak boundary with optional interval, the
overall pattern must begin X ∗ss. We need another occurrence of X ∗ss along with the pattern
containing weak boundaries with optional intervals in order to allow weak boundaries with
optional intervals to be separated by a combination of strong and weak boundaries. Thus,
the pattern that accounts for all hereditary semiorders is

H = (Xss |)∗(Xso R

o
(Xoo R

o
)∗Xos |(Xss |)∗)∗.

Note that H allows for the empty pattern, which is how we will account for T0 when
converting this pattern into a generating function.

Translation of the +, ∗, and ? used in our patterns into generating functions is rel-
atively straightforward. For readers unfamiliar with the use of generating functions to
enumerate strings or sequences in this manner, a good introduction is provided by Wilf
in [30]. If F is a pattern with generating function F (x), then F∗ has generating function
1/(1− F (x)), F+ has generating function F (x)/(1− F (x)), and F? has generating func-
tion (1 +F (x)). The other piece that will require attention is the boundaries, but first we
will proceed to determine the generating functions for W , U , C, B, and Cb

2, since those
are the atomic pieces of the patterns here. (The patterns developed so far do not involve
C or U alone, but we will require these when considering the case of dimension at most 2
in the next section.)

Because our patterns above are built on the assumption of weak boundaries between
blocks unless we specify a strong boundary or weak boundary with optional interval, we
will build our generating functions for the blocks by assuming weak boundaries on each
end. This then has the effect of making each of our blocks appear to have two fewer
intervals in them than they would when occurring in isolation. For example, the smallest
C is Cb

2, which has 5 intervals. However, the lowest order term in C(x), the generating
function for C, will be x3. Throughout the following, we will use F (x) as the generating
function for the block or pattern F .

Recall that an interval order has duplicated holdings if and only if two points of the
interval order have the same interval in its minimal endpoint representation. Also, the
only way to create duplicated holdings in an ascent sequence is to have xi = xi+1. Thus,
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we may proceed to think about the blocks on the basis of no duplicated holdings and then
form the generating function by allowing repetition of terms in the ascent sequence to
allow for duplicated holdings. For conciseness as we do this, we will let f(x) = x/(1− x)
for the remainder of the paper.

When W b
k is preceded and followed by a weak boundary, we do not have length 0

intervals to concern ourselves with. The one that would be present at the left with a
strong boundary is simply never created, and the one that would be at the right with a
strong boundary is created by the ascent sequence from an earlier block and subsequently
moved into a later block. Thus, we are concerned with a subsequence of length k when
we work without duplicated holdings. The subsequence we must have is b, b+ 1, b+ 2, b+
3, . . . , b + k − 1, since each move b + i takes the interval of length 0 and shifts it to the
right while adding the interval [b+ i, b+ i+1]. Since k > 1, we know that the subsequence
is not empty. Thus, the generating function component we need here (before allowing for
duplicated holdings) is f/(1− f), since there is only one way to do things. Substituting
f(x) for f takes care of duplicated holdings for us, since we may repeat the integers from
b to b+ k − 1 provided they remain in increasing order and each integer appears at least
one time. Therefore, W (x) = f(x)/(1− f(x)).

Note that a U must have at least six intervals (and thus at least four must be accounted
for in our generating function). Also, the intervals appear in pairs. A U b

k following a weak
boundary is created by the subsequence b, b+ 1, b, b+ 1, . . . , b, b+ 1, where there are k− 1
appearances of b, b+ 1. This is because the b creates an interval with its left endpoint at
b and its right endpoint as far right as possible, and then the subsequent b + 1 produces
a Move 3 that truncates the interval created at the previous step to end at b + 1 and
stretches/shifts the other intervals of the block. Since k > 3, before duplicated holdings
here we have f 4/(1 − f 2), with the f 4 accounting for the initial b, b + 1, b, b + 1 and the
1/(1 − f 2) providing the subsequent pairs b, b + 1. Substituting f(x) for f takes care of
duplicated holdings and gives us U(x) = (f(x))4/(1− (f(x))2).

The situation for C is a slight modification of what we did for U above, since if the
subsequence ended with a b instead of a b+ 1, we would have the interval that spans the
length of the C. Thus, the subsequence correspondint to Cb

k must start b, b+ 1, b and then
have k − 2 pairs b+ 1, b following it. Since k > 2, we have f 3/(1− f 2) before addressing
duplicated holdings. Therefore C(x) = (f(x))3/(1− (f(x))2). The generating function of
Cb

2, which is required in Xoo and Xos, is (f(x))3. Since B merely stands for a C or a U ,
B(x) = U(x) + C(x), which simplifies to (f(x))3/(1− f(x)).

