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Abstract

Simultaneous core partitions are important objects in algebraic combinatorics.
Recently there has been interest in studying the distribution of sizes among all
(s, t)-cores for coprime s and t. Zaleski (2017) gave strong evidence that when we
restrict our attention to (s, s+1)-cores with distinct parts, the resulting distribution
is approximately normal. We prove his conjecture by applying the Combinatorial
Central Limit Theorem and mixing the resulting normal distributions.

Mathematics Subject Classifications: 05A16, 05A17

1 Introduction

A partition of n is a weakly decreasing sequence λ = (λ1 > λ2 > · · · > λk > 0) whose
parts sum to n, i.e., λ1 + λ2 + · · · + λk = n. We say that n is the size of λ, and k is its
length, which we will denote by `(λ). For example, the partition (4, 3, 3, 3, 2) has size 15
and length 5.

To each partition, we associate a diagram, known as a Ferrers diagram. The (French)
Ferrers diagram of a partition λ is an arrangement of boxes which is left-justified and
whose ith row from the bottom contains λi boxes. For example, see Figure 1.
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Figure 1: The Ferrers diagram of the partition (4, 3, 3, 3, 2).

To each cell of a Ferrers diagram we associate a number known as the cell’s hook
length. The hook length of a cell c is the number of boxes strictly right of c (known as
the arm of the cell) plus the number of boxes strictly above c (the leg) plus one. For
example, the cell c indicated in Figure 2 has hook length 4. The cell marked a is the only
one in the arm of c and the two cells marked ` form the leg of c.

`
`
c a

Figure 2: The arm and leg of a cell of a Ferrers diagram.

For convenience, we will sometimes write the hook length of each cell into the Ferrers
diagram. We say that a partition is an s-core if none of its cells have hook-length s. A
partition is an (s, t)-core if it is simultaneously an s-core and a t-core. See Figure 3. The
number of (s, t)-cores is finite if and only if gcd(s, t) = 1. Jaclyn Anderson [And02] gives
a beautiful bijection between (s, t)-cores and certain lattice paths from (0, 0) to (s, t),
which proves this and much more.
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Figure 3: The Ferrers diagrams of all (3, 5)-cores with hook lengths indicated.

Simultaneous cores have numerous applications in algebraic combinatorics. For in-
stance, Susanna Fishel and Monica Vazirani [FV10a, FV10b] showed that when t = ds±1
for some d ∈ N, they are naturally in bijection with certain regions of the d-Shi ar-
rangement in type A. Drew Armstrong, Christopher Hanusa, and Brant Jones [AHJ14]
extended this work to type C and related simultaneous cores to rational Catalan com-
binatorics. Purely enumerative questions have yielded deep connections as well. For
instance, Armstrong [AHJ14] initially conjectured a simple formula for the average size
of an (s, t)-core in 2011. (Here again gcd(s, t) = 1, so the average is taken over the finite
set of all (s, t)-cores.) Paul Johnson [Joh18] gave the first proof of Armstrong’s conjecture
by relating cores to polytopes.
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Shalosh B. Ekhad and Doron Zeilberger [EZ15] determined the entire limit distribution
obtained by fixing t− s, taking the size of a random (s, t)-core, normalizing, and letting
s → ∞. Somewhat surprisingly these distributions are not normal and are not known
to be associated with other combinatorial problems. However, Anthony Zaleski [Zal17b]
gave strong experimental evidence that if t = s+ 1 and only cores with distinct parts are
considered, then the resulting limit distribution is normal. We will prove a much stronger
form below (Theorem 1).

For a positive integer s, let Xs be the random variable given by the size of an (s, s+1)-
core with distinct parts which is chosen uniformly at random. (As mentioned above, there
are only finitely many (s, s + 1)-cores.) Let µ and σ2 be the mean and variance of Xs.
Let

ϕ(x) =
1√
2π

e−x
2/2 and Φ(x) =

∫ x

−∞
ϕ(t) dt

denote the standard normal density function and the standard normal (cumulative) dis-
tribution function, respectively.

Theorem 1. For all positive integers s,

sup
x∈R

∣∣P (Xs 6 µ+ xσ)− Φ(x)
∣∣ = O(1/

√
s). (1)

Here, and throughout the paper, the implied constants in error bounds O(.) are uni-
versal constants not depending on any of our parameters. That is, Theorem 1 says: There
is a universal constant C1 such that, for all s and x,∣∣P (Xs 6 µ+ xσ)− Φ(x)

∣∣ 6 C1/
√
s.

Zaleski [Zal17a] makes a similar conjecture for the case t = ms − 1. Both of Za-
leski’s normality conjectures were supported by strong experimental evidence regarding
moments. Huan Xiong and Wenston J.T. Zang [XZ19] further pursued this line of inves-
tigation for the case t = ms± 1, computing asymptotic formulas for the moments. (The
enumerative properties of these families of cores have also been studied by many authors
recently. For instance, Xiong [Xio18] determined the largest size of such cores, while Rishi
Nath and James Sellers [NS17] developed a geometric approach to count these cores and
self-conjugate cores of this type.)

Our approach here is not based on moments. Instead we apply a powerful prob-
abilistic tool: the Combinatorial Central Limit Theorem (CCLT). Its original form is
due to Wassily Hoeffding [Hoe51]. There is a stronger version due to Erwin Bolthausen
[Bol84] with tail bounds. This allows us to prove Theorem 1, a strengthening of Zaleski’s
conjecture.

