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Abstract

Voting protocols, such as the push and the pull protocol, model the behavior
of people during an election. These processes have been studied in distributed
computing in peer-to-peer networks, and to describe how viruses or rumors spread
in a community. We determine the asymptotic behavior of the runtime of discordant
linear protocols on the cycle graph and the probability for each consensus to win.

Mathematics Subject Classifications: 91A22, 60J10, 60G50

1 Introduction

Models of voting in finite graphs have been studied intensively for decades, see e.g.,
[6, 16, 12, 1, 15, 7]. Throughout this paper, a discrete-time voting protocol is defined by
specifying a graph and a set of nondeterministic rules. Then the process is divided into
rounds. In each round, the participants, i.e., vertices of the graph, can affect the vote of
their neighbors according to the given rules.

We note that many alternative definitions were investigated in the literature. Contin-
uous time voting processes were studied in [6, 8]. Somewhat surprisingly, the thorough
mathematical investigation of the continuous version preceded that of the discrete ana-
logue of the protocols [16, 8]. In [10] the graph evolves together with the opinions of
the vertices. This models the behavior of people who in each round try to convince one
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another and succeed with a given probability. Whenever they fail, they cease to com-
municate with each other, that is, we delete the edge linking them from the graph. In
such a model there are many potential final results, as the graph can disconnect, and in
fact, we may end up with many connected components. For more details, see [7, 2]. The
application of these randomized protocols in studying how rumor spreads in a society
goes back to decades, and it is still an active area [9, 12, 1]. The same can be said about
peer-to-peer networks, see e.g., [19, 15, 14]. In this application, opinion is replaced by a
piece of information that each computer has at a given time, and they share the data in
a randomized way. Connections of voting processes and coalescing random walks were
investigated in [8, 17], and for other recent applications see [18, 4].

However, we consider discrete time voting models where the graph is fixed, and the
vote is a binary decision. The two options to choose from are 0 and 1, but we usually refer
to vertices with opinion 0 as blue vertices, and red vertices are the ones with opinion 1.
Such a protocol can be synchronous (see [5] for examples), i.e., it is allowed that several
vertices of the graph change their opinion in one round; otherwise it is asynchronous. The
so-called linear voting model was introduced in [5] as a common generalization of many
well-studied voting protocols. Three of the most common special cases of asynchronous
linear voting are the

• Oblivious protocol: in each round an edge uv is chosen uniformly at random, and
then either u adopts the opinion of v or the other way around, with equal probability.

• Push protocol: in each round a vertex u is chosen uniformly at random, and that
vertex forces a randomly chosen neighbor to adopt the opinion of u.

• Pull protocol: in each round a vertex u is chosen uniformly at random, and that
vertex is forced by a randomly chosen neighbor v to adopt the opinion of v.

From a practical viewpoint, all linear voting models have a common weakness: it is typical
that nothing changes in many steps of the process, as it is possible that every participant
keeps his own opinion for the next round. E.g., consider push, pull or oblivious voting on
the complete graph Kn; in this particular case, the three protocols coincide. If one opinion
is significantly more popular than the other, then with very high probability, both chosen
vertices have the more popular opinion. So usually many idle rounds go by before the
opinion of some vertex is altered. This example demonstrates the advantage of discordant
(oblivious, push, pull) voting protocols, defined in [3]. An edge uv is discordant if u and
v have different opinion, and a vertex is discordant if it is in a discordant edge. To define
discordant oblivious, push and pull voting, the above three definitions are modified so
that whenever a random choice is made, we only allow discordant edges or vertices to
be picked (always uniformly at random). Note that in our restricted framework when
there are only two opinions, the definition of discordant pull voting simplifies to picking
a discordant vertex in each round randomly and switching its opinion.

The goal of every voting scheme that we study now is to reach a consensus, that is, a
state where all participants have the same opinion. The topic of the present paper is the
expected time to reach consensus with the discordant push, pull and oblivious processes on
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the n-cycle. It was proven in [3] that all three processes have a quadratic runtime at worst.
In particular, push voting is expected to terminate in at most 33n2 steps regardless of the
initial state, and from some initial state it is indeed expected to take at least n2/4 +O(n)
time to reach a unanimous vote [3, Section 4]. We improve the bounds and obtain that
the precise asymptotical behavior of the worst expected runtime of all three discordant
protocols on the n-cycle is n2/4 + O(n3/2), and an effective constant can be given in the
error term for each of these protocols. Furthermore, we show that if β and % denote the
number of blue and red vertices in the initial state, respectively, then β% is in general a
good estimate to the expected runtime of these protocols, provided that the initial state
be tame. More precisely, in a non-consensus state, there is the same number r of blue and
red runs, i.e., maximal sets of consecutive vertices of the same color. Then the difference
of the expected runtime of each of the three protocols from β% is at most O(rn), with an
effective constant in the error term.

