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Abstract

We examine Borel subgroup orbits in the classical symmetric space of type CI,
which are parametrized by skew-symmetric (n, n)-clans. We describe bijections
between such clans, certain weighted lattice paths, and pattern-avoiding signed
involutions, and we give a cell decomposition of the symmetric space in terms of
collections of clans called sects. The largest sect with a conjectural closure order is
isomorphic (as a poset) to the Bruhat order on partial involutions.

Mathematics Subject Classifications: 05A15, 14M15, 14M17

1 Introduction

Let G be simple algebraic group of classical type (SLn, SOn, or Sp2n) over the complex
numbers, and θ an automorphism of G of order two. Then we call the fixed point subgroup
L := Gθ a symmetric subgroup and G/L a symmetric space of classical type. If B is a
Borel subgroup of G, then B acts on G/L with finitely many orbits ([11]). The study
of Borel orbits and their closures in symmetric spaces imitates and generalizes the study
of Borel orbits in flag varieties, bearing comparable combinatorial richness. However,
for only three types of classical symmetric spaces, L happens to be a Levi subgroup of a
(maximal) parabolic subgroup P ; these are listed in Table 1 below. This makes it possible
to relate the geometry and combinatorics of B-orbits in G/L to those in G/P , via the
(B-equivariant) canonical projection map, π : G/L→ G/P .

In each of these cases, the homogeneous space G/P parametrizes vector subspaces
of Cn or C2n which are isotropic with respect to a particular bilinear form, and is often
called an (isotropic) Grassmannian manifold/variety. Indeed, the relevant symmetric
spaces are those which are associated to a polarization of the appropriate vector space;
see [7] §11.3.5. The B-orbits of a Grassmannian are called Schubert cells, as they are
known to give a cell decomposition and an additive basis for (co)homology of the space
G/P . Schubert cells can be parametrized by certain lattice paths which are also a tool
for understanding their geometry.
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Type Symmetric Pair B-orbits parametrized by G/P

AIII (SLp+q, S(GLp ×GLq)) (p, q)-clans Gr(p,Cp+q)
CI ( Sp2n, GLn ) skew-symmetric (n, n)-clans Λ(n)
DIII ( SO2n, GLn) “type DIII” (n, n)-clans OGr(n,C2n)

Table 1: Classical symmetric subgroups which are also spherical Levi subgroups.

B-orbits in G/L are parametrized by objects dubbed clans in [10], which have mor-
phed in their development through subsequent works, notably [19], [16], and [4]. In [2],
it was shown that π gives G/L the structure of an affine bundle over G/P , and that
the pre-images of Schubert cells provide a cell decomposition of G/L. This is used to
conclude that the integral Chow rings and cohomology rings of G/L are isomorphic. The
type AIII case is also treated in detail there, where the pre-images of Schubert cells in
the Grassmannian of p-planes in Cp+q, denoted Gr(p,Cp+q), are comprised of collections
of (p, q)-clans called sects. Each sect contains a unique closed B-orbit and a unique dense
B-orbit. The closures of the dense B-orbits of each sect form a generating set for the
integral Chow ring A∗(G/L), akin to Schubert varieties.

In this paper, we apply the ideas of [4] and [2] to the symmetric space of type CI,
wherein the ambient group is the symplectic group Sp2n and the symmetric subgroup
is isomorphic to GLn. Our first result is Theorem 3.14, which counts Borel orbits in
these symmetric spaces by providing a bijection between the parametrizing set of “skew-
symmetric” (n, n)-clans and a set of pattern-avoiding signed involutions with known
generating function. In Section 4, we describe another bijection of skew symmetric (n, n)-
clans with a certain class of weighted (n, n) Delannoy paths. These are lattice paths in
the plane from the origin to the point (n, n), consisting only of north, east, and northeast
diagonal steps, where the diagonal steps can have certain whole number weights.

In Section 5, we describe the sects over the Schubert cells of the Lagrangian Grass-
mannian Λ(n), which is the moduli space of maximal isotropic subspaces of the vector
space C2n with symplectic form Ω. This proceeds in a fashion similar to the type AIII
case described in [2], where it was also shown that the pre-image of the dense Schu-
bert cell, called the big sect, is isomorphic as a poset to the rook monoid Rn with the
Bruhat-Chevalley-Renner order. That result relied on a combinatorial description, given
by Wyser in [17], of the closure order on B-orbits in the type AIII symmetric space.

For a classical symmetric space whose B-orbits are parametrized by a certain family
of clans, one can describe the closure poset of clans by the order relation

γ 6 τ ⇐⇒ Qγ ⊆ Qτ

for clans γ, τ , with corresponding B-orbits Qγ, Qτ . If X is a classical symmetric space
of type B, C, or D, then X embeds in some symmetric space X ′ of type AIII. The
clans parametrizing B-orbits in X can then be viewed as a subset of the (p, q)-clans
parametrizing B′-orbits in X ′, where B′ is a Borel subgroup of SLp+q and B is the
intersection of B′ and the relevant symplectic or special orthogonal subgroup. This
reflects the fact that a B-orbit in X indexed by a clan γ is exactly the intersection of X
with the B′-orbit of X ′ corresponding to the same clan ([16], Theorem 1.5.8).

From this, one could hope that the closure order on clans in a type B-C-D symmetric
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space would simply be the restriction of the relevant type AIII closure order. This has
been conjectured to be the case in types BI, CI, and CII, but it is known to fail in
types DI and DIII ([18], §3.2.2). For this, among other reasons, the analysis for the
type DIII symmetric space warrants separate treatment. Nevertheless, there is a weak
order on clans of a given type, whose order relations are contained within the full closure
order, and which can be used to recover the closure order through a simple recursive
procedure (see [12]). But the procedure does not appear to easily prove the conjectural
closure order for type CI, so we proceed without it.

Our main result of Section 6 says that the big sect over Λ(n) with the conjectural
closure order is isomorphic, as a poset, to the partial involutions on n letters Pn with
the Bruhat order of [1]. The order relations of the latter poset are given by the closure
order on congruence orbits of upper triangular matrices acting on symmetric matrices,
and they have a convenient combinatorial description which is provided below. A ge-
ometric argument explaining this coincidence and verifying that the closure relations
within the big sect are indeed those of the congruence action will appear in the first
author’s Ph.D. thesis, along with analogous arguments for the two types. In type DIII,
the orthogonal Grassmannian OGr(n,C2n) of maximal isotropic subspaces with respect
to a non-degenerate, symmetric, bilinear form appears as the base space of the bundle
π : G/L → G/P . Combinatorial analysis and description of the sects for this case will
appear in forthcoming work from the authors.

2 Notation and Preliminaries

All matrix groups in this paper are taken to have entries in the field of complex numbers.
Let n be a positive integer. First, we must describe our realization of the type CI
symmetric pair (Sp2n, GLn), borrowing notation from [16]. Let Jn denote an n × n
matrix with 1’s along the anti-diagonal and 0’s elsewhere. Let

Ω =

(
0 Jn
−Jn 0

)
.

Then we set
G := Sp2n = {g ∈ GL2n | gtΩg = Ω}. (2.1)

Let int(g) : GL2n → GL2n denote the map defined by

int(g)(h) = ghg−1.

Now define the matrix

In,n :=

(
In 0
0 −In

)
,

where In denotes the n × n identity matrix. Then we have an automorphism θ of order
two on GL2n defined by θ := int(iIn,n). Indeed, (iIn,n)−1 = −iIn,n, so if

g =

(
A B
C D

)
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is the n× n block form of g, we have

θ(g) =

(
iIn 0
0 −iIn

)(
A B
C D

)(
−iIn 0

0 iIn

)
=

(
A −B
−C D

)
.

Observe that the restriction of θ to Sp2n induces an order two automorphism on this
group as well, since iIn,n ∈ Sp2n. The fixed points of θ must be block diagonal, that is

θ(g) = g ⇐⇒ g =

(
A 0
0 D

)
,

while membership in a symplectic group also forces D = Jn(A−1)tJn. Thus, A can be any
invertible n × n matrix, and this completely determines g, so the fixed point subgroup
L := Gθ is isomorphic to GLn, giving a type CI symmetric pair.