Assembling the generating function is now a matter of introducing additional factors
of f(x) for each strong boundary and each weak boundary with optional element, since we
known exactly what number must appear in the ascent sequence to produce the required
interval, but we may repeat it as many times as we like to account for duplicated holdings.
Therefore, we have the following:
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Xss(x) =f(x)(1 +W (x))
1

1− B(x)
1−B(x)

W (x)

1

1−B(x)

Xso(x) =f(x)(1 +W (x))
1

1− B(x)
1−B(x)

W (x)

B(x)

1−B(x)

Xoo(x) =f(x)W (x)
1

1− B(x)
1−B(x)

W (x)

B(x)

1−B(x)
+ f(x) · (f(x))3 · 1

1−B(x)

1

1−W (x) B(x)
1−B(x)

Xos(x) =f(x)W (x)
1

1− B(x)
1−B(x)

W (x)

1

1−B(x)

+ f(x) · (f(x))3 · 1

1−B(x)

1

1−W (x) B(x)
1−B(x)

(1 +W (x))

H(x) =f(x)
1

1−Xss(x)

1

Xso(x)
1

1−Xoo(x)
Xos(x) 1

1−Xss(x)

After fully substituting, we conclude that this section has proved the following theo-
rem:

Theorem 18. The generating function for the number of hereditary semiorders with n
points is

H(x) =
−x5 + 9x4 − 12x3 + 6x2 − x

x5 − 14x4 + 29x3 − 23x2 + 8x− 1
.

A table of values and discussion of asymptotics will be deferred to section 6, after we
have completed our enumeration of the semiorders of dimension at most 2.

5 Enumeration of Dimension 2 Semiorders

The previous section has completed much of the work required for the enumeration of the
semiorders of dimension at most 2, since we have the necessary components to address
each of the block types. However, the rules for combining the blocks in this case are
different. On one level, things get simpler, because we no longer are allowed to have weak
boundaries with optional elements. However, the third statement of Theorem 17 places
significant restrictions on how a C may appear in the block structure of a semiorder of
dimension at most 2. We can use this to our advantage, however, since an interior C must
have a T b

1 as a neighbor on (at least) one side, which means that interior C must appear
adjacent to a strong boundary.

We proceed by considering what can happen between occurrences of T1. The first pat-
tern we consider represents when there are no strong boundaries between two appearances
of T1 (other than the strong boundaries necessitated by the T1s). We call this pattern
A0. Because the blocks on either side of A0 are T1, we are allowed the option of a C as
the first block of A0 or as the last block of A0, but we may not have a C anywhere else

the electronic journal of combinatorics 27(1) (2020), #P1.50 25



inside A0. What appears between these two possible C must be a mix of W and U , all
combined by weak boundaries. Thus, the interior must take the form U∗(WU+)∗W?. It
is tempting to sandwich this pattern between two C? and be done, but that would give us
two distinct ways of getting a C by itself, which we cannot allow. Thus, our definition is

A0 = C?
〈
U∗(WU+)∗W?

〉
C? + CC?,

where the 〈·〉 indicates that we do not allow the enclosed portion of the pattern to be
empty. (This is readily accomplished in the generating function by subtracting 1 from
the factor that would otherwise be present.)

Next, we consider what happens when there are strong boundaries that occur between
the T1s. The argument is essentially the same as before, giving rise to the pattern

As =
〈
C?U∗(WU+)∗W?

〉
|
〈
U∗(WU+)∗W? |

〉∗ 〈W?(U+W)∗U∗C?
〉
.

If we define A = A0+As, then A represents whatever can occur between two non-adjacent
T1 in a semiorder of dimension at most 2. This tells us that the pattern D that represents
all semiorders of dimension at most 2 is

D = (A|)?(T+
1 |A)∗T ∗1 .

The conversion to a generating function proceeds as in the previous section, including
the introduction of an initial factor of f(x) to account for the interval [0, 0]. Since the
pattern D can be empty, this factor will account for T0 (and duplicated holdings). We
do need the generating function to introduce for T+

1 and T ∗1 . Because the subsequence
required is prescribed and does not involve any repetitive structure, we conclude that the
former is f(x)/(1−f(x)), while the latter is 1+(f(x)/(1−f(x))). After fully substituting
and simplifying, we can therefore conclude the following theorem.

Theorem 19. The generating function for the number of semiorders of dimension at
most 2 with n points is

D(x) =
−5x8 + 41x7 − 101x6 + 129x5 − 96x4 + 42x3 − 10x2 + x

7x8 − 66x7 + 197x6 − 311x5 + 294x4 − 172x3 + 61x2 − 12x+ 1
.