Another classical tool we will apply is Proposition 6 on page 7 about generating
functions with only real roots. These two tools are named Propositions and they are
numbered separately. All other statements (theorem, corollary, lemma) are labeled in
one single sequence.

The rest of the paper is organized as follows. In Section 2, we review the Combina-
torial Central Limit Theorem. In Section 3, we prove the following strong refinement of
Theorem 1: the distribution of size among (s, s + 1)-cores with distinct parts is already
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approximately normal when the number of parts is fixed. In Section 4, we recall that
the weights needed to mix these distributions together are also approximately normal. In
Section 5, we compute this mixture to prove Theorem 1. Section 6 contains the proofs of
some technical lemmas used in Section 5.

2 The Combinatorial Central Limit Theorem

Let A = (aij) be an m×m matrix of real numbers. We are interested in the random sum

SA =
∑
i

aiπ(i)

where π ∈ Sm is a random permutation of {1, 2, . . . ,m} chosen uniformly from among all
m! permutations. Following [Bol84] we write

ai · =
1

m

∑
j

aij, a·j =
1

m

∑
i

aij, and a·· =
1

m2

∑
i,j

aij

and doubly center A by letting

ȧij = aij − ai · − a·j + a··

(so now all row- and column-sums are 0). Furthermore, we write

µA = ma·· and σ2
A =

1

m− 1

∑
i,j

ȧ2ij

for the mean and variance of SA, and consider the normalized sum

TA =
SA − µA
σA

=
∑
i

âiπ(i)

where
âij = ȧij/σA

The following theorem of Bolthausen [Bol84] gives an estimate of the remainder in
the Combinatorial Central Limit Theorem. When A is of rank 1, this gives a tail bound
for the classical result of Abraham Wald and Jacob Wolfowitz [WW44].

Proposition 2. There is an absolute constant K such that for all A with σ2
A > 0,

sup
t
|P (TA 6 t)− Φ(t)| 6 K

∑
i,j

|âij|3/m .
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3 Normality for a fixed number of parts

Armin Straub [Str16] gave the following elegant characterization of our chosen objects:
A partition λ into distinct parts is an (s, s+ 1)-core if and only if `(λ) + λ1 − 1 6 s− 1.
Here `(λ) is the number of parts in λ, and λ1 is the size of the largest part in λ. Remark:
the number `(λ) + λ1 − 1 is sometimes called the perimeter of λ.

Let k and s be fixed non-negative integers. By the above characterization, a partition
λ consisting of k distinct parts is an (s, s + 1)-core if and only if λ1 is at most s − k.
We naturally associate to each such partition a vector of length s − k by recording a 1
at position λi for 1 6 i 6 k and 0 elsewhere. For example, the vector (0, 1, 1, 0, 1, 0)
corresponds to the (9, 10)-core (5, 3, 2).

It is now easy to see that the number of (s, s + 1)-cores with k distinct parts is just(
s−k
k

)
. Summing shows that the total number of (s, s + 1)-cores with any number of

distinct parts is the Fibonacci number Fibs+1. This fact was originally conjectured by
Tewodros Amdeberhan [Amd16] and proved by Straub [Str16].

We can also see that the size of the initial core is just the sum of the positions of 1’s
in the resulting vector, i.e., the inner product of this vector and (1, 2, 3, . . . , s− k). With
this rephrasing we are able to apply the CCLT: simply take the matrix A to be the outer
product of the vector (1k, 0s−2k) and the vector (1, 2, 3, . . . , s− k).

In general, suppose A = (aij) is an m × m rank 1 matrix, i.e., aij = αixj for some
vectors α, x. Thus, writing ᾱ = (

∑
αi)/m and x̄ = (

∑
xj)/m, we have

ȧij = (αi − ᾱ)(xj − x̄) , µA = mᾱx̄

σ2
A =

1

m− 1

∑
i,j

ȧ2ij =
m2

m− 1

(
1

m

∑
i

(αi − ᾱ)2

)(
1

m

∑
j

(xj − x̄)2

)
(2)

Let α1 = · · · = αk = 1, αk+1 = · · · = αm = 0. Note that now SA is the sum of the
elements in a random k-subset of the list x1, . . . , xm. Here we will only need the special
case xi = i for i = 1, . . . ,m.

Theorem 3. For the choice of parameters above and K as in Proposition 2, the following
explicit bound holds:

sup
x∈R
|P (TA 6 x)− Φ(x)| 6

(
12m2

k(m− k)

)3/2

· K√
m

(3)

which goes to 0 when both km−2/3 →∞ and (m− k)m−2/3 →∞.

Proof. It is easy to see that

ᾱ = k/m, x̄ = (m+ 1)/2 , µA =
m+ 1

2
· k , σ2

A =
m+ 1

12
· k(m− k). (4)

Using |ȧij| = |αi − ᾱ| · |xj − x̄| 6 1 ·m = m, the right-hand side in Proposition 2 is

K
∑
i,j

|âij|3/m 6
Km4

σ3
A

<

(
12m2

k(m− k)

)3/2

· K√
m

which goes to 0 if km−2/3 →∞ and (m− k)m−2/3 →∞.
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Plugging m = s− k in to (3) gives the following corollary.