Now, let us give a brief description of our involution notation. The symmetric group
of permutations on [n] := {1, . . . , n} is denoted by Sn. For instance,

π = (2, 6)(3, 4)(5, 7)(1)(8)

is an example of a permutation from S8 which is written in cycle notation. If π ∈ Sn, then
its one-line notation is the string π1π2 . . . πn, where πi = π(i) for 1 6 i 6 n. Based on
this description, it is easy to see that the π given above can be written as π = 16437258
in one-line notation.

An involution is an element of Sn of order at most 2, and the set of involutions in Sn
is denoted by In. Let π ∈ In be an involution. Since we often need the data of fixed
points (1-cycles) of π, we always include them when writing π in cycle notation. Thus,
our standard form for π will be

π = (a1, b1)(a2, b2) . . . (ak, bk)(d1) . . . (dn−2k),

where ai < bi for all 1 6 i 6 k, a1 < a2 < · · · < ak, and d1 < · · · < dn−2k. The example
π ∈ S8 above is written in standard form.

Definition 2.1. A signed (p, q)-involution is an involution π ∈ Ip+q with an assignment
of + and − signs to the fixed points of π such that there are p − q more +’s than −’s,
where q 6 p.

For example, π = (2, 6)(3, 4)(5, 7)(1−)(8+) is a signed (4, 4)-involution. Observe here
that p is equal to the number of fixed points in π with a + sign attached plus the number
of two-cycles in π, while q is equal to the number of fixed points in π with a − sign
attached plus the number of two-cycles in π. Next, we present (p, q)-clans.

Definition 2.2. Let p and q be two positive integers and set n := p + q. Suppose that
q 6 p. A (p, q)-clan γ = c1 · · · cn is a string of n symbols from N ∪ {+,−} such that

1. there are p− q more +’s than −’s;

2. if a natural number appears in γ, then it appears exactly twice.
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For example, 12+21 is a (3, 2)-clan and +1+1 is a (3, 1)-clan. We consider clans γ
and γ′ to be equivalent if the positions of every pair of matching numbers are the same
in each. For example, γ := 1122 and γ′ := 2211 are the same (2, 2)-clan, since both γ
and γ′ have matching numbers in the positions (1, 2) and (3, 4).

If γ = c1 · · · cn, then the reverse of γ, denoted by rev(γ), is the clan

rev(γ) = cncn−1 · · · c1.

We take −γ to be the clan obtained from γ by changing all +’s to −’s, and vice versa.

Definition 2.3. A (p, q)-clan γ is called skew-symmetric if

γ = −rev(γ).

It is clear that skew-symmetric (p, q)-clans are only possible when p = q. Let us
illustrate this definition with the following examples.

Example 2.4. Consider the clan γ = +−123312+− which has rev(γ) = −+213321−+.
Since γ = −rev(γ), it is a skew-symmetric (5, 5)-clan.

The clan τ = 1234545321 is a skew-symmetric (5, 5)-clan as well. In fact, since it has
no ± symbols, rev(τ) = −rev(τ).

There is a bijection between (p, q)-clans and signed (p, q)-involutions; detailed proof
can be found in [4]. Returning to our first example, the signed (4, 4)-involution

π = (2, 6)(3, 4)(5, 7)(1−)(8+)

can be regarded as the (4, 4)-clan −122313+. This is accomplished by placing matching
natural numbers at the positions that appear in each transposition, and placing the
signature + or − at the position of each signed fixed point. Observe here that p is equal to
the number of fixed points in π with a + sign attached plus the number of two-cycles in π,
while q is equal to the number of fixed points in π with a − sign attached plus the number
of two-cycles in π. In the opposite direction, for example, the skew-symmetric (5, 5)-clan
τ = 1234545321 becomes the signed (5, 5)-involution (1, 10)(2, 9)(3, 8)(4, 6)(5, 7).

3 Counting Skew-Symmetric (n, n)-Clans

If B is a Borel subgroup of Sp2n, then the B-orbits of the classical symmetric space
Sp2n/GLn are parameterized by skew-symmetric (n, n)-clans ([19], Theorem 3.2.11).
Here, we obtain a formula for the number of Borel orbits in a type CI symmetric space
by counting skew-symmetric clans.

Let Zn denote the set of all skew-symmetric (n, n)-clans and Zn denote its cardinality.
Let ζk,n denote the number of such clans which contain k pairs of natural numbers. In
order to count Zn, first we will count ζk,n.

To determine an (n, n)-clan with k pairs of natural numbers involves a placement of
± symbols in 2n− 2k spots. By skew-symmetry, it is enough to focus on the first half of
the string of length 2n. Then, there are n− k spots among the first half which can be +
or −, giving 2n−k possibilities. We have just proved the following lemma:
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Lemma 3.1. There are 2n−k ways of placing ± symbols among 2n − 2k spots to obtain
skew-symmetric (n, n)-clans with k pairs of matching natural numbers.

Remark 3.2. Definition 2.3 implies that the number of + signs among the first n symbols
of a given skew-symmetric (n, n)-clan must equal to the number of − signs among the
last n.

Remark 3.3. The number of pairs of natural numbers in an (n, n)-clan is, of course,
bounded between 0 and n.

Our next task is to determine the number of possible ways of placing k pairs of natural
numbers to build a skew-symmetric (n, n)-clan γ = c1 · · · cncn+1 · · · c2n. Together with
the lemma, this will yield our main result for this section.

Theorem 3.4. For every nonnegative integer k with k 6 n, we have

ζk,n = 2n−k
(
n

k

)
ak, where ak :=

bk/2c∑
b=0

(
k

2b

)
(2b)!

b!
, (3.1)

so that

Zn =
n∑
k=0

ζk,n =
n∑
k=0

2n−k
(
n

k

)
ak.

Proof. Let us first define the following interrelated sets:

Π1,1 := {((i, j), (2n+ 1− j, 2n+ 1− i)) | 1 6 i < j 6 n},
Π1,2 := {((i, j), (2n+ 1− j, 2n+ 1− i)) | 1 6 i 6 n < j 6 2n},

Π1 := Π1,1 ∪ Π1,2,

Π2 := {(i, j) | 1 6 i 6 n < j 6 2n, i+ j = 2n+ 1}.

Given a skew-symmetric (n, n)-clan γ, Π1 is the set of possible placeholders for two dis-
tinct pairs of natural numbers that determine each other in γ. We will refer to these
pairs of pairs as families, after [10]. The set Π2 corresponds to the list of possible
“stand-alone” pairs in γ.

If (ci, cj) is a pair of matching natural numbers in the skew-symmetric clan γ and if
(i, j) is an element of Π2, then we call (ci, cj) a pair of type Π2. If

((ci, cj), (c2n+1−j, c2n+1−i))

is a family in a skew-symmetric clan γ and if ((i, j), (2n+ 1− j, 2n+ 1− i)) ∈ Π1,s

(s ∈ {1, 2}), then we call it a family of type Π1,s.
To illustrate these sets, consider the (7, 7)-clan

1+134−55+342−2.

For this clan, ((c1, c3), (c12, c14)) is a type Π1,1 family, ((c4, c10), (c5, c11)) is a type Π1,2

family, and (c7, c8) is a Π2 pair.
Clearly, if a clan γ has b many families and a many Π2 pairs, then 2b + a = k is the

total number of pairs in our skew-symmetric clan γ. To see how many different ways
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there are in which these pairs of indices can be situated in γ, we start by choosing k
spots from the first n positions in γ = c1 · · · c2n. Obviously, this can be done in

(
n
k

)
many

different ways, and each choice made in the first half determines the second half of the
clan uniquely.

There are
(
k
2b

)
possibilities for choosing which of these k spots will be occupied by

symbols from families. Then, we form b pairs among these 2b elements which can be
done in (2b)!

b!2b
ways. But each of these pairs can either be in a Π1,1 family or a Π1,2, family,

so we multiply by these 2b additional options, resulting in a factor of (2b)!
b!

. Observe that
choosing these pairs is equivalent to choosing (i, j) for the families in Π1,1 and choosing
(i, 2n + 1 − j) for the families in Π1,2. Once this is done, finally, the remaining k − 2b
spots will be filled by the first symbols of the a pairs of type Π2. This can be done in
only one way.

