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Abstract

A subset A of Zn is called a weak antichain if it does not contain two elements
x and y satisfying xi < yi for all i. Engel, Mitsis, Pelekis and Reiher showed that
for any weak antichain A, the sum of the sizes of its (n−1)-dimensional projections
must be at least as large as its size |A|. They asked what the smallest possible value
of the gap between these two quantities is in terms of |A|. We answer this question
by giving an explicit weak antichain attaining this minimum for each possible value
of |A|. In particular, we show that sets of the form

AN = {x ∈ Zn : 0 6 xj 6 N − 1 for all j and xi = 0 for some i}

minimise the gap among weak antichains of size |AN |.
Mathematics Subject Classifications: 05D05

1 Introduction

A subset of Zn is called a weak antichain if it contains no elements x and y such that for all i
xi < yi. Let us denote by πi the projection along the ith coordinate, that is, πi : Zn → Zn−1

is given by (x1, . . . , xn) 7→ (x1, . . . , xi−1, xi+1, . . . , xn). Engel, Mitsis, Pelekis and Reiher
[3] proved the following projection inequality for weak antichains (which they used to
prove an analogous result about weak antichains in the continuous cube [0, 1]n).

Theorem 1 (Engel, Mitsis, Pelekis and Reiher [3]). For every finite weak antichain A in
Zn, we have

|A| 6
n∑

i=1

|πi(A)|.

The same authors asked the following question.
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Question 2. What is the smallest possible value g(n,m) of gap(A) =
∑n

i=1 |πi(A)| − |A|
as A varies over weak antichains in Zn of size m?

Note that the question is uninteresting for (strong) antichains A in Zn, as we trivially
have |πi(A)| = |A| for all i in this case. Furthermore, a weak antichain in {0, 1}n is just a
subset of {0, 1}n not containing both the zero vector and the vector with all entries equal
to 1. So classical results about set systems (such as Sperner’s theorem, see e.g. [1]) are
not particularly relevant here.

In this paper we answer Question 2. To state the result, we need some definitions. Let
Z>0 denote the set of non-negative integers, and let Xn be the subset of Zn

>0 consisting of
elements that have at least one coordinate which is zero. Note that any subset of Xn is a
weak antichain. For given x, y ∈ Xn, let T = {i : xi 6= yi}, let x′ = (xi)i∈T , y′ = (yi)i∈T .
Write x < y if maxx′ < max y′ or (maxx′ = max y′ and max{i : x′i = max x′} < max{i :
y′i = max y′}). Then < defines a total order on Xn. We will call this the balanced order
on Xn.

For example, the first few elements of the balanced order on X2 are

(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (3, 0), (0, 3), (4, 0), (0, 4),

and the first few elements of the balanced order on X3 are

(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (2, 0, 0), (2, 1, 0), (2, 0, 1),

(0, 2, 0), (1, 2, 0), (0, 2, 1), (2, 2, 0), (0, 0, 2), (1, 0, 2), (0, 1, 2), (2, 0, 2), (0, 2, 2), (3, 0, 0).

Theorem 3. For every n > 2 and m > 0, the initial segment of size m of the balanced
order on Xn minimises the gap among weak antichains in Zn of size m. In particular, for
every positive integer N , the set

AN = {x ∈ Zn
>0 : 0 6 xi 6 N − 1 for all i, and xj = 0 for some j}

minimises the gap among weak antichains of size |AN | = Nn − (N − 1)n.

In terms of asymptotic lower bounds on the gap, this gives the following result.

Theorem 4. For every n > 2 and m > 1, we have

g(n,m) > cnm
1−1/(n−1),

where cn = 1
2
(n− 1)n1/(n−1). Moreover, for every n > 2, we have

g(n,m) ∼ cnm
1−1/(n−1) as m→∞.

Our proofs have the following structure. Starting with any weak antichain, we modify
it into a subset of Xn. This modification will be made step-by-step, and at some points
our set will not be a weak antichain. However, it will always satisfy a certain weaker
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property, which we will call ’layer-decomposability’. Studying subsets of Xn is much
simpler than studying general weak antichains, and we will finish the proof of Theorem 3
using induction on n and codimension-1 compressions. For our proof to work we will need
to show that initial segments of the balanced order are extremal for another property as
well. Instead of deducing the asymptotic result from Theorem 3, we will prove it directly
and before Theorem 3, because its proof is simpler and motivates some of the steps in the
proof of Theorem 3.