Corollary 4. Let Xs,k be the random variable given by the size of an (s, s+1)-core with k
distinct parts chosen uniformly at random. Let µk and σ2

k denote the mean and variance
of Xs,k, respectively. Then for any 0 < k < s/2, the normalized variable (Xs,k − µk)/σk
satisfies the following.

sup
x∈R

∣∣∣∣P (Xs,k − µk
σk

6 x

)
− Φ(x)

∣∣∣∣ 6 123/2K(s− k)5/2

(k(s− 2k))3/2

Hence the distribution of (Xs,k − µk)/σk tends to the standard normal distribution if
s→∞ and both ks−2/3 →∞ and (s− 2k)s−2/3 →∞.

We will use Corollary 4 only when s/4 6 k 6 s/3, in which case we obtain the bound

sup
x∈R
|P (Xs,k 6 µk + xσk)− Φ(x)| < 1000K√

s
. (5)

Remark 5. Zaleski [Zal17b] already noted that the generating function for (s, s+ 1)-cores

with k distinct parts is none other than the shifted q-binomial coefficient q(
k+1
2 )(s−k

k

)
q
.

It was this observation that lead us to study the distribution when k is fixed. By
taking s = n + m and k = m, Corollary 4 shows that the partial sums of coefficients
in the q-binomial coefficient

(
n
m

)
q

are approximately normally distributed. It would be

interesting to see that the distribution is also locally approximately normal.

4 The distribution of the weights

Ultimately we will mix together the distributions of Xs,k for all k with s fixed. Each
distribution is weighted according to how many cores are being enumerated, namely Xs,k

gets weight

pk = P (W = k) =

(
s− k
k

)
/F ibs+1.

Here the random variable W is the number of parts in a random (s, s + 1)-core with
distinct parts.

The sequence
(
s−k
k

)
appears often in combinatorics. Its generating function is

gs(z) =
∑

06k6 s
2

(
s− k
k

)
zk =

1√
1 + 4z

((
1 +
√

1 + 4z

2

)s+1

−
(

1−
√

1 + 4z

2

)s+1
)

— see Concrete Mathematics [GKP94] by Ronald Graham, Donald Knuth, and Oren
Patashnik. By differentiating it twice, we get the moments:

µ(W ) =
∑
k

k pk =
5−
√

5

10
· s + O(1)

and

σ2(W ) =

√
5

25
· s + O(1).
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For convenience we write

c0 = (5−
√

5)/10 = 0.2764.. and k0 = bc0sc.

There is a long history of normal approximations for finite non-negative real sequences
whose generating functions have only real roots. The first appearance in combinatorics of
a global normal law similar to (6) is a result of Lawrence Harper [Har67] studying Stirling
numbers. Harper’s brilliant idea was further developed and generalized in the classical
paper of Ed Bender [Ben73]. For two modern results, see the paper of Joel Lebowitz,
Boris Pittel, David Ruelle and Eugene Speer [LPRS16] and the paper of Marcus Michelen
and Julian Sahasrabudhe [MS19].

The following proposition is from Pitman [Pit97]. It says that if a polynomial f
with non-negative coefficients has only real zeros, then its coefficients are approximately
normally distributed, both globally and locally. For completeness, we cite both the global
and the local versions.

Proposition 6. Let p = (p0, p1, . . . , pn) be a sequence of non-negative real numbers
summing to 1 with mean and variance

µ = µ(p) =
∑

ipi and σ2 = σ2(p) =
∑

(i− µ)2 pi =
(∑

i2 pi

)
− µ2.

Let f(x) =
∑

k pkx
k be its generating function. Write Sk =

∑k
i=0 pi for the partial

sums. Assume all roots of the polynomial f are real. Then,

max
06k6n

∣∣∣∣Sk − Φ

(
k − µ
σ

)∣∣∣∣ < 0.7975

σ
(6)

and there exists a universal constant C such that

max
06k6n

∣∣∣∣σpk − ϕ(k − µσ
)∣∣∣∣ < C

σ
. (7)

Remark 7. It is obvious that if f has only real roots, then the non-negativity of the
coefficients p0, . . . , pn is equivalent to all roots of f being non-positive – another traditional
way of stating the result.

Our generating function gs(x) has only real roots, since only real numbers z 6 −1/4
can satisfy ∣∣∣ 1 +

√
1 + 4z

∣∣∣ =
∣∣∣ 1−√1 + 4z

∣∣∣ .
Hence Proposition 6 applies to our sequence of weights pk =

(
s−k
k

)
/F ibs+1 with n = bs/2c,

µ = µ(W ), and σ = σ(W ).

The same paper [Pit97] (Formula (11) on page 284) contains exponential tail bounds
for our weight distribution (phrased in the more general setup of so-called PF-distributions).
Plugging in our specific parameter µ(W ) = c0s + O(1), we get the following bound: for
every ε > 0 there is a δ > 0 and a constant C(ε) > 0 such that∑

k<(c0−ε)s

pk +
∑

k>(c0+ε)s

pk < C(ε)e−δs (8)

where pk = P (W = k). We will use this tail probability estimate later with ε =
min{1/3− c0, c0 − 1/4} = 0.026..
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5 Proof of Theorem 1

Fix a positive integer s. Recall that Xs is the random variable given by the size of an
(s, s+ 1)-core with distinct parts which is chosen uniformly at random. Zaleski [Zal17b]
shows that the mean and variance of Xs are:

µ = µ(Xs) =
1

10
s2 +O(s), σ2 = σ2(Xs) =

2
√

5

375
s3 +O(s2). (9)

Recall also that if 0 6 k 6 s/2, then Xs,k is the random variable given by the size of
an (s, s + 1)-core with k distinct parts which is chosen uniformly at random. Hence the
distribution of Xs is the mixture of the distributions of the bs/2c+ 1 individual Xs,k.