Therefore, in summary, the number of different ways of placing k pairs to build a
skew-symmetric (n, n)-clan γ is given by

(
n

k

) b k2c∑
b=0

(
k

2b

)
(2b)!

b!
, or equivalently,

(
n

k

) b k2c∑
b=0

(
k

2b

)(
2b

b

)
b!.

Combining this with Lemma 3.1 yields the formula for ζk,n.

Remark 3.5. By a straightforward calculation, it is easy to check that the recurrence

ak = ak−1 + 2(k − 1)ak−2, (3.2)

holds for all k > 2, with a0 = a1 = 1.

Example 3.6. All the possible skew-symmetric (3, 3) clans are:

−−−+++,+++−−−,++−+−−,+−+−+−,−++−−+,−−+−++,
−+−+−+,+−−++−, 1++−−1,+1+−1−,++11−−, 1−−++1,
−1−+1+,−−11++, 1+−+−1, 1−+−+1,−1+−1+,+1−+1−,

+−11+−,−+11−+,+1122−, 11−+22, 1−12+2,−1122+, 12+−12,
−1212+, 12−+12, 1+21−2,+1212−, 1+12−2, 11+−22, 12+−21,
1+22−1,+1221−, 12−+21, 1−22+1,−1221+, 1−21+2, 123321,

123123, 121323, 123231, 112233, 123312, 122331.

Thus, there are 45 skew-symmetric (3, 3) clans.

The first few values of Zn are 1, 3, 11, 45, 201, 963, 4899, 26253, 147345, 862083, . . . This
is also the number of signed involutions on 2n letters that are equal to their reverse-
complements and avoid the pattern 2̄1̄ ([13], A083886). We will refer such objects as
restricted involutions and explain the terminology used to define them in the next sub-
section.

3.1 Restricted Involutions

In this section, we will show that the elements of Zn are in one-to-one correspondence
with the set of restricted involutions În, which we introduce below. Our main reference
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for this section is [20]. Recall that the elements of the hyperoctahedral group Cn can
be considered as signed permutations and written as π̂ = π̂(1)π̂(2) . . . π̂(n), where each
of the symbols 1, 2, . . . , n appears, possibly barred to indicate a negative. For instance,
there are 8 elements in C2, which are 12, 12̄, 1̄2, 1̄2̄, 21, 21̄, 2̄1, and 2̄1̄, in one-line notation.

We define the absolute value of each symbol π̂(i) by

|π̂(i)| =

{
π̂(i) if π̂(i) is positive,

π̂(i) otherwise,

for any 1 6 i 6 n and define the absolute value of a signed permutation π̂ as the one
obtained by taking the absolute value of each of its entries. For example, if π̂ = 12 then

|π̂| = 12. Indeed, since 1 = 1, we have |π̂(1)| = 1.

Definition 3.7. Let ρ̂ ∈ Ck and π̂ ∈ Cn. We say that π̂ contains a signed pattern ρ̂, or
is a ρ̂-containing signed permutation, if there is a sequence of k indices, 1 6 i1 < i2 <
· · · < ik 6 n such that two conditions hold:

1. |π̂(ip)| > |π̂(iq)| if and only if |ρ̂(p)| > |ρ̂(q)| for all k > p > q > 1;

2. π̂(ij) is barred if and only if ρ̂(j) is barred for all 1 6 j 6 k.

A signed permutation π̂ which does not contain such a pattern ρ̂ is said to avoid ρ̂.

For example, π̂ = 213̄4̄ ∈ C4 contains the signed pattern 1̄2̄ but does not contain the
pattern 12.

Definition 3.8. A signed involution on n letters is an element of Cn such that its cycle
representation contains cycles of either two unbarred symbols or two barred symbols.

We define two simple operations on signed permutations. Given π̂ = π̂(1)π̂(2) . . . π̂(n)
we consider the:

• Reverse permutation: Rev(π̂) = π̂(n) . . . π̂(2)π̂(1)

• Complement permutation: Comp(π̂) = ρ̂(1)ρ̂(2) . . . ρ̂(n) where ρ̂(i) = n + 1− π̂(i)
if π̂(i) > 0 and −(n+ 1) + π̂(i) otherwise.

These operations commute, allowing us to define our set of interest, called restricted
involutions.

Definition 3.9. A signed involution on 2n letters π̂ is called a restricted involution if it is
equal to its reverse complement and avoids the pattern 2̄1̄. The set of all such involutions
for fixed n will be denoted by În and its cardinality by În.

For example, 12, 1̄2̄, and 21 are the restricted involutions of C2, which are the members
of Î1. We will prove that În = Zn by exhibiting an explicit bijection between skew-
symmetric (n, n)-clans and the restricted involutions of C2n. This will allow us to make
use of a recurrence relation known for restricted involutions to give a generating function
for the number of skew-symmetric (n, n)-clans and the orbits they parametrize.

First, we state the recurrence relation;
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Proposition 3.10. Taking Î0 = 1 and Î1 = 3, the numbers În satisfy the following
recurrence relation;

În = 3În−1 + 2(n− 1)În−2,

for all n > 2.

Let us make the notion of the underlying involution of a clan precise. This is effectively
the associated signed (p, q)-involution mentioned at the end of Section 2, but without the
signs on the fixed points.

Definition 3.11. For a skew-symmetric (n, n)-clan γ = c1c2 . . . c2n, the associated un-
derlying involution π ∈ S2n is defined as follows:

1. π(i) = i if ci is either a + or a − for any i;

2. π(i) = j and π(j) = i if ci = cj ∈ N is a matching pair of natural numbers for any
i, j.

The following describes an algorithm for obtaining a restricted involution π̂ from a
skew-symmetric clan γ with underlying involution π by possibly applying negatives to
the symbols of π in its one-line notation.

(i) If ci = + for i 6 n (so, by skew-symmetry, c2n+1−i = −), keep

π̂(i) = i and π̂(2n+ 1− i) = 2n+ 1− i.

(ii) If ci = − for i 6 n (so, by skew-symmetry, c2n+1−i = +), take

π̂(i) = i and π̂(2n+ 1− i) = 2n+ 1− i.

(iii) If ci = cj ∈ N is a matching pair of natural numbers, then keep

π̂(i) = j and π̂(j) = i

for all i, j.

Example 3.12. Consider the skew-symmetric (2, 2)-clan γ = −11+ which has underlying
involution π = 1324 in one-line notation. Since c1 = − and c4 = +, by rule (ii) we will
have π̂(1) = 1 and π̂(4) = 4. Since c2 = c3 = 1, rule (iii) gives us π̂(2) = 3 and π̂(3) = 2.
It follows that the associated restricted involution is 1324.

Without trouble, this algorithm can be reversed to give a map from restricted involu-
tions to clans, under which each restricted involution π̂ will correspond to a unique clan
γ. For a given π̂ = π̂(1)π̂(2) . . . π̂(2n), we define the reverse algorithm as follows.

(i) If π̂(i) = i for any 1 6 i 6 n, then π̂(2n+ 1− i) = 2n+ 1− i because

π̂ = Rev(Comp(π̂)).

Then the clan γ has ci = + and c2n+1−i = −.
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(ii) If π̂(i) = i for any 1 6 i 6 n, then π̂(2n+ 1− i) = 2n+ 1− i since

π̂ = Rev(Comp(π̂)).

Then the clan γ has ci = −and c2n+1−i = +.

(iii) If π̂(i) = j for any 1 6 i < j 6 2n, then ci = cj = a, where a ∈ N.

Remark 3.13. Notice that the case π̂(i) = j cannot occur in a restricted involution because
this would force π̂(j) = i, producing a 2̄1̄ pattern.

This algorithm and its reverse are clearly injective, so the fact that each restricted invo-
lution in În gives a skew-symmetric (n, n)-clan completes the bijection.

Theorem 3.14. Restricted involutions on 2n letters and skew-symmetric (n, n)-clans are
in bijection.

Corollary 3.15. Taking Z0 = 1 and Z1 = 3, the number of skew-symmetric (n, n)-clans
satisfies the recurrence relation

Zn = 3Zn−1 + 2(n− 1)Zn−2, (3.3)

and has exponential generating function

∞∑
n=0

Zn
xn

n!
= e3x+x2 . (3.4)

Proof. The recurrence relation appears for restricted involutions as Theorem 4.2 in [8].
The exponential generating function appears in the associated OEIS entry A083886.