2 Compressing to a down-set in Xn

Recall that we denote Xn = {x ∈ Zn
>0 : xi = 0 for some i}. In this section our aim is to

prove the following lemma.

Lemma 5. If A is a finite weak antichain in Zn, then there is a weak antichain A′ ⊆ Xn

of the same size having |πi(A′)| 6 |πi(A)| for each i which is a down-set, i.e., if x, y ∈ Zn
>0,

xi 6 yi for all i and y ∈ A′ then x ∈ A′.

We start by recalling the proof of Engel, Mitsis, Pelekis and Reiher [3] that gap(A) > 0
for every finite weak antichain. For any finite set A ⊆ Zn, define the ith bottom layer
Bi(A) to be the set of elements with minimal ith coordinate, i.e.,

Bi(A) = {x ∈ A : whenever y ∈ A with yj = xj for all j 6= i then yi > xi}.

Furthermore, define A1, . . . , An inductively by setting (A1 = B1(A) and)

Ai = Bi (A \ (A1 ∪ · · · ∪ Ai−1)) .

Observe that for a weak antichain we have A = A1∪· · ·∪An. Indeed, if x ∈ A\(A1∪· · ·∪
An) then we may inductively find x(i) ∈ An−i (for all 0 6 i 6 n − 1) such that x

(i)
j < xj

for all j > n − i and x
(i)
j = xj for all j < n − i. Then x(n−1) has all coordinates smaller

than x, giving a contradiction.
We will call a finite set A with A = A1 ∪ · · · ∪An layer-decomposable. Note that πi re-

stricted to Ai is injective, hence
∑n

i=1 |πi(A)| >
∑n

i=1 |Ai| = |A| for all layer-decomposable
sets (and in particular for all weak antichains).

Now assume A ⊆ Zn
>0. Define the i-compression Ci(A) of A by replacing each x ∈

Bi(A) by (x1, . . . , xi−1, 0, xi+1, . . . , xn). Note that |Ci(A)| = |A|.

Lemma 6. Let A ⊆ Zn
>0 be any finite set. For every i 6= j, πj(Ci(A)) ⊆ Ci(πj(A)). In

particular, |πj(Ci(A))| 6 |πj(A)|.

(When considering Ci(πj(A)), we mean compressing along the coordinate labelled by
i, not along the ith remaining coordinate.)

Proof. Suppose (x1, . . . , xj−1, xj+1, . . . , xn) ∈ πj(Ci(A)) so that there is an x ∈ Ci(A) with
kth coordinate xk for all k.
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• If xi = 0 then there is a y ∈ Bi(A) with xk = yk for all k 6= i. So we have
(y1, . . . , yj−1, yj+1, . . . , yn) ∈ πj(A). But this vector and (x1, . . . , xj−1, xj+1, . . . , xn)
agree in all entries except maybe the one labelled by i, so (since xi = 0) we have
(x1, . . . , xj−1, xj+1, . . . , xn) ∈ Ci(πj(A)).

• If xi 6= 0 then x ∈ A \Bi(A) and there is a y ∈ Bi(A) with yk = xk for all k 6= i and
yi < xi. But then πj(y) and πj(x) agree in all coordinates except the ith one, which
shows πj(x) 6∈ Bi(πj(A)) and hence πj(x) ∈ Ci(πj(A)), as claimed.

Say that A is i-compressed if Ci(A) = A, i.e., Bi(A) = {x ∈ A : xi = 0}.

Lemma 7. Suppose that A ⊆ Zn
>0 is finite, layer-decomposable (i.e., A = A1 ∪ · · · ∪An),

and k-compressed for all k < i. Then A′ = Ci(A) satisfies the following.

(i) A′ is k-compressed for all k 6 i.

(ii) A′ is layer-decomposable.