6 Conclusion

Exact and Asymptotic Values

Recalling that the number of semiorders on n points is the nth Catalan number, we can
use SageMath [24] and the generating functions from Theorems 18 and 19 to calculate the
number of semiorders on n points, the number of hereditary semiorders on n points, the
number of semiorders of dimension at most 2 on n points, and the number of semiorders
of dimension 3 on n points. These values are shown in Table 1, with the second line of
each column header giving the sequence number in the Online Encyclopedia of Integer
Sequences.
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n Semiorders Hereditary dim 6 2 dim = 3
A000108 A293499 A293498 A293501

1 1 1 1 0
2 2 2 2 0
3 5 5 5 0
4 14 14 14 0
5 42 42 42 0
6 132 132 132 0
7 429 428 426 3
8 1,430 1,415 1,390 40
9 4,862 4,730 4,544 318
10 16,796 15,901 14,822 1,974
11 58,786 53,593 48,183 10,603
12 208,012 180,809 156,118 51,894
13 742,900 610,157 504,487 238,413
14 2,674,440 2,058,962 1,627,000 1,047,440
15 9,694,845 6,947,145 5,240,019 4,454,826
16 35,357,670 23,437,854 16,861,453 18,496,217
17 129,644,790 79,067,006 54,228,190 75,416,600
18 477,638,700 266,717,300 174,351,450 303,287,250
19 1,767,263,190 899,693,960 560,481,708 1,206,781,482
20 6,564,120,420 3,034,814,143 1,801,653,769 4,762,466,651
21 24,466,267,020 10,236,853,534 5,791,301,311 18,674,965,709
22 91,482,563,640 34,530,252,629 18,615,976,402 72,866,587,238
23 343,059,613,650 116,475,001,757 59,841,686,254 283,217,927,396
24 1,289,904,147,324 392,885,252,033 192,366,897,839 1,097,537,249,485
25 4,861,946,401,452 1,325,253,166,761 618,392,292,337 4,243,554,109,115

Table 1: Exact counts of the various classes of semiorders

An asymptotic analysis of the coefficients of the rational generating functions derived
above is a straightforward application of the techniques of section IV.5 of [12] by Fla-
jolet and Sedgewick. The poles of H(x) are 1 and approximately 0.29646, 11.681, and
0.51131 ± 0.16533i. Thus, the number of hereditary semiorders on n points is asymp-
totically 0.08346 · 3.373133n. The poles of D(x) are approximately 0.311065, 5.60822,
0.456557 ± 0.123792i, 0.536649 ± 0.24759i, and 0.761438 ± 0.68404i. Thus, the number
of semiorders of dimension at most 2 on n points is asymptotically 0.12958 · 3.2148n. For
comparison, recall that the Catalan numbers are asymptotically 4n/(n3/2

√
π).

No Duplicated Holdings

As discussed in the arguments that led to Theorems 18 and 19, we use f(x) = x/(1− x)
in the construction of the generating functions to allow for consecutive appearances of an
integer in the ascent sequences and therefore duplicated holdings in the poset. If, instead,
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we write those generating functions in terms of the variable f (replacing any explicit
occurrence of f(x) by f), we then have the following corollary.

Corollary 20. The ordinary generating functions for the number of hereditary semiorders
with no duplicated holdings (HN(f)) and the number of semiorders of dimension at most
2 with no duplicated holdings (DN(f)) are

HN(f) =
f 5 − f 4 + 2f 2 − f

2f 4 − 2f 3 − f 2 + 3f − 1

and

DN(f) =
−f 8 + f 7 − f 6 + f 4 − 3f 3 + 3f 2 − f

f 8 − f 7 + f 6 − f 5 + f 4 + 2f 3 − 5f 2 + 4f − 1
.

Restricted Ascent Sequences

As mentioned in the introduction, Kitaev and Remmel showed in [20] that the Catalan
numbers enumerate a nicely-defined subset of ascent sequences. They called an ascent
sequence (x1, . . . , xn) a restricted ascent sequences if x1 = 0 and for all i with 2 6 i 6 n,
m−1 6 xi 6 1+asc((x1, . . . , xi−1)), wherem is the largest term in (x1, . . . , xi−1). However,
they also showed that the restricted ascent sequences do not correspond to the semiorders
under the bijection Ψ. The ascent sequence (0, 1, 0, 1, 2, 0, 2) of Figure 8 corresponds to
a semiorder, but the ascent sequence is not restricted. The sequence (0, 1, 0, 1, 0, 1, 2)
is a restricted ascent sequence, but it is easy to verify that it does not correspond to a
semiorder. While we are not able at this time to fully characterize the interval orders
corresponding to restricted ascent sequences, we do have the following theorem as fairly
direct consequence of our earlier work.