++−− +−+− −+−+ −−++

+11− 1122 −11+

1+−1 1212 1−+1

1221

2 2 1 1 2 2

1 2 1

2 1 2

Figure 3.1: Closure orders on Z2
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3.2 Partial Orders on Skew-Symmetric Clans

In this subsection, we depict two important partial orders on Zn, namely the weak and
full (or Bruhat) closure orders. We refer the reader to [16] for explanation of the notation
and a full combinatorial description of the weak order, which is lengthy. The full closure
order can be obtained from the weak order by applying the recursive procedure described
in [12], which is implicit in the work of Richardson and Springer [14].

In the posets (see Figures 3.1 and 3.2), the black labelled edges are those which come
from the weak order, while dashed edges are only present in the Bruhat order.

4 A combinatorial interpretation

In this section, we describe a combinatorial set of objects whose cardinality is given by Zn.
Recall that an (n, n) Delannoy path is an integer lattice path from (0, 0) to (n, n) in the
plane R2 consisting only of single north, east, diagonally northeast steps. Alternatively,
one can consider strings from the alphabet {N,E,D} such that the number of N ’s plus
the number of D’s is equal to the sum of the E’s and D’s (which is equal to n). We will
denote the collection of such paths by D(n, n).

In [4], it was observed that the recurrence relation for the set of all (p, q)-clans bears
strong resemblance to the recurrence relation for the set of Delannoy paths from (0, 0)
to (p, q). On the basis of this observation, a bijection between (p, q)-clans and Delannoy
paths with certain weighted steps was established. Here, we provide a similar construction
for skew-symmetric (n, n)-clans, which is modified to satisfy the appropriate recurrence
(3.3) and so that the path associated to a closed orbit is the same as the path associated
to the corresponding Schubert cell (see Section 5.3). Although the skew-symmetric (n, n)-
clans form a subset of all (n, n)-clans, it is important to note that the paths produced
here are not a subset of those constructed in [4].

We produce an explicit bijection between the set of skew-symmetric (n, n)-clans Zn
and the set of Delannoy paths with certain labels which are defined as follows.

Definition 4.1. By a labeled step we mean a pair (L, l), where L ∈ {N,E,D} and l
is a positive integer such that l = 1 if L = N or L = E. A weighted (n, n) Delannoy
path is a word of the form W := W1 . . .Wr, where Wi’s (i = 1, . . . , r) are labeled steps
Wi = (Li, li) such that

• L1 . . . Lr is a Delannoy path from D(n, n).

• letting Wi1 . . .Wit be the subword consisting of all weighted steps which are not
(D, 1), then t is even. Further if Wi = (D, 1), then i > i t

2
.

• if Lij = N , then Lit+1−j = E and vice versa for 1 6 j 6 t.

• letting
di = #{k > i | Wk = (D, 1)},

and
mi = #{k < i | lk 6= 1},
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if lij 6= 1 (so Lij = D), then

Wit+1−j = (D, 2n+ 3− 2(ij +mij + dit+1−j)− (lij)),

for 1 6 j 6 t
2
.

The set of all weighted (n, n) Delannoy paths is denoted by Lw(n, n). The last condition,
together with the fact that weights must be positive, implies that 1 6 li 6 2n− 1 for any
i.

Theorem 4.2. There is a bijection between the set of weighted (n, n) Delannoy paths and
the set of skew-symmetric (n, n)-clans. In particular, we have

Zn =
∑

W∈Lω(n,n)

1.

Proof. Let en denote the cardinality of Lω(n, n). We will prove that the sequence of en’s
obeys the same recurrence as the Zn’s, and it satisfies the same initial conditions. Let
γ = c1 . . . c2n be an arbitrary skew-symmetric (n, n)-clan with associated signed (n, n)-
involution

π = (i1, j1) . . . (ik, jk)(d
s1
1 ) . . . (d

s2n−2k

2n−2k ), where s1, . . . , s2n−2k ∈ {+,−}.

First, we look at the position of 2n, which gives us four cases. If 2n appears as a fixed
point with a + sign, 1 must appear as a fixed point with a − sign by the skew-symmetry
condition. If this is the case, then we draw first an E-step between (n− 1, n) and (n, n)
and then an N -step between (0, 0) and (0, 1). We label both of these steps by 1 to turn
them into labeled steps. Next, we remove the fixed points 1 and 2n from π and shift the
remaining symbols down by 1 to obtain a signed (n− 1, n− 1)-involution corresponding
to a skew-symmetric clan. There are en−1 possible ways of completing the drawn steps
between (0, 1) and (n− 1, n) to an (n, n) Delannoy path.

In a similar manner, in case 2n appears as a fixed point with a − sign, 1 must appear
as a fixed point with a + sign. Then we draw an N -step between (n, n − 1) and (n, n)
and an E-step between (0, 0) and (1, 0), each with weight 1. Then there are again en−1

possible ways of completing these steps between (1, 0) and (n, n− 1) to a weighted (n, n)
Delannoy path.

Next, consider the case where 2n appears in a transposition (i, 2n) coming from a
family in the clan γ. Then there is a companion 2-cycle, which is necessarily of the form
(1, j) for j = 2n + 1 − i. So, we draw a D-step between (n − 1, n − 1) and (n, n) and
label this step by i, and draw another D-step between (0, 0) and (1, 1) and label this step
by j. Next we remove the two cycle (i, 2n) as well as its companion (1, j) from π. To
get rid of the gaps in the remaining numbers created by the removal of two 2-cycles, we
re-normalize the remaining entries by appropriately subtracting numbers so that in the
resulting object, which we denote by π(1), every number from {1, . . . , 2n − 4} appears
exactly once. It is easy to see that we then have a signed (n− 2, n− 2)-involution which
corresponds to a skew-symmetric (n− 2, n− 2)-clan. Now, it can occur that the label of
either drawn diagonal step can be any of the 2(n− 1) numbers from {2, . . . , 2n− 1}, but
the choice of one specifies the other as they must add to 2n+ 1. Finally, let us note that

the electronic journal of combinatorics 27(1) (2020), #P1.51 13



there are en−2 possible ways to complete these labeled diagonal steps between (1, 1) and
(n− 1, n− 1) to a weighted (n, n) Delannoy path.

As the final case, consider when 2n appears in transposition with 1. Then, we draw a
D-step between (n, n) and (n−1, n−1) and we label this step by 1. Then we remove the
2-cycle (1, 2n) from π, and to get rid of the gap created, we re-normalize the remaining
entries by subtracting 1 from each so that in the resulting object π(1), every number from
{1, . . . , 2n − 2} appears exactly once. Finally, let us note that there are en−1 possible
weighted paths from (0, 0) to (n− 1, n− 1) to complete this labeled diagaonal step to a
weighted (n, n) Delannoy path.

Combining our observations we see that a weighted (n, n) Delannoy path can be
obtained (by appending the initial or final weighted steps described above) from an
(n−1, n−1)-clan in 3 ways, or from an (n−2, n−2)-clan in 2n−2 different ways. Thus,
weighted (n, n) Delannoy paths satisfy the recurrence

en = 3en−1 + 2(n− 1)en−2. (4.1)

We can take e0 = 1, and it is easy to check e1 = 3, where the three paths are
(N, 1)(E, 1), (E, 1)(N, 1) and (D, 1). An explicit bijection is achieved by iterating the
steps above and removing entries from π at each stage to produce weighted steps. This
finishes our proof.

Let us illustrate our construction by an example.

Example 4.3. Let γ denote the skew-symmetric (5, 5)-clan

γ = +−123312+−,

and let π denote the corresponding signed involution

π = (3, 7)(4, 8)(5, 6)1+2−9+10−.

The steps of our constructions are shown in Figure 4.1.

One could describe the weak and full closure orders on B\Sp2n/GLn in terms of
weighted lattice paths with appropriate statistics. However, this rephrasing of the order
on clans does not seem to be as illuminating as it is for the order on Schubert cells in the
(Lagrangian) Grassmannian. Lattice paths associated to Schubert cells determine parti-
tion shapes, whence their closure order coincides with the order relations from Young’s
lattice (given by containment of partition shapes).