Proof. Let j < i. By Lemma 6, |πj(A′)| 6 |πj(A)|. But, since Bj(A) = {x ∈ A : xj = 0},
Ci(Bj(A)) is a subset of A′ having jth coordinate constant zero and jth projection of size
|πj(A)|. It follows that Bj(A

′) = Ci(Bj(A)) = {x ∈ A′ : xj = 0}, giving (i).
We now show (ii). Since A is k-compressed for all k < i, induction on k gives

Ak = {x ∈ A : xk = 0 but xl 6= 0 for all l < k} for all k < i. (1)

Indeed, if this holds for all k′ with k′ < k, then
⋃k−1

l=1 Al = {x ∈ A : xl = 0 for some l < k},
so Ak contains the right hand side of (1), and every element of Ak has xl 6= 0 for all l < k.
Furthermore, if there is some x ∈ A with xk > 0 and xl 6= 0 for all l < k, then there is
some y ∈ A with yk = 0 and yj = xj for all j 6= i (as A is k-compressed). Then y ∈ Ak,
so certainly x 6∈ Ak, giving the claim.

Similarly,

A′k = {x ∈ A′ : xk = 0 but xl 6= 0 for all l < k} for all k 6 i. (2)

But then we have

Ci(A \ (A1 ∪ · · · ∪ Ai−1)) = Ci({x ∈ A : xk 6= 0 for all k < i})
= {x ∈ Ci(A) : xk 6= 0 for all k < i}
= A′ \ (A′1 ∪ · · · ∪ A′i−1).

(The first equality is immediate from (1). The second equality follows from the fact that
Ci acts independently on each set consisting of points having a fixed value of x1, . . . , xi−1.
The last equality is immediate from (2).)

It follows that {x ∈ Ci(A \ (A1 ∪ · · · ∪ Ai−1)) : xi 6= 0} = {x ∈ A′ \ (A′1 ∪ · · · ∪
A′i−1) : xi 6= 0}. But the left hand side is A \ (A1 ∪ · · · ∪ Ai) and the right hand side is
A′ \ (A′1 ∪ · · · ∪A′i) by (2). Thus A \ (A1 ∪ · · · ∪Ai) = A′ \ (A′1 ∪ · · · ∪A′i). Hence Aj = A′j
for all j > i. Using A = A1 ∪ · · · ∪An, we have A \ (A1 ∪ · · · ∪Ai) = Ai+1 ∪ · · · ∪An and
so A′ \ (A′1 ∪ · · · ∪ A′i) = A′i+1 ∪ · · · ∪ A′n, giving (ii).
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Lemma 8. If A ⊆ Zn
>0 is a finite weak antichain, then A′ = Cn(Cn−1(. . . (C1(A)) . . . ))

satisfies

(i) |πi(A′)| 6 |πi(A)| for each i.

(ii) A′ is k-compressed for all k.

(iii) A′ = A′1 ∪ · · · ∪ A′n.

(iv) A′k = {x ∈ A′ : xk = 0 but xl 6= 0 for all l < k} for all k.

(v) A′ ⊆ Xn = {x ∈ Zn
>0 : xi = 0 for some i}.

Proof. The claims (i), (ii), (iii) are immediate from Lemma 6 and Lemma 7. Claim (iv)
follows from (ii) exactly as in the proof of Lemma 7. Then (v) follows from (iii) and
(iv).

Note that even though some intermediate steps Ci(Ci−1(. . . (C1(A)) . . . )) need not
give weak antichains, we see that after the nth compression we end up with a set which is
necessarily a weak antichain.

For a set A ⊆ Zn
>0, define the complete i-compression

Ccompl
i (A) = {(x1, . . . , xi−1, a, xi+1, . . . , xn) :

a ∈ Z>0 and there are at least a+ 1 elements y of A having for all j 6= i yj = xj}.

Note that |Ccompl
i (A)| = |A|.

Lemma 9. If A ⊆ Xn then for any j we have |πj(Ccompl
i (A))| 6 |πj(A)|.