The other vital problem in case of a random protocol is to compute the probability of
each possible outcome to win. We show that in case of the cycle graph the probability of
each opinion to win with the discordant push, pull or oblivious protocol is asymptotically
proportionate to the number of vertices with that opinion in the initial state, provided
that the initial state be tame. More precisely, the blue vertices have winning probability
β/n + O(r/n), with an effective constant in the error term. By using some probability
theory, it can be shown that there must be a state for arbitrarily large n such that the
estimation β/n has error 0.005 or more. However, computer simulations suggest that in
highly symmetrical initial states (such as the one with alternating runs of lengths one and
two), the estimation β/n is quite accurate, a phenomenon we cannot explain yet.

Although some parts of the proof of the positive results require elaborate combinatorial
and probabilistic arguments, the core is an elementary linear algebraic lemma (Lemma 1).
This paper is a demonstration of how the iterative application of that elementary lemma
can yield asymptotically sharp results to basic questions about evolutionary processes,
where the transition matrix is typically large but sparse and easy to describe.

2 Preliminaries

2.1 General tools

Throughout this section, P is an absorbing Markov chain with transient states Tran. We
denote by Pen the set of potential penultimate states in Tran, that is, the states t ∈ Tran
such that the probability of moving from t to an absorbing state in one step is positive.

As usual, we denote by Q the upper left minor of the canonical form of P =

(
Q R
0 I

)
, see

[13]. So Q is the transition matrix restricted to the transient states, and R is the matrix
of transition probabilities between transient and absorbing states. Following standard
notation, N = (I − Q)−1 denotes the fundamental matrix of the Markov chain. In this
paper, vectors are column vectors of length |Tran |, usually denoted by u, v, ε, etc. The
coordinates are identified with the transient states, so precisely speaking, these are vectors
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in RTran. We denote by 1 the column vector of length |Tran | all of whose entries equal
to 1. The entry corresponding to the coordinate t in the vector u is denoted by u[t]. It is
well-known that if we sum up the entries u[t] while randomly walking on the coordinates
starting from t0 ∈ Tran, then the expected value of this sum before the walk is absorbed
is (Nu)[t0]. In particular, the expected times to absorption from each transient state as
initial state are the coordinates of the vector N1; see [13] for further details.

The following lemma is the basic observation of the elementary method we use to
improve the upper estimations for the expected time to absorption presented in [3]. We
can think about x[t] as a “guesstimate” of the expected value of the sum of the entries
of u during a random walk with initial state t before reaching an absorbing state. In
particular, if u = 1, then x is the guesstimate vector for the time to absorption starting
from each transient state.

Lemma 1. Let u, x, ε ∈ RTran be vectors such that Qx = x− u+ ε. Then Nu = x+Nε.
In particular, if Qx 6 x− u, then Nu 6 x (coordinate-wise).

Proof. By rearranging the equation we obtain u = (I −Q)x + ε. Multiplying both sides
by N = (I −Q)−1 yields Nu = x+Nε.

Moreover, N = (I−Q)−1 = I+Q+Q2 + · · · is a non-negative matrix. Hence, if ε 6 0
coordinate-wise, then Nε 6 N0 = 0, thus Nu 6 x.

As we mentioned earlier, the vectors Nu and Nε are the expected value vectors of
the sum of the entries of u and ε during a random walk (on the coordinates) starting
from each transient state. The above elementary lemma is particularly useful when the
transition matrix is large but sparse, and the fundamental matrix cannot be computed
or represented in a transparent way. This is often the case with evolutionary processes.
Note that Qx is easy to compute if the matrix is sparse. Furthermore, because of the
probabilistic interpretation of Nε and the possibility of applying Lemma 1 iteratively, it
is possible to estimate this vector without computing N , as we see later. By successive
application of this method, the error can shrink to such a small vector that it is very easy
to estimate it, providing us with an efficient estimation of the expected value vector. We
spell out an immediate application.