5 Sects

In this section, we will verify that the framework of [2], described in the introduction,
applies to the CI case.
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π = (3, 7)(4, 8)(5, 6)1+2−9+10−

π(1) = (2, 6)(3, 7)(4, 5)1−8+

1

1

π(1) = (2, 6)(3, 7)(4, 5)1−8+

π(2) = (1, 5)(2, 6)(3, 4)

1
1

1
1

π(2) = (1, 5)(2, 6)(3, 4)

π(3) = (1, 2)

1
1

1
1

2

5

π(3) = (1, 2)

π(4) = ·

1
1

1
1

2

5
1

Figure 4.1: Algorithmic construction of the bijection onto weighted Delannoy paths.

5.1 Parabolic Subgroups and Levi Factors

In order to present sects for skew-symmetric (n, n)-clans, we must visit the theory of
parabolic subgroups of symplectic groups. We refer to [9] for background theory.

Given a vector space V with bilinear form ω, recall that an isotropic subspace W is
one such that ω(u,v) = 0 for all vectors u,v ∈ W. If we also use ω to stand for the
matrix which represents this bilinear form in some chosen basis, this condition becomes
utωv = 0. A polarization of V is a direct sum decomposition of V into subspaces which
are each isotropic (with respect to ω), that is V = V− ⊕ V+.

Given a vector space V with bilinear form ω, we define an isotropic flag as a sequence
of vector spaces

{0} ⊂ V1 ⊂ . . . Vr ⊂ V

such that Vi is an isotropic subspace of V for all 1 6 i 6 r. Taking V = C2n, we
have a skew-symmetric bilinear form given by the same Ω which defines the symplectic
group. From [9], Proposition 12.13, the parabolic subgroups of G = Sp2n are precisely
the stabilizers of flags which are isotropic with respect to Ω.

Let En be the subspace of C2n generated by standard basis vectors ei, 1 6 i 6 n.
It is easy to check that this is an isotropic subspace of C2n with respect to Ω, and in
fact this subspace is maximally isotropic, or Lagrangian. The stabilizer of En (which is
the stabilizer of the the flag {0} ⊂ En ⊂ C2n) is the parabolic subgroup P consisting of
matrices with n× n block form

P =

{
p ∈ G

∣∣∣∣ p =

(
∗ ∗
0 ∗

)}
,Levi factor L =

{(
A 0
0 Jn(A−1)tJn

) ∣∣∣∣ A ∈ GLn} . (5.1)

the electronic journal of combinatorics 27(1) (2020), #P1.51 15



1
3

2
1

1 2
3

1

1
1

Figure 4.2: Weak order on Lω(2, 2)

See [9] p. 144 or [6] §8.1 for related discussion. Thus, we see that the Levi subgroup of
this parabolic subgroup coincides with the symmetric subgroup presented in Section 2.

There is also a polarization of C2n as

V = En
⊕

W,

where W is the subspace spanned by {en+1, . . . , e2n}. Notice that L is exactly the sta-
bilizer subgroup of this polarization, as it preserves each component. Since G = Sp2n

acts transitively on polarizations, we can identify G/L = Sp2n/GLn with the space of
polarizations of the symplectic vector space (C2n,Ω).

The upshot of this is that we have a G-equivariant projection map

π : G/L −→ G/P

which we can analyze. Let B be the Borel subgroup of upper triangular matrices in G
([9], p. 39). The B-orbits in G/P are collections of Lagrangian subspaces which form
Schubert cells, while B-orbits in G/L are collections of polarizations indexed by skew
symmetric (n, n)-clans. The equivariance of π allows us to ask precisely which clans
constitute the pre-image of a particular Schubert cell. We call such a collection of clans
the sect associated to the Schubert cell.

In [19], clans parametrize L-orbits in the isotropic flag variety G/B by encoding the
information of how flags in a given orbit intersect with each component of the reference
polarization En ⊕W .1 Recall that a full isotropic flag F• in C2n is a sequence of vector
subspaces {Vi}ni=0 such that

{0} = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn (5.2)

1See Definition 2.1.7 and Proposition 2.2.6 of the cited work for details.
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and dimVi = i for all i and Vn is a maximal isotropic subspace. We find it convenient to
write

F• = 〈v1,v2, . . . ,vn〉

to indicate that F• is the flag with Vi = span{v1, . . . ,vi} for all 1 6 i 6 n. Any full
isotropic flag is canonically extended to a full flag in C2n

{0} ⊂ V1 ⊂ . . . ⊂ V2n−1 ⊂ V2n = C2n

by assigning
V2n−i = V ⊥i := {v ∈ C2n | Ω(v,w) = 0, ∀w ∈ Vi},

so we may abuse notation slightly by using F• to refer to either presentation. For example,
the standard isotropic full flag is extended as

E• = 〈e1, . . . , en, en+1, . . . , e2n〉.

If g ∈ G is a matrix whose ith column is a vector vi, then one can obtain a full isotropic
flag from g by taking F• = 〈v1, . . . ,v2n〉. For example, the identity matrix I2n gives the
standard isotropic flag E•. All elements of the same (right) B-orbit give the same flag,
so one can identify the points of G/B with full isotropic flags with respect to Ω in C2n.

We must present a few definitions before describing the process of obtaining orbit-
rep-resentative flags; see also [2].

Definition 5.1. Given an (n, n)-clan γ = c1 · · · c2n, one obtains the default signed clan
associated to γ by assigning to ci a signature of − and to cj a signature of + whenever
ci = cj ∈ N and i < j. We denote this default signed clan as γ̃ = c̃1 · · · c̃2n.

Remark 5.2. Note that the definition above differs from Definition 3.2.8 of “skew-sym-
metric signed clan” given in [19], which makes the opposite choice. This will also affect
our statement of Yamamoto’s Theorem 3.2.11, given as Theorem 5.4 below.

For example, γ̃ = +1−2−1+2+− is the default signed clan of γ = +1212−. Every
symbol ci has a signature, which is just the symbol itself in case ci is + or −.

Definition 5.3. Given a default signed clan γ̃, define a permutation σ ∈ S2n which, for
i 6 n:

• assigns σ(i) = i and σ(2n+ 1− i) = 2n+ 1− i if ci is a symbol with signature +.

• assigns σ(i) = 2n+ 1− i and σ(2n+ 1− i) = i if ci is a symbol with signature −.

We call σ the default permutation associated to γ.

Note that σ is an involution, and is the σ′ which results from choosing σ′′ = id in the
context of [19], Theorem 3.2.11. For instance, +1212− has default permutation 154326
in one-line notation.
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5.2 Sects for Skew-Symmetric Clans

For this subsection, fix B as the Borel subgroup ofG = Sp2n consisting of upper triangular
matrices, and P and L as defined by the condition (5.1). The following is a specialization
of [19] Theorem 3.2.11, which gives representative flags for L-orbits in the isotropic flag
variety G/B.

Theorem 5.4. Given a skew-symmetric (n, n)-clan γ = c1 · · · c2n with default permuta-
tion σ, define a flag F•(γ) = 〈v1, . . . ,v2n〉 by making the following assignments.

• If ci = −, set
vi = eσ(i)

• If ci = +, set

vi =

{
eσ(i) if i 6 n,

−eσ(i) if i > n.

• If ci = cj ∈ N where c̃i has signature − and c̃j has signature + (that is, i < j), then
set

vi =

{
1√
2
(eσ(i) + eσ(j)) if i 6 n,

− 1√
2
(eσ(i) + eσ(j)) if i > n.

and

vj =
1√
2

(eσ(i) − eσ(j)).

Then F•(γ) is a representative flag for the L-orbit Qγ in G/B. Furthermore, if gγ is
the matrix defined by letting vi be its ith column, then Qγ = LgγB/B. Matrices/flags
obtained in this way from skew-symmetric clans constitute a full set of representative
flags for L-orbits in G/B.

For example, the matrix representative for the clan γ = +1212− is

gγ =



1 0 0 0 0 0
0 0 1√

2
0 − 1√

2
0

0 1√
2

0 − 1√
2

0 0

0 0 1√
2

0 1√
2

0

0 1√
2

0 1√
2

0 0

0 0 0 0 0 1


.