Proof. The proof is essentially the same as for Lemma 6. Indeed, let j 6= i and suppose
that (x1, . . . , xj−1, xj+1, . . . , xn) ∈ πj(Ccompl

i (A)). So there is an x ∈ Ccompl
i (A) with kth

coordinate xk for all k, and hence there are y(0), . . . , y(xi) ∈ A such that y
(a)
k = xk for all k 6=

i and all 0 6 a 6 xi, and y
(0)
i < y

(1)
i < · · · < y

(xi)
i . But then (x1, . . . , xj−1, xj+1, . . . , xn) ∈

Ccompl
i (πj(A)). It follows that πj(C

compl
i (A)) ⊆ Ccompl

i (πj(A)), giving the result.
[Alternatively, we can deduce Lemma 9 from Lemma 6 by applying Ci to A then

A \Bi(A) then A \ (Bi(A) ∪Bi(A \Bi(A))) and so on.]

Proof of Lemma 5. We may assume that A ⊆ Zn
>0. By Lemma 8, we may also assume

A ⊆ Xn. Keep applying complete compressions while it changes our set. These do not
increase any projection by Lemma 9, and keeps our set a subset of Xn. Note that if
A′ 6= Ccompl

i (A′) then
∑

x∈Ccompl
i (A′)

∑
j xj <

∑
x∈A′

∑
j xj, so the process must terminate.

So the set A′ we end up with must have Ccompl
i (A′) = A′ for all i, so it must be a

down-set.
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3 The asymptotic result

We now show how Lemma 5 can be used to prove the asymptotic version of our theorem.
The proof of the exact version (Theorem 3) in the next section will be independent of
this section, but the proof below motivates some of the steps in the proof of Theorem 3.
Recall that g(n,m) denotes the smallest possible value of gap(A) =

∑n
i=1 |πi(A)| − |A|

as A varies over weak antichains of size m in Zn, and our aim is to prove the following
result.

Theorem 4. For every n > 2 and m > 1, we have

g(n,m) > cnm
1−1/(n−1),

where cn = 1
2
(n− 1)n1/(n−1). Moreover, for every n > 2, we have

g(n,m) ∼ cnm
1−1/(n−1) as m→∞.

Proof. By Lemma 5, it suffices to consider sets A ⊆ Xn which are down-sets. We prove
the result by induction on n. The case n = 2 is trivial, since the gap is exactly 1 for any
down-set in X2. Now assume n > 3 and the result holds for n− 1.

Define, for every a ∈ Z>0,

La = {(x1, x2, . . . , xn−1) ∈ Zn−1
>0 : (x1, x2, . . . , xn−1, a) ∈ A and xi = 0 for some i < n}.

Let K = πn(A)\L0. Note that A can be written as a disjoint union of K×{0} and the
La × {a}. Also, L0 ⊇ L1 ⊇ L2 ⊇ . . . , and each La is a subset of Xn−1 (and in particular
is a weak antichain). Note furthermore that |πi(A)| =

∑
a>0 |πi(La)| for all i < n, and

|πn(A)| = |K|+ |L0|. It follows that

n∑
i=1

|πi(A)| − |A| =
n−1∑
i=1

|πi(L0)|+
∑
a>1

(
n−1∑
i=1

|πi(La)| − |La|

)
> |L0|+

∑
a>0

g(n− 1, |La|)

> |L0|+
∑

a>0,La 6=∅

cn−1|La|1−1/(n−2).

Write |L0| = x. Since |La| 6 x for each a, we have |La|1−1/(n−2) > |La|x−1/(n−2). It follows
that

n∑
i=1

|πi(A)| − |A| > x+ cn−1

(∑
a>0

|La|

)
x−1/(n−2).

Note that
∑

a>0 |La| = m−|K|. By the (discrete) Loomis–Whitney inequality [4] (see
[2] for a generalisation), and the inequality between the arithmetic and geometric mean,

|K|n−2 6
n−1∏
i=1

|πi(K)| 6

(∑n−1
i=1 |πi(K)|
n− 1

)n−1

.

the electronic journal of combinatorics 27(1) (2020), #P1.54 6



But
∑n−1

i=1 |πi(K)| 6 |L0| since we may assign to (x1, . . . , xi−1, xi+1, . . . , xn−1) ∈ πi(K) the
value (x1, . . . , xi−1, 0, xi+1, . . . , xn−1) ∈ L0, giving an injective function from the disjoint
union of the projections to L0. It follows that

|K|n−2 6

(
x

n− 1

)n−1

and so

n∑
i=1

|πi(A)| − |A| > x+ cn−1

(
m− 1

(n− 1)1+1/(n−2)
x1+1/(n−2)

)
x−1/(n−2)

=

(
1− cn−1

(n− 1)1+1/(n−2)

)
x+ cn−1mx

−1/(n−2).