Setting m = s− k in (4) gives

µk =
1

2
k (s+ 1− k), σ2

k =
1

12
k (s+ 1− k)(s− 2k). (10)

Remark 8. Zaleski’s formulas (9) could be obtained by a lengthy computation involving
the generating function gs(z), (10), and the Pythagorean Theorem of Probability Theory
(a.k.a. the Law of Total Variance):

V ar
[
ξ
]

= EV ar
[
ξ|η
]

+ V ar
[
E(ξ|η)

]
.

Fix x ∈ R. Let

F (x) = P (Xs 6 µ+ xσ) = EP (Xs,k 6 µ+ xσ). (11)

Here the expected value E denotes the weighted sum

EP (Xs,k 6 µ+ xσ) =
∑

06k6s/2

P (Xs,k 6 µ+ xσ) pk. (12)

For 0 < k < s/2 we can rewrite the terms

P (Xs,k 6 µ+ xσ) = P (Xs,k 6 µk + ykσk) =: Fk(yk), (13)

where

yk =
1

σk

(
(µ− µk) + xσ

)
. (14)

For k = 0 and k = s/2 (when s is even) we have σk = 0, so yk is undefined. These at
most two terms of the right-hand side of (12) have weight 1/F ibs+1 (each), so we will
only work with integers k with 0 < k < s/2.

Our ultimate goal is to show that F (x) is approximately Φ(x) with an error bound
O(1/

√
s) uniformly for x ∈ R. We will accomplish this with a sequence of approximations

Q1, . . . , Q7 and several lemmas. Each subsequent Q introduces an error of only O(1/
√
s).

The proofs of these lemmas will be put off to Section 6.

Let
Q1 =

∑
0<k<s/2

pkFk(yk). Then, |F (x)−Q1| 6 2/F ibs+1.
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Let I = Z ∩ (s/4, s/3), J = Z ∩ (0, s/2)− I, and

Q2 =
∑

0<k<s/2

Φ(yk)pk. (15)

Note that by the CCLT (5),∣∣P (Xs,k 6 µk + yσk)− Φ(y)
∣∣ = O(1/

√
s) (16)

uniformly for k ∈ I and y ∈ R. Hence,∣∣P (Xs,k 6 µk + ykσk)− Φ(yk)
∣∣ = O(1/

√
s) (17)

uniformly for k ∈ I and x ∈ R. On the other hand, for k ∈ J the weights pk are
exponentially small in s by (8). Since both P (Xs,k 6 µk + ykσk) and Φ(yk) are between
0 and 1 and the weights pk are non-negative and sum to at most 1, we have

|Q1 −Q2| =
∑

0<k<s/2

pk ·
∣∣P (Xs,k 6 µk + ykσk)− Φ(yk)

∣∣ = O(1/
√
s).

Now we must approximate Φ(yk) and pk. We start with approximating yk. For k ∈ Z,
write

y∗k = ax+ btk where a =
√

8/5, b = −
√

3/5, and tk = 53/4 (k − k0)/
√
s.

The next lemma says that yk is well approximated by the arithmetic progression y∗k =
ax+ btk in the relevant range of k. We also write

dtk = tk − tk−1 = 53/4/
√
s.

The quantity dtk (which is independent of k) will be used as a mesh size in approximating
integrals. We will also see (41) that σk is roughly constant when k is close to k0.

Lemma 9. For all integers k with 0 < k < s/2,

|yk − y∗k| =
1√
s
·O(1 + |xtk|+ t2k). (18)

We will also show in the last section that Lemma 9 implies the following statement.

Corollary 10. For all integers k with 0 < k < s/2 we have

|Φ(yk)− Φ(y∗k)| = O

(
1√
s

(
1 + t2k

))
(19)

uniformly for x ∈ R.

Hence,

Q2 =
∑

0<k<s/2

Φ(yk)pk =
∑

0<k<s/2

Φ(y∗k)pk +
1√
s
·O

 ∑
0<k<s/2

(
1 + t2k

)
pk

 . (20)
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Lemma 11. There exists a universal constant K0 such that for all s ∈ N,∑
06k6s/2

(1 + t2k) pk 6 K0. (21)

Thus,

Q2 =
∑

0<k<s/2

Φ(yk)pk =
∑

0<k<s/2

Φ(y∗k)pk +O

(
1√
s

)
. (22)

Let

Q3 =
∑

0<k<s/2

Φ(y∗k)pk. Then, |Q2 −Q3| = O

(
1√
s

)
. (23)

It would be natural to use the local approximation (7) for the weights pk at this point.
However, it would be harder to deal with the accumulation of errors. So instead we will
apply the following version of summation by parts and use the global approximation (6).