Lemma 2. Let u ∈ RTran be such that u[t] = 0 for all t ∈ Tran \Pen. Define p ∈ RTran

where p[t] is the probability of immediate absorption in state t. Let M := max
t∈Pen

u[t]/p[t].

Then the expected sum of the entries of u during a random walk from any initial state is
at most M .

Proof. Apply Lemma 1 with the guesstimate vector x = M · 1. Note that u 6M · p, thus
x− u >M · (1− p) = M ·Q1 = Qx. Hence, Nu 6 x coordinate-wise by Lemma 1.

This observation is very advantageous when we are able to cut a process to several
phases, and we want to estimate the expected sum of an expression between two phase
transitions. In our case, the phases are those parts of the process where the number
of runs, i.e., maximal sets of consecutive vertices with the same opinion in the cycle, is
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constant. We denote by r the number of blue runs; it is the same as the number of red
runs in all states except for the two consensus states, where we set r = 0 by definition.
Note that r never increases during the process, and it decreases if and only if the opinion
of a singleton vertex is switched, in which case r decreases by one. The process halts
when r = 0.

2.2 Further terminology

We now turn to the problems under consideration, defined in the introduction. Note that
the proof is presented for discordant push voting on the n-cycle: the case of pull voting
can be done in a similar fashion, and the case of oblivious voting is trivial. Clearly, the
voting process is an absorbing Markov chain with 2n states, whose absorbing states are
exactly those two where all the vertices agree.

As in the introduction, the number of blue and red vertices are denoted by β and
%, respectively. A vertex is a singleton if its color differs from both its neighbors’ color.
The number of singleton blue and singleton red vertices are sβ and s%, respectively. The
number of non-singleton blue vertices with (exactly) one red neighbor is mβ; the number
m% is defined analogously for red vertices. A maximal set of consecutive singleton vertices
is called an arc, and the number of arcs is denoted by `.

3 Expected time to absorption on the cycle

It turns out to be advantageous in the calculation to cut the process into two parts. The
first part of the process consists of the steps before we first reach a state with r 6 4

√
5
√
n.

3.1 The first part: down to 4
√

5
√
n blue runs

In this subsection, we show an estimation of the expected length of the first part. The
following bound can be extracted from [3, Section 4]. In that paper, a quadratic upper
estimation was given to the runtime of the discordant push protocol using some results
about stopped martingales. They obtained that it takes at most 33n2 steps to reach
consensus from any initial state, that is, to reach a state with r = 0. However, by
carefully modifying the calculation in [3], a more general result can be shown.

Proposition 3. The expected time to reach a state with r runs is at most 40n2/r from
any initial state. In particular, putting r = 4

√
5
√
n, the first part is expected to terminate

in at most 2
√

5n3/2 steps.

Proof. In [3, Lemma 8] and the argument before that, it was shown that the expected
time to reach a state with r = r1 blue runs from one with r = r0 blue runs is at most T ∗,
where T ∗ is the optimal solution of the following linear program:

T ∗ = max 10
√

2n3/2

r0∑
r=r1

xr
r3/2
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such that
r∑

j=r1

xj 6
√

2rn for all r1 6 r 6 r0

and xr > 0 for all r1 6 r 6 r0.

Moreover, it can be shown that such a linear program attains its optimal solution at
xr1 =

√
2r1n and xr =

√
2rn −

√
2(r − 1)n for all r1 + 1 6 j 6 r0. Hence, by using the

standard estimations
√

2rn−
√

2(r − 1)n 6
√

2n
r

and 1
r2

6 1
r(r−1) = 1

r−1 −
1
r
, we obtain

T ∗ 6 10
√

2n3/2

(√
2r1n

r
3/2
1

+

r0∑
r=r1+1

√
2rn−

√
2(r − 1)n

r3/2

)
6

10
√

2n3/2

(√
2n

r1
+

r0∑
r=r1+1

√
2n

r2

)
= 20n2

(
1

r1
+

r0∑
r=r1+1

1

r2

)
6

20n2

(
1

r1
+

r0∑
r=r1+1

(
1

r − 1
− 1

r

))
= 20n2

(
1

r1
+

1

r1
− 1

r0

)
6

40n2

r1
.

3.2 The second part: from 4
√

5
√
n runs to consensus

We prove a technical lemma that provides the estimation of the error in the computation
of the expected runtime and the winning probabilities.