Differentiation shows that this is minimised at

x =

 cn−1m

(n− 2)
(

1− cn−1

(n−1)1+1/(n−2)

)
1−1/(n−1)

,

giving

n∑
i=1

|πi(A)| − |A| >
(

1− cn−1

(n− 1)1+1/(n−2)

) 1
n−1

(n− 1)(n− 2)1/(n−1)−1(cn−1m)1−1/(n−1).

But cn−1 = 1
2
(n− 2)(n− 1)1/(n−2), so

1− cn−1

(n− 1)1+1/(n−2)
=

n

2(n− 1)

and so(
1− cn−1

(n− 1)1+1/(n−2)

)1/(n−1)

(n− 1)(n− 2)1/(n−1)−1c
1−1/(n−1)
n−1 =

1

2
(n− 1)n1/(n−1) = cn,

giving g(n,m) > cnm
1−1/(n−1), as claimed.

It remains to show that for any fixed n we have g(n,m) 6 (1 + o(1))cnm
1−1/(n−1). Let

AN = {(x1, . . . , xn) ∈ Zn
>0 : 0 6 xi 6 N − 1 for all i, and there is a j such that xj = 0}.

Note that AN has |πi(AN)| = Nn−1 for each i, so

n∑
i=1

|πi(AN)| = nNn−1.
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Moreover, it has size

mN = |AN | = Nn − (N − 1)n = nNn−1 −
(
n

2

)
Nn−2 +O(Nn−3).

Now pick N such that mN 6 m < mN+1, and consider the weak antichain given as
follows. Let B be an arbitrary subset of {0} × [N,N + b(mN+1 −mN)1/(n−1)c]n−1 of size
m−mN . Note that B has gap at most

(n− 1)(mN+1 −mN + 1)(n−2)/(n−1) = O(N (n−2)2/(n−1))

Put A = AN ∪B. So A has size m and gap equal to the sum of gaps of AN and B, so A
has gap at most(

n

2

)
Nn−2 +O(Nn−3) +O(N (n−2)2/(n−1)) =

(
n

2

)
Nn−2(1 + o(1)).

But m = nNn−1(1 + o(1)), so the gap is cnm
1−1/(n−1)(1 + o(1)), as required.

4 The exact result

Recall that we defined a total order (called the balanced order) on Xn as follows. Given
x, y ∈ Xn, let T = {i : xi 6= yi}, let x′ = (xi)i∈T , y′ = (yi)i∈T . Write x < y if
maxx′ < max y′ or (maxx′ = max y′ and max{i : x′i = maxx′} < max{i : y′i = max y′}).
To see that this really is a total order, we need to show that if x < y and y < z, then
x < z. Set Mx = maxx and ix = max{i : xi = Mx}, and define My,Mz, iy, iz similarly.
If Mx < My or My < Mz, then Mx < Mz and so x < z. If Mx = My = Mz and either
ix < iy or iy < iz, then ix < iz, so x < z again follows. Finally, if Mx = My = Mz and
ix = iy = iz then x < z follows from induction on n.

Recall that the result we are trying to prove is the following.

Theorem 3. For every n > 2 and m > 0, the initial segment of size m of the balanced
order on Xn minimises the gap among weak antichains in Zn of size m. In particular, for
every positive integer N , the set

AN = {x ∈ Zn
>0 : 0 6 xi 6 N − 1 for all i, and xj = 0 for some j}

minimises the gap among weak antichains of size |AN | = Nn − (N − 1)n.

If A ⊆ Xn, we define the balanced-i-compression C<i (A) as follows. For each a, write

Li
a(A) = {(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Xn−1 : (x1, . . . , xi−1, a, xi+1, . . . , xn) ∈ A}.