In the other direction, one can always recover an isotropic flag F• from a coset gB by
taking Vi to be the span of the first i columns of any matrix in gB.

As in [2], we define the base clan of the clan γ as the one obtained by replacing all
signed natural numbers in γ̃ by their signature. For example, +1212− has base clan
+−−++−. Notice that the base clan of a skew-symmetric clan remains skew-symmet-
ric, and consists only of + and − symbols. Base clans are in correspondence with closed
L-orbits in G/B ([16]).

The following lemma is the major step in identifying the sects.
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Lemma 5.5. Let Qγ and Qτ be L-orbits in G/B corresponding to skew symmetric
(n, n)-clans γ and τ . Then Qγ and Qτ lie in the same P -orbit of G/B if and only if
γ and τ have the same base clan.

Proof. First, we prove necessity by showing that if γ has base clan τ , then the representing
flags for each L-orbit Qγ and Qτ lie in the same P -orbit. Then all clans with base clan
τ will lie in the same P -orbit. More precisely, we exhibit parabolic group elements that
can iteratively transform the representing flag for τ into the representing flag for γ.

Let γ = c1 · · · c2n and τ = t1 · · · t2n, and let F•(γ) = 〈v1, . . . ,v2n〉 and F•(τ) =
〈u1, . . . ,u2n〉 be the corresponding flags constructed by Theorem 5.4. As each clan has
the same signature at symbols of the same index, they have the same default permutation.
Then, we have two kinds of cases to examine.

Case 1: There is a pair of numbers ci = c2n+1−i with i 6 n. Then we have

(vi,v2n+1−i) =

(
1√
2

(er + e2n+1−r),
1√
2

(er − e2n+1−r)

)
and (ui,u2n+1−i) = (er,−e2n+1−r)

for some n+ 1 6 r 6 2n.
Let pr denote the parabolic subgroup element2 defined by

pr : er 7−→ er + e2n+1−r,

ei 7−→ ei for i 6= r.

Note that each pair of vectors

(er + e2n+1−r, er − e2n+1−r) and (er + e2n+1−r,−e2n+1−r)

generates the same subspace, so it doesn’t matter which one of the vectors 1√
2
(er−e2n+1−r)

or er appears as vj in the flag F•(γ). Then, the action of pr on F•(τ) has the effect of
taking ui to the span of vi, making the spans of (pr ·ui, pr ·u2n+1−i) and (vi,v2n+1−i) the
same.

Case 2: In this case, we have ci = cj with i < j 6= 2n + 1 − i so that by skew-
symmetry, there is another pair of natural numbers c2n+1−j = c2n+1−i. Without loss of
generality, we can assume i 6 n. In this case, Theorem 5.4 will yield a flag F•(γ) with

(vi,vj) = (
1√
2

(er + e2n+1−s),
1√
2

(er − e2n+1−s))

and

(v2n+1−j,v2n+1−i) = (± 1√
2

(es + e2n+1−r),
1√
2

(es − e2n+1−r)),

where n < r = σ(i) and n < s = σ(2n+ 1− j). We also obtain the flag F•(τ) with

(ui,uj) = (er,±e2n+1−s)

2It is easy to check that the matrix of this map satisfies the defining condition 5.1. That the matrix
of this map is symplectic according to the condition in 2.1 is routine (if lengthy) linear algebra.
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and
(u2n+1−j,u2n+1−i) = (es,−e2n+1−r).

Then define a linear map by

pr,s : er 7−→ er + e2n+1−s,

es 7−→ es + e2n+1−r,

ei 7−→ ei for i 6= r, s.

It is again routine to check that this map defines an element of P , so pr,s · F•(τ) is a flag
in the same P -orbit. Similar to the previous case, this map takes ui to the span of vi
and u2n+1−j to the span of v2n+1−j, yielding pairs with the same span:

(pr,s · ui, pr,s · uj) and (vi,vj),

and
(pr,s · u2n+1−j, p

r,s · u2n+1−i) and (v2n+1−j,v2n+1−i).

Now, after we act on the flag F•(τ) by the appropriate element of the form pr for
each pair of natural numbers ci = c2n+1−i in γ, and the appropriate element pr,s for each
family

{ci = cj, c2n+1−j = c2n+1−i | j 6= 2n+ 1− i},
then we obtain a flag which is an equivalent presentation of F•(γ). Thus, Qγ is in the
same P -orbit as Qτ .

To show the converse, it suffices to show that L-orbits corresponding to distinct base
clans τ and λ lie in distinct P -orbits. Let τ = t1 · · · t2n 6= λ = l1 · · · l2n and let F•(τ) =
〈u1, . . . ,u2n〉 and F•(λ) = 〈w1, . . . ,w2n〉 be flags constructed to represent each orbit using
Theorem 5.4. Now let i be the least index such that ti 6= li. Without loss of generality,
we may assume that ti = − and li = +, and that i 6 n. Then we have ui = er for
some n + 1 6 r 6 n and wi = eq for some 1 6 q 6 n. For these flags to be in the same
P -orbit we would need to be able to carry eq to a vector with non-zero er component via
some p ∈ P . This would force a non-zero entry in the (r, q)-entry of the matrix of p, but
since p has a block-diagonal form with zero (i, j)-entry whenever i > n and j 6 n, this is
impossible. Thus, the L-orbits Qτ and Qλ are in distinct P -orbits.

Note that there is an isomorphism

ϕ : LgB −→ Bg−1L (5.3)

lgb 7−→ (lgb)−1

for any such double coset. Thus, given a clan γ, we have a bijection between L-orbits in
G/B and B-orbits in G/L given by

Qγ = LgγB/B 7−→ LgγB
ϕ−−→ Bg−1

γ L 7−→ Bg−1
γ L/L =: Rγ.

Pushing the consequences of Lemma 5.5 through this association and applying the pro-
jection π : G/L→ G/P , we see that the B-orbits of G/L which project to the Schubert
cell Bgγ

−1P/P are exactly the set of Rτ where τ has the same base clan as γ. This yields
the following, with Rγ = Bg−1

γ L/L as above.
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Proposition 5.6. Let Rγ and Rτ be B-orbits in G/L corresponding to clans γ and τ ,
and let π : G/L→ G/P denote the canonical projection. Then π(Rγ) = π(Rτ ) if and
only if γ and τ have the same base clan.

Having successfully grouped clans according to their base clans, we find it appropriate
to also call the collection of clans with a base clan γ the sect of γ, denoted Σγ. By abuse
of terminology, we will also use this term to describe collections of any of the objects
(B-orbits, L-orbits, double cosets, etc.) parameterized by Σγ.

5.3 Sects and Schubert Cells

As in [3] §3.3, we fix T as the maximal torus of diagonal matrices in G, and then the
Weyl group W = NG(T )/T can be identified with the permutations in the subgroup of
the symmetric group S2n defined by the condition,

W ∼= {σ ∈ S2n | σ(2n+ 1− i) = 2n+ 1− σ(i) for all i}.

This happens to be isomorphic to the hyperoctahedral group Cn. A Weyl group element
given by a permutation σ ∈ S2n can also be represented by a matrix w(σ) ∈ NG(T ) where
the ith column is ±eσ(i). Thus, w(σ) will be almost the permutation matrix for σ, only
with some −1 entries instead of 1 entries to ensure that it is a symplectic group element.

The choice of B as the Borel subgroup of upper-triangular matrices determines the
set of positive roots as

Φ+ = {(εi ± εj), | 1 6 i < j 6 n} ∪ {2εi | 1 6 i 6 n},

where ±εi denotes the torus character that takes diag(t1, . . . , t2n) 7→ t±1
i . We choose

simple roots
∆ = {αi = εi − εi+1 | 1 6 i 6 n− 1} ∪ {αn = 2εn},

so that our maximal parabolic subgroup P corresponds to the the subset ∆ \ {αn}. The
Weyl group of P is denoted WP and is isomorphic to a copy of Sn with respect to which
the minimal coset representatives of W/WP can be identified as the permutations σ ∈ W
which also satisfy

σ(1) < σ(2) < · · · < σ(n).