Theorem 21. Let P be a semiorder and (x1, . . . , xn) = Ψ(P ) the corresponding ascent
sequence. The sequence (x1, . . . , xn) is a restricted ascent sequence if and only if P is
hereditary.

Proof. When P is hereditary, the fact that (x1, . . . , xn) is a restricted ascent sequence
follows primarily from the proof of the block structure in Theorem 10 and the proof of
the enumeration of hereditary semiorders in Theorem 18. We have given the values of
`∗(Qi), where Qi = Ψ−1((x1, . . . , xi)) in the proof of Theorem 10. Using the proof of
Theorem 18, It is straightforward to verify that if the last block is T b

1 , Cb
a, or U b

a, then
the maximum value m in the ascent sequence is b+ 1. If the last block is W b

a and a > 1,
then m = b + a − 1. If the last block is W b

1 , then m = b + 1 if the preceding boundary
is strong and m = b if the preceding boundary is weak. Since the only time we can add
an interval that extends to the left of b in a hereditary semiorder in any of these cases is
when the last block is W b

1 and we are adding the optional interval, we thus can see by
induction that (x1, . . . , xn) is a restricted ascent sequence.

For the converse, we consider a minimal counterexample. That is, we assume that
(x1, . . . , xn) is a restricted ascent sequence corresponding to a semiorder but that it is not
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hereditary. Hence there is an integer k < n such that for all i 6 k, Qi = Ψ−1((x1, . . . , xi))
is a semiorder but Qk+1 = Ψ−1((x1, . . . , xk+1)) is not a semiorder. By what we have
assumed, we know that Qk is a hereditary semiorder. Therefore, Theorem 10 describes
its block structure. If the last block is T b

1 , Cb
a, or U b

a, then maxi : 16i6k xi = b + 1. Thus,
xk+1 > b, since we are working with a restricted ascent sequence. If xk+1 = b, then Move

1 is used, which cannot create a 1 + 3 here. From the proof of Theorem 10, we also know
that if xk+1 ∈ {b+ 1, b+ a, b+ a+ 1}, then Qk+1 is a semiorder. This leaves us to consider
a > 3, b+ 2 6 xk+1 < b+ a, and the last block U b

a or Cb
a. Here, the Move 3 leaves us with

[b+ 1, b+ 2] in the interior of [b, b+ a], which results from stretching [b, b+ a− 1]. Since
neither of these intervals reaches to the largest right endpoint of the minimal endpoint
representation, this containment relationship cannot be changed, and Ψ−1((x1, . . . , xn))
cannot correspond to a semiorder. When the last block is W b

a with a > 1, then the fact
that m = b+a−1 prevents us from adding an interval that contains another in its interior.
When the block structure of Qk ends |W b

1 , we have that m = b + 1, and thus we cannot
add an interval creating a 1 + 3. When the block structure of Qk ends with W b

1 preceded
by a weak boundary (with or without optional interval), m = b. The largest interval we
can thus add, given we have a restricted ascent sequence, is [b − 1, b + 1], which does
not create a 1 + 3 because the interval [b, b] is not present. Therefore, a counterexample
cannot exist, and our proof is complete.

Open Questions

We close with some possible interesting directions for future work. One would be to
consider other classes of combinatorial objects equinumerous to interval orders and ascent
sequences to see if there is another natural way to construct a bijection between interval
orders and ascent sequences in such a way that every initial subsequence of an ascent
sequence corresponding to a semiorder is one that also corresponds to a semiorder. Put
another way, can we find a bijection Φ from interval orders to ascent sequences so that
replacing Ψ by Φ in Definition 6 leads to all semiorders being hereditary?

Theorem 21 shows that the restricted ascent sequences defined by Kitaev and Remmel
in [20] that correspond to semiorders give rise to precisely the hereditary semiorders.
We have left open the question of characterizing all interval orders that correspond to
restricted ascent sequences.

Another direction of interest would be to discover more enumerative results involving
more global poset statistics. Most of the recent restricted enumeration results focus on
statistics that do not appear frequently in the poset literature. (The exceptions being the
work of Khamis in [19] and Hu in [15], where height was the driving statistic.) Given an
interval representation, the width of an interval order is easy to calculate. An enumeration
of interval orders (or semiorders) by width would be of interest. Dimension would be
another natural parameter to attempt enumeration by, but since the dimension of interval
orders is unbounded, the problem is likely very hard.
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