Lemma 12. Let m 6 n be integers. Suppose (Uk : m 6 k 6 n + 1) and (Vk : m − 1 6
k 6 n) are two (finite) real sequences. Then,

n∑
k=m

Uk(Vk − Vk−1) =
n∑

k=m

(Uk − Uk+1)Vk +
[
Un+1Vn − UmVm−1

]
. (24)

(Lemma 12 can be verified easily by comparing the two sides term by term.)

Write dUk = Uk − Uk+1 (m 6 k 6 n) and dVk = Vk − Vk−1 (m 6 k 6 n). Thus (24)
becomes

n∑
k=m

Uk dVk =
n∑

k=m

dUk Vk +
[
Un+1Vn − UmVm−1

]
. (25)

Note also: for all m 6 k 6 n,

Uk = Un+1 +
∑
k6i6n

dUi and Vk = Vm−1 +
∑
m6i6k

dVi.

Corollary 13. Let m 6 n be integers. Suppose (Uk : m 6 k 6 n + 1), (U ′k : m 6 k 6
n + 1), (Vk : m− 1 6 k 6 n), and (V ′k : m− 1 6 k 6 n) are real sequences. Define dUk,
dU ′k, dVk, dV

′
k as in Lemma 12. Write

δU = sup
m6k6n

|Uk − U ′k|, δV = sup
m6k6n

|Vk − V ′k|. (26)

Then,∣∣∣ n∑
k=m

UkdVk −
n∑

k=m

U ′kdV
′
k

∣∣∣
6 δU

∑
|dV ′k|+ δV

∑
|dUk|+ |Un+1Vn − UmVm−1|+

∣∣Un+1V
′
n − UmV ′m−1

∣∣ . (27)
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This simple corollary of Lemma 12 will be proved in the last section.

Now define

F ∗k =


1 if k 6 0,

Φ(y∗k) = Φ(ax+ btk) if 0 < k < s/2,

0 if k > s/2.

(28)

Then,

Q3 =
∑

0<k<s/2

F ∗k pk =
∑

06k6s/2

F ∗k pk − p0 =
∑

06k6s/2

F ∗k pk − (1/F ibs+1). (29)

Let
Q4 =

∑
06k6s/2

F ∗k pk (30)

Thus,
Q3 = Q4 − (1/F ibs+1) = Q4 + O(1/

√
s). (31)

Note: The doubly infinite sequence (y∗k : k ∈ Z) = (ax + btk : k ∈ Z) is monotone
decreasing, so (Φ(y∗k) : k ∈ Z) is monotone decreasing. Hence (F ∗k : k ∈ Z) is also
monotone decreasing. Consequently, the numbers

fk = F ∗k − F ∗k+1 (k ∈ Z) (32)

are non-negative and add up to 1.

We apply Corollary 13 with m = 0, n = bs/2c, Uk = F ∗k , U ′k = Φ(ax + btk),

Vk = Sk =
∑k

i=0 pi,V
′
k = Φ(tk). Note that for us: Um = U0 = 1, Un+1 = F ∗bs/2c+1 = 0,

Vm−1 = S−1 = 0. Hence,∣∣∣ ∑
06k6s/2

UkdVk −
∑

06k6s/2

U ′kdV
′
k

∣∣∣ 6 δU
∑
|dV ′k|+ δV

∑
|dUk| + Φ(t−1). (33)

Plugging in our values, we get δU = 1 − Φ(ax + bt0) if s is odd, and when s is even,
δU = max{1− Φ(ax+ bt0),Φ(ax+ btn)}. In both cases, δU is exponentially small in s.

Now let’s estimate δV . The discussion after Proposition 6 mentioned that its assump-
tions are satisfied for W , hence one can apply the inequality 6 to get

δV < 0.7975/σ(W ) = O(1/
√
s).

Also, both dUk(= fk) and dV ′k(= Φ(tk)− Φ(tk−1)) are non-negative, hence∑
06k6s/2

|dUk| =
∑

06k6s/2

dUk = U0 − Un+1 = F ∗0 − F ∗n+1 = 1− 0 = 1

and ∑
06k6s/2

|dV ′k| =
∑

06k6s/2

dV ′k = Φ(tn)− Φ(t−1) 6 1.
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Thus, (33) becomes∣∣∣ ∑
06k6s/2

UkdVk −
∑

06k6s/2

U ′kdV
′
k

∣∣∣ 6 δU + δV + Φ(t−1) 6
K1√
s

(34)

for some universal constant K1.
Recall that

Q4 =
∑

06k6s/2

F ∗k pk =
∑

06k6s/2

UkdVk.

Let
Q5 =

∑
06k6s/2

U ′kdV
′
k =

∑
06k6s/2

Φ(ax+ btk)
[
Φ(tk)− Φ(tk−1)

]
. (35)

Thus, by (34),
|Q4 −Q5| 6 K1/

√
s.

Lemma 14. For all integers k ∈ Z,

Φ(tk)− Φ(tk−1) = ϕ(tk)dtk +
1√
s
O
(
|ϕ′(tk)|dtk

)
+O(1/s3/2). (36)

Applying Lemma 14, we get

Q5 =
∑

06k6s/2

Φ(ax+ btk) [Φ(tk)− Φ(tk−1)]

=
∑

06k6s/2

Φ(ax+ btk)ϕ(tk) dtk +
1√
s
·O

 ∑
06k6s/2

|ϕ′(tk)| dtk

+O(1/
√
s)

=
∑

06k6s/2

Φ(ax+ btk)ϕ(tk) dtk + O(1/
√
s).