The set of minimal coset representatives is denoted W P . The values σ(1), . . . , σ(n) be-
come the indices of the standard basis vectors which appear (up to sign) in the first n
columns of the matrix w(σ).3

Let [m] := {1, . . . ,m}. The coset w(σ)P includes all of the Sn-many permutations of
the set

{eσ(1), . . . , eσ(n)}
by the (right) action of the Levi subgroup on the columns of w(σ). So order does not actu-
ally matter, and the Schubert cell Bw(σ)P/P can be understood as the Borel orbit of the
isotropic subspace spanned by {eσ(1), . . . , eσ(n)}. Hence, we can make the identification

Schubert cells CI ←→

{
Subsets I of [2n] such that |I| = n

and if i ∈ I then 2n+ 1− i 6∈ I

}
.

3It can be arranged so that these columns are exactly standard basis vectors, as in Theorem 5.4.
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Since for each opposite pair of indices we choose just one for membership in the subset
I, there are 2n cells total. Each cell is also associated to a maximal isotropic subspace of
the form

VI := span({ei | i ∈ I}).

We can bijectively associate base clans to sets I by defining γI = c1 . . . c2n by

ci =

{
+ if i ∈ I
− if i /∈ I.

(5.4)

Note that under this assignment, after building the default flag, F•(γI) = 〈v1, . . . ,v2n〉,
it easy to check that span({v1, . . . ,vn}) = VI . In other words, CI = BgγIP/P . Finally,
we have our promised result.

Theorem 5.7. Let CI be a Schubert cell of G/P , and π : G/L → G/P the natural
projection. Associate to I a base clan γI as in equation 5.4, and denote the sect of γI by
ΣI . If Rγ denotes the B-orbit of G/L associated to the clan γ, then

π−1(CI) =
⊔
γ∈ΣI

Rγ. (5.5)

Proof. The pre-image of CI decomposes as a disjoint union of B-orbits Rγ as a conse-
quence of the fact that π is G-equivariant, so in particular π is B-equivariant. It remains
to determine for which γ we have π(Rγ) = CI . Proposition 5.6 tells us that B-orbits Rγ

and Rτ project to the same Schubert cell if and only if they are members of the same
sect. Thus, we only have to prove that the B-orbit RγI projects to the Schubert cell CI .

We know that π(RγI ) = Bg−1
γI
P/P . Observe that from the construction of gγI , if we

denote the ith column of g−1
γI

as wi, then

wi =

{
−eσ(i) if i 6 n and ci = −,
eσ(i) otherwise.

Because this differs from the columns of gγI only possibly by a sign, the first n columns
span the same subspace, and in fact

g−1
γI
P = gγIP.

This implies that

π(RγI ) = Bg−1
γI
P/P = BgγIP/P = CI .

6 The Big Sect

Here, we are going to analyze the number of clans lying in the largest sect over Λ(n),
which we denote by εn. The set of all such clans will be denoted by En.

A clan lies in the largest sect if and only if it has a base clan in the following form

−− · · ·−−−−︸ ︷︷ ︸
first n-spots

++ · · ·+++.
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This follows from the fact that this base clan is γI where VI = span{en+1, . . . , e2n} whose
B-orbit CI is the dense Schubert cell in Λ(n), just as it is in Gr(n,C2n). Hence, a clan
lies in the largest sect if and only if its only natural numbers are from Π1,2 families and
Π2 pairs.

Let α denote the number of Π1,2 families and β the number of Π2 pairs in an arbitrary
clan γ ∈ En. Then 2α + β = k is the total number of pairs in γ = c1 · · · cn cn+1 · · · c2n.
To see in how many different ways these pairs of indices can be situated in such γ, we
start by choosing β spots from the first n positions in γ. Obviously, this can be done in(
n
β

)
many different ways. Then, we count different ways of choosing α pairs within the

n − β spots remaining (among the first n) to place the families of type Π1,2. We have(
n−β
2α

)
spots to choose from, and (2α)!

2αα!
different ways to form pairs from these spots. This

proves the following corollary.

Corollary 6.1. The number of clans in the largest sect is given by

εn =
n∑
k=0

2α+β=k

(
n

β

)(
n− β

2α

)
(2α)!

2αα!
, or equivalently, εn =

n∑
k=0

2α+β=k

(
n

β

)
(n− β)!

(n− β − 2α)!2αα!
.

The first values of εn, beginning with n = 1, are 2, 5, 14, 43, 142, 499, 1850, . . . . This is
in fact the number of self-inverse partial permutations, also known as partial involutions,
(A005425), as we show in the next section.

6.1 Partial Involutions

In this section, we will show that the set of all clans in the largest sect En is in one-to-one
correspondence with the set of all partial involutions on n elements. We refer to [1] and
Chapter 15 of [5] for background theory. Recall that a partial permutation is a map

π : {1, . . . ,m} 7→ {0, . . . , n}

satisfying the following rule:

• if π(i) = π(j) and π(i) 6= 0, then i = j for each 1 6 i, j 6 m.

A partial permutation matrix π can be represented by an m× n matrix (xij), where xij
is 1 if and only if π(i) = j, and 0 otherwise. Note that under this convention we view our
matrices as acting on vectors from the right. Partial permutations are sometimes called
rook placements, and in case m = n, they form a monoid under matrix multiplication
called the rook monoid and denoted Rn.

Definition 6.2. A partial involution on n elements is a partial permutation which is rep-
resented by a symmetric n×n partial permutation matrix. The set of partial involutions
on n elements will be denoted by Pn and its cardinality by Pn.

We will prove that εn = Pn by exhibiting an explicit bijection between the clans in
the largest sect and the partial involutions. This will allow us to make use of a known
recursive formula for the partial involutions to give a generating function for the sequence
of εn’s. A direct proof of the recurrence using the formula of Corollary 6.1 may be more
difficult to achieve. Let us now state this recurrence relation.
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Proposition 6.3. Taking P0 = 1, the numbers Pn satisfy the recurrence relation

Pn = 2Pn−1 + (n− 1)Pn−2

for all n > 1.

In order to describe the bijection between En and Pn, let π be a partial involution
with matrix (xij) for 1 6 i, j 6 n. We construct a clan γ = c1c2 . . . c2n as follows:

(i) If xii = 0, then ci = − and c2n+1−i = +.

(ii) If xii = 1 for any 1 6 i 6 n, then we have a transposition (i, 2n + 1 − i) in the
underlying involution of γ which yields ci = c2n+1−i = a for some a ∈ N.

(iii) If xij = 1 and xji = 1 (by symmetry), then (i, 2n + 1 − j) and (j, 2n + 1 − i) are
the corresponding transpositions in the underlying involution for our clan. Thus,
ci = c2n+1−j = a and cj = c2n+1−i = b for some a, b ∈ N.

For example, consider the matrix (xij) =

1 0 0
0 0 1
0 1 0

. Then since x11 = 1, we can take

c1 = c6 = 1 in the corresponding clan. Moreover, since x23 = 1 and x32 = 1, we assign
c2 = c4 = 2 and c3 = c5 = 3. Thus, the corresponding clan is 123231.

This algorithm can be reversed easily. Let us start with a clan γ = c1c2 . . . c2n and
define its associated partial involution matrix as the one with zeros everywhere except:

(i) If ci = c2n+1−i = a ∈ N, then xii = 1.

(ii) If ci = c2n+1−j = a ∈ N for i 6= j, then xij = xji = 1.

This algorithm and its reverse are clearly injective between partial involutions and
clans from the largest sect, completing the bijection.

Theorem 6.4. Partial involutions on n letters and skew-symmetric (n, n)-clans in the
largest sect are in bijection.

Corollary 6.5. Taking ε0 = 1, the number of clans in the largest sect satisfies the recur-
rence relation

εn = 2εn−1 + (n− 1)εn−2,

and has exponential generating function

∞∑
n=0

εn
xn

n!
= e2x+x2

2 .

Proof. The recurrence follows from Theorem 6.4 and Proposition 6.3. The exponential
generating function can be found by a straightforward calculation.
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Next we describe an order structure on partial involutions. Let B−m denote the group
of invertible m × m lower triangular matrices, and Bn the group of invertible upper
triangular n× n matrices. B−m × Bn acts on the set of all m× n matrices with complex
entries by (a, b) · x = axb−1. The double cosets of this action are indexed by the partial
permutations.