Lemma 4. The expected value of the sum of | sβ+mβ−s%−m%
sβ+mβ+s%+m%

| during a random walk until

the number of runs decreases is at most 1/2. In particular, the expected sum of the above
expression during the second part of the voting process is at most 2

√
5
√
n.

Proof. We use Lemma 2. In order to do that, the Markov chain is restricted to those
states that have r blue runs, and extended by an absorbing state where we move exactly
when in the original Markov chain the number of runs decreases. The penultimate states
of this chain are exactly those states with r blue runs in our problem where there is a
singleton vertex. Of course, the number p[t] (the probability of immediate absorption
from t) is the probability that we lose runs, which is the probability that in the original
Markov chain a singleton is pushed.

Our next goal is to calculate the probability of this event. We call the states with
alternating red and blue vertices special states. Such states exist iff n is even, and then
there are two of them. Now assume that the state is not special. Let a1, . . . , ah be an arc,
surrounded by the non-singleton vertices b (a neighbor of a1) and c (a neighbor of ah).
As we are not in the special states, the arc is not the full set of vertices, and b and c are
indeed not singletons. We show that the probability that a singleton be pushed in this
arc is h+1

d
, where d = sβ + s% + mβ + m% is the number of discordant vertices. If h = 1,

then the vertex a1 is indeed pushed with probability 2
d
: this happens exactly when b or

c is chosen out of the d discordant vertices for pushing their opinion. If h > 2, then a
vertex in the arc is pushed iff
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• a vertex is chosen out of b, a1, . . . , ah, c for pushing, and

• if that vertex is a1 or ah, then the singleton neighbor is chosen.

Hence, the desired probability is h+2
d
− 2

d
· 1
2

= h+1
d

. Adding the expression h+1
d

for all
arcs, we obtain that the probability that a singleton vertex be pushed in the state t is
p[t] =

sβ+s%+`

sβ+s%+mβ+m%
, if t is not a special state.

Let the vector u have entries | sβ+mβ−s%−m%
sβ+s%+mβ+m%

| for each transient state. Note that this is

0 for non-penultimate transient states, since red and blue runs alternate, so sβ = s% = 0
and mβ = m%. It is also 0 for the two special states.

So the expression u[t]
p[t]

(cf. Lemma 2) equals to | sβ+mβ−s%−m%
sβ+s%+`

| for all penultimate states.

By Lemma 2 it suffices to show that 1
2

is an upper bound for this expression. Observe
that the expression does not decrease if we replace a red singleton by a pair of adjacent
red vertices and likewise for a blue singleton. That is, we replace the two vertices by
inserting two edges at the same positions in the cycle, obtaining a new cycle of length
n + 2, and coloring the endpoints of the edge replacing the red and the blue vertex red
and blue, respectively. Indeed, the numerator is not modified by this operation, and
the denominator cannot increase, as sβ + s% decreases by 2, and ` increases by at most 2.
After a finite number of applications of this operation, we reach a state where all singleton
vertices have the same color, say blue. In particular, there are no consecutive singleton
vertices in the cycle. Thus sβ = `, s% = 0 and m% = mβ + 2sβ, so the expression simplifies
to |−sβ

2sβ
| = 1

2
. If all singletons disappear after a finite number of applications of the above

operation, then the numerator of the expression is 0, thus it has been 0 when we started
eliminating singletons, as well.

3.3 Estimations of the expected runtime on the n-cycle

As we suggested earlier, it seems impossible to compute the fundamental matrix of our
Markov chain. However, the upper-left minor Q of the transition matrix is sparse, so
Lemmas 1 and 2 can be applied effectively. The way we phrased the result in the intro-
duction provides the right heuristics for the guesstimate vector. The expected runtime
of the oblivious protocol is clearly β%: it is simply the runtime of a drunkard walk with
parameter n = β + % and initial state β (see [3] for more details). Computer simulations
(in SAGE) suggested that the runtime of the three discordant protocols should be close
to each other. The intuitive reason is that the transition matrix of the three protocols
on the cycle graph coincide in almost all entries. Of course, such an observation can
lead to very badly wrong conjectures in general, as the computation of the fundamental
matrix involves the calculation of an inverse matrix, which is very sensitive to even small
alterations of a few entries of the matrix. Hence, in order to turn this intuition into a
precise proof, we use Lemma 1 with guesstimate vector x whose entries are β% for each
transient state.