(37)

For the last line we used the fact that the O(
∑
. . .) term is a (partial) Riemann-sum for

the convergent integral
∫∞
−∞ |ϕ

′(t)|dt. The bounded non-negative function |ϕ′(t)| is made

up of four monotone pieces, and our mesh size is dtk = O(1/
√
s).

The sum in the last line of (37) can be extended for all integers k with an error of
only O(1/

√
s). This is because∑

k<0

Φ(ax+ btk)ϕ(tk) dtk <
∑
k<0

ϕ(tk) dtk

and the right-hand side is a Riemann sum for the function ϕ(t) integrated from −∞
to −53/4k0/

√
s. This integral is exponentially small in s. Since on this domain ϕ(t)

is monotone increasing and is between 0 and 1/
√

2π, the Riemann sum approximation
itself only introduces an error at most dtk/

√
2π = O(1/

√
s). The same applies to the

sum
∑

k>s/2 Φ(ax+ btk)ϕ(tk) dtk.
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Thus,

Q5 =
∑
k∈Z

Φ(ax+ btk)ϕ(tk) dtk + O(1/
√
s). (38)

Let
Q6 =

∑
k∈Z

Φ(ax+ btk)ϕ(tk) dtk. Then, Q5 = Q6 +O(1/
√
s). (39)

Define

Q7 =

∫ ∞
−∞

Φ(ax+ bt)ϕ(t)dt. (40)

Lemma 15. Let h : R→ R be a differentiable function. Assume

Vh =

∫ ∞
−∞
|h′t) | dt <∞.

Let Ij = [`j, rj] (j ∈ Z) be a partition of R into intervals of lengths not exceeding δ > 0,
and let ξj ∈ Ij be arbitrary points. Then,∣∣∣∣∣∑

j∈Z

h(ξj) |Ij| −
∫ ∞
−∞

h(t) dt

∣∣∣∣∣ 6 Vh δ .

We apply this lemma to the function h(t) = Φ(ax+ bt)ϕ(t) with δ = dtk = 53/4/
√
s.

Thus, h′(t) = ϕ(t) · [b ϕ(ax+ bt)− tΦ(ax+ bt)], whence |h′(t)| 6 ϕ(t) · (|b|+ |t|).
Since ∫ ∞

−∞
|h′(t)| dt <∞

uniformly for x ∈ R, by Lemma 15 we get

Q6 = Q7 +O(1/
√
s).

Lemma 16. Let a and b be real numbers. Then for all x ∈ R,∫ ∞
−∞

Φ(ax+ bt)ϕ(t)dt = Φ

(
ax√

1 + b2

)
.

We apply Lemma 16 with a =
√

8/5 and b = −
√

3/5 to obtain

Q7 = Φ(x).

This completes the proof of Theorem 1. Namely, we have shown that

F (x) = Φ(x) + O(1/
√
s)

uniformly in x ∈ R.
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6 Computational Proofs of the Lemmas

Lemma 9. For all integers k with 0 < k < s/2,

|yk − y∗k| =
1√
s
·O(1 + |xt|+ t2k).

Proof. Recall that µk = k(s+1−k)
2

, σ2
k = k(s+1−k)(s−2k)

12
, k0 = b5−

√
5

10
sc. Let Dk = k − k0.

Then

σ2
k

σ2
k0

=
(k0 +Dk)(s+ 1− k0 −Dk)(s− 2k0 − 2Dk)

k0(s+ 1− k0)(s− 2k0)
= 1 +O

(
Dk

s

)
. (41)

Therefore

yk =
1

σk

(
(µ− µk) + xσ

)
=

[
1 +O

(
Dk

s

)]
· 1

σk0

(
(µ− µk) + xσ

)
.

Let q = σ/σk0 . Then

yk =

[
1 +O

(
Dk

s

)]
· q ·

(
µ− µk
σ

+ x

)
.

Now note that

µk0 =
1

2

(
5−
√

5

10
s

)(
s+ 1− 5−

√
5

10
s

)
+O(s)

=
1

2

(
5−
√

5

10

)(
1− 5−

√
5

10

)
s2 +O(s)

=
s2

10
+O(s) = µ+O(s).

So

µ− µk = µk0 − µk +O(s)

=
1

2
(k0(s+ 1− k0)− k(s+ 1− k)) +O(s)

=
1

2
(k − k0)

(
− s− 1 + (k + k0)

)
+O(s)

=
1

2
(k − k0)

(
− s− 1 + (k − k0) + 2k0

)
+O(s)

=
1

2
Dk

(
− s− 1 +Dk +

5−
√

5

5
s
)

+O(s)

= −
√

5

10
· sDk +O(D2

k) +O(s).

(Above and below we use the obvious inequality: 2Dk 6 D2
k + 1.)
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Therefore

µ− µk
σ

=
−
√
5

10
· sDk +O(D2

k) +O(s)√
2
√
5

375
s3/2

[
1 +O

(
1
s

)]
=

√
375

2
√

5

(
−
√

5

10
· Dk√

s
+O

(
D2
k

s3/2

)
+O

(
1√
s

))[
1 +O

(
1

s

)]
= −31/2 53/4

23/2
· Dk√

s
+O

(
D2
k

s3/2

)
+O

(
1√
s

)
.