The group Bn also acts on the set of symmetric n×n matrices S(n) by the congruence
action, which is defined by

b · s = (b−1)txb−1,

for x ∈ S(n). The set of partial involutions Pn parametrize congruence Bn-orbits. In
fact, for π ∈ Pn, the congruence Bn-orbit Bn ·π is exactly the intersection B−n πBn ∩S(n)
(see [15], Theorem 3.1). Moreover, the orbit closure order for congruence Bn-orbits is
the same as the closure order on B−n × Bn double cosets restricted to the set of partial
involutions ([1]). This order can be described in terms of rank-control matrices associated
to each partial permutation, which we define presently.

Definition 6.6. Let π = (xij) be an m× n matrix. For each 1 6 k 6 m and 1 6 l 6 n,
denote by πk,l the upper-left k× l submatrix of π. We denote by R(π) the m×n matrix,
whose (k, l)-entry is rank(πk,l), and call it the rank-control matrix of π.

Example 6.7. If π =

1 0 0
0 1 0
0 0 1

, then R(π) =

1 1 1
1 2 2
1 2 3

.

We then define a partial order on partial permutations by comparing the individual
entries of their rank-control matrices, which is to say

π � σ ⇐⇒ rank(πk,l) 6 rank(σk,l) for all k, l.

Let Cπ and Cσ denote the B−m × Bn-orbits corresponding to partial permutations π and
σ. It follows from Theorem 15.31 of [5] that

π � σ ⇐⇒ Cπ ⊆ Cσ.

Thus, rank-control matrices capture all of the information of orbit closure relationships.
Corollary 5.4 of [1] specializes this to say that the restriction of � to Pn exactly describes
the closure order on congruence Bn-orbits as well.

6.2 A Conjectural Bruhat Order on CI Clans

In [17], Wyser gives a description of the closure order of GLp × GLq-orbits in the flag
variety of GLp+q in terms of statistics on the (p, q)-clans parametrizing these orbits. We
recall the statement and notation from that paper.

For any (p, q)-clan γ = c1 · · · cn and any i or i, j with 1 6 i < j 6 n, we let

(1) γ(i; +) = the total number of + signs and pairs of equal natural numbers occurring
among c1 · · · ci;

(2) γ(i;−) = the total number of − signs and pairs of equal natural numbers occurring
among c1 · · · ci;
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(3) γ(i; j) = the number of pairs of equal natural numbers cs = ct ∈ N with s 6 i <
j < t.

Theorem 6.8 ([17], Theorem 1.2). Let γ, τ be (p, q)-clans, and let Yγ, Yτ be the corre-
sponding GLp × GLq-orbit closures in the flag variety of GLp+q. Then γ 6 τ (meaning
Yγ ⊆ Yτ) if and only if the following three inequalities hold for all i, j:

(1) γ(i; +) > τ(i; +);

(2) γ(i;−) > τ(i;−);

(3) γ(i; j) 6 τ(i; j).

Just as skew-symmetric (n, n)-clans can be viewed as a subset of all (n, n)-clans, the
isotropic flag variety X := Sp2n/B can be viewed as a subvariety of the flag variety G′/B′

for G′ = GL2n and its subgroup B′ of upper triangular matrices. Indeed, the L-orbit in
Sp2n/B corresponding to the skew-symmetric clan γ is exactly the intersection Q′γ ∩X,
where Q′γ is the L′ := GLn ×GLn-orbit in G′/B′ corresponding to γ (see [16]).

It is then natural to wonder if the (full) closure order on skew-symmetric (n, n)-clans is
simply the restriction of the closure order on all (n, n)-clans. This is stated as Conjecture
3.6 in [18], where it is reported that the conjecture has be verified computationally up
to n = 7. The analogous conjecture is, in fact, made for two other classical symmetric
pairs: (SO2n+1, S(O2p×O2q+1)) and (Spn, Spp×Spq). However, neither of the symmetric
subgroups in these cases are Levi factors of a parabolic subgroup, so they hold less interest
for our purposes.

It is worth noting that the veracity of the conjecture for (Spn, Spp×Spq) was claimed
in [12] on the basis of the recursive process for deducing the full closure order relations
from the weak order. However, very little detail is provided, and it is also claimed in that
paper that the same holds for (SO2n, GLn), though Wyser points out that this fails with
a specific example when n = 4 ([18], p. 165).

A detailed proof of this conjecture for (Sp2n, GLn) can likely be achieved via methods
similar to [17], but we forego this at present. Instead, we will just assign a partial order
on skew-symmetric (n, n)-clans by

γ 6C τ ⇐⇒ Yγ ⊆ Yτ (so γ 6 τ),

with Yγ and Yτ as before, and call 6C the conjectural CI Bruhat order. With this in
hand we can state and prove a final result, analogous to [2], Theorem 1.7.

Theorem 6.9. As posets (En,6C) ∼= (Pn,�), that is the poset of the largest sect within
skew-symmetric (n, n)-clans with the conjectural CI Bruhat order is isomorphic to the
poset of partial involutions ordered by congruence Bn-orbit closures.

Proof. Given a clan γ ∈ En, let πγ denote the partial involution matrix obtained from
γ by the algorithm described before Theorem 6.4. We will show that the conditions of
Theorem 6.8 on clans γ and τ translate to all of the necessary conditions on the rank-
control matrices of πγ and πτ , so that the orders are the same. This is achieved simply
by identifying the statistics γ(i; +), γ(i;−) and γ(i; j) as ranks of particular submatrices
of the associated partial involution. As in Definition 6.6, let πγk,l denote the northwest
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k× l submatrix of πγ, and R(πγ) the rank-control matrix of πγ so that the (k, l)-entry of
R(πγ) is rankπγk,l.

First we examine γ(i; +). Because γ = c1 · · · c2n has base clan −− . . .−−++ . . .++,
the value of γ(i; +) is zero for all i 6 n, and then because each symbol among the last n
in γ is either a + or the second of a natural number pair, we find that γ(i; +) = τ(i; +)
for all i from 1 to 2n. Thus, this statistic contains no ordering information within the
largest sect.

Next, consider γ(i;−). As i increases from 1 to n, so does γ(i;−) unless there is a
natural number at ci. A natural number at ci indicates a matrix entry of 1 in the ith row
of πγ for 1 6 i 6 n. As i increases past n, γ(i;−) increases the rest of the way up to n,
and a natural number at ci indicates a matrix entry of 1 in the (2n + 1 − i)th column.
Then,

γ(i;−) =

{
i− rank(πγi,n) for i 6 n,

n− rank(πγn,2n+1−i) for i > n.

Because the ranks of submatrices appear negatively above, γ(i;−) > τ(i;−) if and only
if rank(πγi,n) 6 rank(πτi,n) and rank(πγn,i) 6 rank(πτn,i) for all 1 6 i 6 n. This covers the
rank conditions along the south and east borders of the matrices.

Next, consider γ(i, j). By similar reasoning, it is not hard to see that

γ(i; j) =


rank(πγi,n) for i < j 6 n,

rank(πγi,2n−j) for i 6 n < j,

rank(πγn,2n−j) for n < i < j.

The case where i 6 n < j shows that γ(i; j) 6 τ(i; j) for all 1 6 i, j < n if and only
rank(πγi,m) 6 rank(πτi,m) for all 1 6 i,m < n. This covers the rank conditions everywhere
else in the partial involution matrices, so we see that γ 6C τ if and only if πγ � πτ ,
completing the poset isomorphism.

Remark 6.10. (En,6C) is also a maximal upper order ideal of the poset of all skew-
symmetric (n, n)-clans under 6C . Its minimal element is the base clan and the maximal
element is 12 · · · (n− 1)nn(n− 1) · · · 21, which corresponds to the dense B-orbit of G/L.
This follows from arguments identical to the proof of Proposition 5.4 in [2].

Remark 6.11. The proof of Theorem 6.9 can be adapted to show that the big sect of
the type AIII symmetric space (GLn/GLp ×GLq) is isomorphic to the closure order on
B−p × Bq double cosets of the p × q complex matrices, indexed by partial permutations.
This was proved only for the case p = q in [2].
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