Also write

Ki(A) = {(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Zn
>0 : (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∈ A}.
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(Here Z>0 denotes the set of positive integers.) Note that for each a > 0, Li
a(A) cor-

responds to all points of A with ith coordinate equal to a, but for a = 0 such points
are partitioned into Li

0(A) and Ki(A) according to whether or not they have another
zero coordinate. We define A′ = C<i (A) to be the set for which Li

a(A
′), Ki(A′) are

given as follows. Let Li
a(A

′) be the initial segment of the balanced order on Xn−1 of
size |Li

a(A)| for each a, and let Ki(A′) be the first |Ki(A)| elements of the ordering
≺ on Zn−1

>0 given by (x1, . . . , xi−1, xi+1, . . . , xn) ≺ (y1, . . . , yi−1, yi+1, . . . , yn) if and only
if (x1, . . . , xi−1, 0, xi+1, . . . , xn) < (y1, . . . , yi−1, 0, yi+1, . . . , yn) (in the balanced order) on
Xn. (Note that this is independent of the choice of i, and in fact the relation ≺ is given
by the same rules as the balanced order.) Observe that |A′| = |A|.

It is not immediately clear that C<i (A) is a down-set when A is a down-set. For this we
will have to establish another extremal property of initial segments. For A ⊆ Xn, write

S(A) = {(x1, . . . , xn) ∈ Zn
>0 : for all j we have (x1, . . . , xj−1, 0, xj+1, . . . , xn) ∈ A}.

We will prove that initial segments maximise |S(A)| and minimise the gap by induction
on the dimension n. The following lemma will be essential in the induction step.

Lemma 10. Let n > 3. Suppose that initial segments I of the balanced order maximise
|S(I)| among down-sets in Xn−1 of given size. Then whenever A is a down-set in Xn and
i ∈ {1, . . . , n}, then A′ = C<i (A) satisfies the following.

(i) A′ is a down-set.

(ii) |S(A′)| > |S(A)|.

(iii) If it is also true that initial segments of the balanced order minimise the gap among
subsets of Xn−1 of given size, then gap(A′) 6 gap(A).

Proof. (i) It is clear that Li
0(A′) ⊇ Li

1(A′) ⊇ . . . , and that the Li
a(A

′) and Ki(A′) are
down-sets (in Xn−1 and Zn−1

>0 , respectively), since initial segments of the balanced order
are down-sets. So it remains to show that Ki(A′) ⊆ S(Li

0(A′)). Note that we know this
is true for A instead of A′ since A is a down-set.

We claim that if I is an initial segment of the balanced order on Xn−1, then S(I) is
an initial segment of the ordering ≺ of Zn−1

>0 defined earlier. To see this, suppose that
x, y ∈ Zn−1

>0 , y ∈ S(I) and x ≺ y, we want to show that x ∈ S(I). Let T = {j : xj 6= yj}
and k = min{l ∈ T : yl = minj∈T yj}. Then we have the following, for each j.

• If j 6∈ T then (x1, . . . , xj−1, 0, xj+1, . . . , xn−1) < (y1, . . . , yj−1, 0, yj+1, . . . , yn−1).

• If j ∈ T then (x1, . . . , xj−1, 0, xj+1, . . . , xn−1) 6 (y1, . . . , yk−1, 0, yk+1, . . . , yn−1). In-
deed, let us write x̄, ȳ for these vectors (respectively) and let T̄ = {l : x̄l 6= ȳl}. Note
that T̄ = T if k 6= j and T̄ = T \ {j} otherwise. It T̄ = ∅ then x̄ = ȳ, now assume
T̄ 6= ∅. So maxl∈T̄ x̄l 6 maxl∈T xl 6 maxl∈T yl = maxl∈T̄ ȳl and if we have equality
throughout then max{l ∈ T̄ : ȳl = maxs∈T̄ ȳs} = max{l ∈ T : yl = maxs∈T ys} >
max{l ∈ T : xl = maxs∈T xs} > max{l ∈ T̄ : x̄l = maxs∈T̄ x̄s}. These imply x̄ 6 ȳ.
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Using that y ∈ S(I) and that I is an initial segment, the above shows that x ∈ S(I).
So S(Li

0(A′)) and Ki(A′) are both initial segments. But |S(Li
0(A′))| > |S(Li

0(A))| >
|Ki(A)| = |Ki(A′)|, proving (i).