Finally, setting tk = 53/4Dk/
√
s and using |Dk| 6 s gives

yk =

[
1 +O

(
Dk

s

)]
· q ·

(
µ− µk
σ

+ x

)
=

[
1 +O

(
tk√
s

)]
· q ·

(
x−

√
3

8
tk +O

(
t2k√
s

)
+O

(
1√
s

))

= q ·

(
x−

√
3

8
tk

)
+

1√
s
·O
(
1 + |xtk|+ t2k

)
.

But q is essentially a constant. That is,

q2 =
σ2

σ2
k0

=
2
√
5

375
s3 +O(s2)

1
12
k0(s+ 1− k0)(s− 2k0) +O(s2)

=
2
√
5

375
s3 +O(s2)

1
12
c0(1− c0)(1− 2c0)s3

[
1 +O

(
1
s

)]
=

8

5
+O

(
1

s

)
.

So q =
√

8/5 +O(1/s). Therefore

yk =

(√
8

5
x−

√
3

5
tk

)
+

1√
s
·O
(
1 + |xt|+ t2k

)
= y∗k +

1√
s
·O
(
1 + |xt|+ t2k

)
.

Corollary 10. For all integers k with 0 < k < s/2 we have

|Φ(yk)− Φ(y∗k)| = O

(
1√
s

(
1 + t2k

))
uniformly for x ∈ R.

Proof.
Let K2 be the implied constant in (18). Let ε1 =

√
2/3, x0 = 16K2/a, and s0 =

(8K2/a)4.
Special case I: |tk| > s1/4.
Then 1 + t2k > s1/2, so 1√

s
(1 + t2k) > 1. Hence (19) is automatically true (independent

of the value of x).
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Special case II: |tk| > ε1|x|.
Then 1 + |xtk|+ t2k 6 1 + ( 1

ε1
+ 1)t2k < 3(1 + t2k).

Special case III: |x| 6 x0.
Then 1 + |xtk|+ t2k 6 1 + x0|tk|+ t2k 6 (1 + x0/2)(1 + t2k) = O(1 + t2k).

For the rest of this proof we will assume k is an integer with 0 < k < s/2 satisfying:

x > x0, |tk| < ε1|x|, and |tk| < s1/4.

We will first show that both yk and y∗k are between 1
4
ax and 7

4
ax. This will allow us

to apply the Mean Value Theorem to prove the corollary.
Recall that a =

√
8/5, b = −

√
3/5, and tk = 53/4 (k − k0)/

√
s. Thus,

|btk| =
√

3/5 |tk| <
√

3/5 ε1|x| =
1

2
|ax|.

Consequently,

y∗k = ax+ btk is between
1

2
ax and

3

2
ax, whence |y∗k| >

1

2
a|x|.

Now we estimate yk:

|y∗k − yk| 6
K2√
s
· (1 + |xtk|+ t2k) =

K2√
s
· (1 + t2k) +

K2√
s
· |xtk|.

The first term on the right-hand side is estimated as

K2√
s

(1 + t2k) <
K2√
s

(1 + s1/2) = K2 (1 + s−1/2) 6 2K2 6
1

8
a|x|

for x > x0.
For the second term we have

K2√
s
· |xtk| <

K2√
s
· |x|s1/4 =

K2

s1/4
· |x| 6 1

8
a|x|

for s > s0.

Consequently,

|y∗k − yk| <
1

4
a|x|, and thus yk is between

1

4
ax and

7

4
ax as desired.

By the Mean Value Theorem, there is a ξ between yk and y∗k such that Φ(y∗k)−Φ(yk) =
ϕ(ξ) (y∗k − yk). As we showed above, ξ is between 1

4
ax and 7

4
ax, and hence

|ξ| > 1

4
a|x| > a

4ε1
|tk|.

Consequently, since ϕ is monotone,

ϕ(ξ) = ϕ(|ξ|) < ϕ

(
1

4
a|x|

)
and ϕ(ξ) < ϕ

(
a

4ε1
|tk|
)
.
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We obtain:

|Φ(y∗k)− Φ(yk)| = ϕ(ξ) |y∗k − yk| 6 ϕ(ξ)
K2√
s
· (1 + |xtk|+ t2k)

<
K2√
s
·
[

(1 + t2k)ϕ

(
a

4ε1
|tk|
)

+ ε1x
2 ϕ

(
1

4
a|x|

)]
.

Since the quantity in square brackets is bounded uniformly in k ∈ Z and x ∈ R,
Corollary 10 is proved.

Lemma 11. There exists a universal constant K0 such that for all s ∈ N,∑
06k6s/2

(1 + t2k) pk 6 K0.

Proof. By the definition of tk, we have

t2k =
53/2

s
(k − k0)2 6

25

s
·
[
(k − µ(W ))2 + (µ(W )− k0)2

]
=

25

s
(k − µ(W ))2 +O(1/s).

Here we used (α− γ)2 6 2[(α− β)2 + (β − γ)2]. Hence,

∑
06k6s/2

t2k pk 6
25

s

∑
06k6s/2

(k − µ(W ))2pk +O(1) = 25 · σ
2(W )

s
+O(1) = O(1)

(where, as always, O(1) is independent of s).