Theorem 5. Given any initial state on an n-cycle with r blue runs, β blue and % red
vertices. Let T be the expected number of steps for the discordant push voting to reach
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consensus. Then |T−β%| 6 rn/2, and T 6 n2/4+4
√

5n3/2. The worst expected runtime is
asymptotically n2/4, obtained when there is only one blue and one red run and β = bn/2c.

Proof. Let x be the column vector of length 2n− 2 with coordinates β% for each transient
state. Then the probability of the number of blue vertices to increase by 1, i.e., a blue
vertex is pushing, is

sβ+mβ
sβ+mβ+s%+m%

, since there are sβ +mβ discordant blue vertices among

the sβ + mβ + s% + m% vertices. Similarly, the probability of the number of red vertices
to increase by 1 is s%+m%

sβ+mβ+s%+m%
. In the former case, we arrive at a state where the value

of x is (β + 1)(%− 1), and in the latter case it is (β − 1)(%+ 1). If we multiply the value
of the vector x with the corresponding transition probabilities, and add them up, i.e., we
calculate Qx (cf. Lemma 1), we obtain:

sβ +mβ

sβ +mβ + s% +m%

(β + 1)(%− 1) +
s% +m%

sβ +mβ + s% +m%

(β − 1)(%+ 1) =

β%− 1 +
(%− β)(sβ +mβ − s% −m%)

sβ +mβ + s% +m%

for all non-penultimate transient states. Using the notation of Lemma 1 with u = 1,

the entry of the error vector ε = Qx−x+1 at the given state is
(%−β)(sβ+mβ−s%−m%)

sβ+mβ+s%+m%
, whose

absolute value is at most n| sβ+mβ−s%−m%
sβ+mβ+s%+m%

|. To obtain the error for penultimate transient

states, we calculate it when there is exactly one red vertex, i.e., s% = 1,m% = 0, sβ =
0,mβ = 2, ρ = 1, β = n − 1. (The situation when there is exactly one blue vertex is
analogous.) In that state Qx = s%+m%

sβ+mβ+s%+m%
(β − 1)(% + 1) = 2n−4

3
, thus ε = Qx− x + 1

has entry 2n−4
3
− (n − 1) + 1 = −n−2

3
. The absolute value of this number is at most

n
3

= n| sβ+mβ−s%−m%
sβ+mβ+s%+m%

| again. Hence, n| sβ+mβ−s%−m%
sβ+mβ+s%+m%

| estimates the absolute value of the

error ε at all transient states from above, and the expected sum Nε of this expression
during a random walk is at most rn/2 according to Lemma 4. Hence, by Lemma 1, we
have |N1− x| = |Nε| 6 rn/2, where N1 is T at the initial state and x is the guesstimate
vector whose entry is β% at the initial state. Thus |T − β%| 6 rn/2.

In order to prove the second estimation that is independent of the number of runs, we
divide the process into two parts as before. By Proposition 3, the first part is expected to
end in T1 6 2

√
5n3/2 steps. At the initial state of the second part, let r′ be the number

of blue runs and let β′ and %′ be the number of red and blue vertices, respectively. If T2
denotes the expected runtime of the second part of the process, then |T2−β′%′| 6 r′n/2 6
2
√

5n3/2 by the first assertion of this theorem, as r′ 6 4
√

5
√
n. As β′%′ 6 n2/4, we have

T = T1 + T2 6 T1 + |T2 − β′%′|+ β′%′ 6 2
√

5n3/2 + 2
√

5n3/2 + n2/4 = n2/4 + 4
√

5n3/2.
If there is one blue run and one red run and β = bn/2c, then |T −β%| 6 n by the first

assertion of the theorem, and clearly |β% − n2/4| 6 1. Thus T = n2/4 + O(n) for this
initial state, showing the final assertion in the theorem.

Remark 6. In a similar fashion, it can be shown that the expected time for the discordant
pull voting to reach consensus on the cycle is also βρ+O(rn), and at most n2/4+O(n3/2)
from any initial state (and it is clearly exactly βρ for the discordant oblivious protocol).
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This also makes the worst runtime asymptotically n2/4 by using the same argument for
these protocols. The lower estimate n2/4+O(n) for the expected runtime from the initial
state with two runs of (almost) equal size (for the discordant push, pull and oblivious
protocols) was mentioned in [3]. It is clear that switching the cycle to a path makes very
little difference in the calculation, and estimations of the same order of magnitude are
obtained in case of the discordant push, pull and oblivious protocols on paths, too.