(ii) Note that for any B ⊆ Xn and a > 0 we have

{(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Zn−1
>0 : (x1, . . . , xi−1, a, xi+1, . . . , xn) ∈ S(B)}

= Ki(B) ∩ S(Li
a(B)).

But for each a we have |S(Li
a(A))| 6 |S(Li

a(A
′))|, and Ki(A′), S(Li

a(A
′)) are nested (since

both of them are initial segments of ≺). This implies that

|Ki(A) ∩ S(Li
a(A))| 6 min(|Ki(A)|, |S(Li

a(A))|)
6 min(|Ki(A′)|, |S(Li

a(A
′))|) = |Ki(A′) ∩ S(Li

a(A
′))|.

We get (ii) by summing over all values of a.
(iii) For any down-set B ⊆ Xn, we have |πj(B)| =

∑
a>0 |πj(Li

a(B))| for all j 6= i and
|πi(B)| = |Li

0(B)|+ |Ki(B)|. It follows that gap(B) = |Li
0(B)|+

∑
a>0 gap(Li

a(B)). (Note
that on the right hand side we have the gaps of (n− 1)-dimensional sets.) But then (iii)
follows trivially from the assumption that initial segments of the balanced order minimise
the gap on Xn−1.

The following lemma will be useful when considering sets satisfying C<i (A) = A for
all i.

Lemma 11. Suppose n > 3 and A ⊆ Xn is a down-set having C<i (A) = A for all i.
Assume that x < y with x 6∈ A and y ∈ A. Then

(i) x has a unique coordinate which is zero.

(ii) if xl = yl for some l, then xl = yl = 0 and y has at least one other coordinate which
is zero.

Proof. Assume first that xl = yl for some l. Since C<l (A) = A, it must be the case that
xl = yl = 0 and exactly one of x, y have a zero coordinate not at the lth position. It
follows that if we write i = max{j : yj = max y} then yi 6= xi. Using y > x, we get that

yi > xj for all j, and (3)

yi > xj for all j > i. (4)

Pick some k 6= i, l. Then the vector y′ obtained by replacing the kth coordinate of y by
0 is in A (since A is a down-set), and we have y′ > x (by (3) and (4)). By the same
argument as above, we deduce from xl = y′l and C<l (A) = A that xl = y′l = 0, and – since
y′k = 0 – that it must be the case that x has no zero coordinates other than the lth one.
Hence xl = yl = 0, xs 6= 0 for all s 6= l, and there is an s 6= l such that ys = 0. This
proves the lemma in this case.

the electronic journal of combinatorics 27(1) (2020), #P1.54 10



Now assume that xl 6= yl for all l. Writing i = max{j : yj = max y} again, (3) and
(4) still hold. We only need to show that x has at most one coordinate which is zero.
Assume that xk = xl = 0 with k 6= l, we may assume that l 6= i (otherwise swap k and l).
Let y′ be obtained from y by replacing the lth coordinate by 0. Then y′ ∈ A (since A is a
down-set) and y′ > x (by (3) and (4)). But also y′l = xl, so by the first case (applied to x
and y′) we know that x has exactly one zero coordinate, giving a contradiction.

Lemma 12. For every n > 2, initial segments I of the balanced order maximise |S(I)|
among down-sets in Xn of given size.

Proof. We prove the statement by induction on n. If n = 2, then any down-set in Xn of
size m is of the form BN = {(i, 0) : i ∈ Z>0, i 6 N} ∪ {(0, i) : i ∈ Z>0, i 6 m − 1 − N}
for some 0 6 N 6 m − 1 integer. We have S(BN) = {(i, j) ∈ Z2

>0 : 1 6 i 6 N, 1 6 j 6
m− 1−N}, so |S(BN)| = N(m− 1−N). Over the integers, this attains a maximum at
N = d(m− 1)/2e, which corresponds to the initial segment of the balanced ordering.