Corollary 13. Let m 6 n be integers. Suppose (Uk : m 6 k 6 n+1), (U ′k : m 6 k 6 n+1),
(Vk : m − 1 6 k 6 n), and (V ′k : m − 1 6 k 6 n) are real sequences. Define dUk, dU

′
k,

dVk, dV
′
k as after Lemma 12. Write

δU = sup
m6k6n

|Uk − U ′k|, δV = sup
m6k6n

|Vk − V ′k|. (42)

Then,∣∣∣ n∑
k=m

UkdVk −
n∑

k=m

U ′kdV
′
k

∣∣∣
6 δU

∑
|dV ′k|+ δV

∑
|dUk|+ |Un+1Vn − UmVm−1|+

∣∣Un+1V
′
n − UmV ′m−1

∣∣ . (43)

Proof. We start with the following four identities, the non-trivial two of which follow
from applying Lemma 12 twice.

n∑
k=m

UkdVk −
n∑

k=m

dUkVk = [Un+1Vn − UmVm−1] .

n∑
k=m

dUkVk −
n∑

k=m

dUkV
′
k =

n∑
k=m

dUk(Vk − V ′k).

n∑
k=m

dUkV
′
k −

n∑
k=m

UkdV
′
k = −

[
Un+1V

′
n − UmV ′m−1

]
.
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n∑
k=m

UkdV
′
k −

n∑
k=m

U ′kdV
′
k =

n∑
k=m

(Uk − U ′k)dV ′k .

Adding up these four identities we get

n∑
k=m

UkdVk −
n∑

k=m

U ′kdV
′
k

=
n∑

k=m

(Uk − U ′k)dV ′k +
n∑

k=m

dUk(Vk − V ′k) + [Un+1Vn − UmVm−1]−
[
Un+1V

′
n − UmV ′m−1

]
,

from which Corollary 13 follows.

Lemma 14. For all integers k ∈ Z,

Φ(tk)− Φ(tk−1) = ϕ(tk)dtk +
1√
s
O(|ϕ′(tk)|dtk) +O(1/s3/2)

where dtk = 53/4/
√
s.

Proof. Let k ∈ Z. There exists a ξk with tk−1 < ξk < tk such that

Φ(tk)− Φ(tk−1) = ϕ(tk)(tk − tk−1)−
1

2
ϕ′(tk)(tk − tk−1)2 +

1

6
ϕ′′(ξk)(tk − tk−1)3

= ϕ(tk)dtk −
1

2
ϕ′(tk)(dtk)

2 +
1

6
ϕ′′(ξk)(dtk)

3

= ϕ(tk)dtk +
1√
s
O(|ϕ′(tk)|dtk) +O(1/s3/2).

Lemma 15. Let h : R→ R be a differentiable function. Assume Vh =
∫∞
−∞ |h

′t) | dt <∞.
Let Ij = [`j, rj] (j ∈ Z) be a partition of R into intervals of lengths not exceeding δ > 0,
and let ξj ∈ Ij be arbitrary points. Then,∣∣∣∣∣∑

j∈Z

h(ξj) |Ij| −
∫ ∞
−∞

h(t) dt

∣∣∣∣∣ 6 Vh δ .

Proof. While the statement is known in the context of total variations of functions, we
give, for completeness, a simple direct proof by applying the bounded version below on
each individual interval Ij.

Observation. Let h be a differentiable function on a closed interval I = [a, b] (a < b).
Then,

|h(b)− h(a)| 6
∫ b

a

|h′(t)| dt.

Indeed, by the Fundamental Theorem of Calculus,∣∣h(b)− h(a)
∣∣ =

∣∣∣∣∫ b

a

h′(t) dt

∣∣∣∣ 6 ∫ b

a

|h′(t)| dt.
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Bounded version. Let h be differentiable on a closed bounded interval I = [a, b] (a < b).
Let ξ ∈ I be arbitrary. Then,

D :=

∣∣∣∣h(ξ) · (b− a) −
∫ b

a

h(t) dt

∣∣∣∣ 6 (b− a)

∫ b

a

|h′(t)| dt.

Indeed, since h is continuous on I, there exists an η ∈ I such that∫ b

a

h(t) dt = h(η) · (b− a).

Assume (WLOG) that η 6 ξ. Then, by the Observation above,

D = (b− a) ·
∣∣h(ξ)− h(η)

∣∣ 6 (b− a)

∫ ξ

η

|h′(t)| dt 6 (b− a)

∫ b

a

|h′(t)| dt.

Lemma 16. Let a and b be real numbers. Then for all x ∈ R,∫ ∞
−∞

Φ(ax+ bt)ϕ(t)dt = Φ

(
ax√

1 + b2

)
.

Proof. One could compute the two-dimensional integral corresponding to the left hand
side. We present instead a simple probabilistic proof.

Let Z1 and Z2 be independent standard normal variables. Define Z3 = Z1 − bZ2.
Then Z3 is a normal random variable with 0 expectation and variance 1 + b2. We then
have ∫

Φ(ax+ bt)ϕ(t)dt =

∫
P (Z1 6 ax+ bt)ϕ(t)dt

=

∫
P (Z1 6 ax+ bt |Z2 = t)ϕ(t)dt

=

∫
P (Z1 6 ax+ bZ2 |Z2 = t)ϕ(t)dt

= P (Z1 6 ax+ bZ2)

= P (Z3 6 ax) = Φ

(
ax√

1 + b2

)
.
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