Now assume that n > 3 and the result holds for smaller values of n. Let A be any
subset of Xn, we show the initial segment I of same size has |S(I)| > |S(A)|. Taking
a down-set A′ in Xn minimising

∑
x∈A′ (position of x in the balanced order) among sets

with |A′| = |A| and |S(A′)| > |S(A)|, we may assume that C<i (A) = A for each i (by
Lemma 10). Suppose that there are x, y ∈ Xn with x < y, y ∈ A and x 6∈ A.

Take y to be maximal (in the balanced order). Let i = max{j : yj = max y}. If there
is an x 6∈ A with x < y and the unique zero coordinate not being at the ith position, pick
the minimal of these (in the balanced order). Otherwise pick x 6∈ A which is minimal.
Consider A′ = A \ {y} ∪ {x}. Note that A′ is again a down-set.

We show that |S(A′)| > |S(A)|. (This would give a contradiction.) If y has more than
one zero coordinates, then S(A) \ S(A′) = ∅, so the claim is clear. Otherwise y has a
unique zero coordinate yt, and we must have xl 6= yl for all l by Lemma 11. In particular,
yi 6= xi. Thus yi > xl for all l > i and yi > maxx. Observe that

S(A) \ S(A′) = {(y1, . . . , yt−1, a, yt+1, . . . , yn) :

a ∈ Z>0 and replacing any coordinate by 0 we get an element of A}.

Recall that there is a unique s such that xs = 0. We claim that S(A) \ S(A′) is empty
unless s = i. Indeed, suppose s 6= i and S(A) \ S(A′) has an element z corresponding to
a > 1. Let z′ be obtained from z by setting the sth coordinate to be zero. Then z′ ∈ A,
z′ > x (as z′i = yi so z′i > xl for all l > i and z′ > maxx), xs = z′s = 0 and there is a
unique coordinate at which z′ is zero. This contradicts Lemma 11.

So we may assume s = i. Note that if a > xt and the corresponding vector appears
in the set above, then A has an element z with zi = yi and zt = xt 6= 0 (using that n > 3
and that A is a down-set. Note that xt 6= 0 since xl 6= yl for all l.) But then z > x, so
this contradicts Lemma 11. It follows that |S(A) \ S(A′)| 6 xt − 1 6 yi − 1.

Furthermore, since i = s,

S(A′) \ S(A) = {(x1, . . . , xi−1, a, xi+1, . . . , xn) :

a ∈ Z>0 and replacing any coordinate by 0 we get an element of A′}.
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Also, by our choice of x, any z 6∈ A with z < y has (zi = 0 and) zl 6= 0 for all l 6= i. But
this easily shows that for all 1 6 a 6 yi− 1, the corresponding vector lies in S(A′) \S(A).
So |S(A′) \ S(A)| > yi − 1 > |S(A) \ S(A′)|.

So we get a contradiction, finishing the proof.

Lemma 13. For every n > 2, initial segments I of the balanced order minimise gap(I)
among down-sets in Xn of given size.

Proof. Again we prove this by induction on n. The case n = 2 is trivial, since any
down-set in X2 has gap 1.

Now assume that n > 3 and the result holds for smaller values of n. LetA be any subset
of Xn, we show that the initial segment of same size has a gap which is not greater. Taking
a down-set A′ in Xn minimising

∑
x∈A′ (position of x in the balanced order) among sets

with |A′| = |A| and gap(A′) 6 gap(A), we may assume that C<i (A) = A for each i
(by Lemma 10 and Lemma 12). Suppose that there are x, y ∈ Xn with x < y, y ∈ A
and x 6∈ A. Take y to be maximal and x to be minimal (in the balanced order). Let
A′ = A \ {y} ∪ {x}. Note that A′ is a down-set.

By Lemma 11, there is a unique s such that xs = 0. Then πj(A
′) \ πj(A) = ∅ if

j 6= s and |πs(A′) \ πs(A)| = 1. On the other hand, if t is such that yt = 0 then
|πt(A) \ πt(A′)| = 1. It follows that gap(A′) 6 gap(A), giving a contradiction.

Proof of Theorem 3. Immediate from Lemma 13 and Lemma 5.
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