4 Winning probabilities on the cycle

It is enough to estimate the winning probability p of the color blue, the other color then
wins with probability 1 − p. Again, we know from standard theory [13, Theorem 3.3.7]
that the matrix NR consists of the probabilities of reaching from transient state i the
absorbing state j in the process. So we are only interested in the first column of this
(2n − 2) × 2 matrix. Lemma 1 can be applied, as the problem is to estimate the vector
Nu where u is the first column of R. Once again, we state the precise results for the
discordant push protocol, but estimations of the same order of magnitude apply to the
discordant pull and discordant oblivious protocols, as well.

Theorem 7. Given any initial state on an n-cycle with r blue runs, β blue and % red
vertices. Let p be the probability that the blue consensus is reached with the discordant
push protocol. Then |p− β/n| 6 r/2n.

Proof. Let x be the column vector of length 2n − 2 with coordinates β
n

for each tran-
sient state. If we multiply the value of the vector x with the corresponding transition
probabilities (cf. the proof of Theorem 5), and add them up, i.e., we calculate Qx, we
obtain:

sβ +mβ

sβ +mβ + s% +m%

· β + 1

n
+

s% +m%

sβ +mβ + s% +m%

· β − 1

n
=

β

n
+

1

n
· sβ +mβ − s% −m%

sβ +mβ + s% +m%

for all non-penultimate transient states. We use the notation of Lemma 1 with u
being the all 0 vector, except for the entries corresponding to the states with exactly one
red vertex which are all 2

3
. In particular, for non-penultimate states the error, i.e., the

corresponding entry of ε = Qx− x+ u is 1
n
· sβ+mβ−s%−m%
sβ+mβ+s%+m%

.

For penultimate states with exactly one red vertex, the entry of the vector Qx is
s%+m%

sβ+mβ+s%+m%
· β−1

n
= n−2

3n
. Thus the error is n−2

3n
− n−1

n
+ 2

3
= 1

3n
which is precisely

1
n
· sβ+mβ−s%−m%
sβ+mβ+s%+m%

.

Finally, for penultimate states with exactly one blue vertex, the entry of the vector
Qx is

sβ+mβ
sβ+mβ+s%+m%

· β+1
n

= 2
3n

. Thus the error is 2
3n
− 1

n
+ 0 = − 1

3n
= 1

n
· sβ+mβ−s%−m%
sβ+mβ+s%+m%

.

Hence, the vector with entries 1
n
· sβ+mβ−s%−m%
sβ+mβ+s%+m%

is exactly the error vector ε. As the

number of runs decreases r times before a consensus is reached, the assertion follows by
Lemma 1 and Lemma 4 as in the proof of Theorem 5.
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According to [5, Theorem 8] the linear push, pull and oblivious protocols on cycle
graphs have the property of proportionate agreement: the probability that blue wins is
β/n, see also [8]. Hence, Theorem 7 shows that if r = o(n), then the probability to reach
the blue consensus with the linear push voting and the discordant push voting protocols
have the same asymptotics as n → ∞. The final result of this paper (Theorem 10)
shows that the condition r = o(n) cannot be omitted from this assertion. To prove a gap
between the probabilities arising from the linear and discordant push protocols, we recall
a Chernoff-Hoeffding type theorem from [11]. The function D stands for the Kullback-
Leibler distance, namely D(q‖p) = q ln q

p
+ (1− q) ln 1−q

1−p for all q, p ∈]0, 1[, and exp(x) is
the exponential function ex.

Theorem 8. Let N ∈ N and let X1, . . . , XN be random variables with range in {0, 1}.
Assume that there is a δ ∈]0, 1[ such that for all 1 6 k 6 N and k-element subset S ⊆

{1, 2, . . . , N} we have P
(∧
i∈S

(Xi = 1)

)
6 δk. Then P

(
N∑
i=1

Xi > γN

)
6 exp(−ND(γ‖δ))

for all γ ∈]δ, 1[.

If 3 | n then there is an assignment of colors red and blue to the vertices of the n-cycle
such that every blue run is a singleton and every red run is a pair of vertices. If 3 - n,
then by allowing one of the red runs to consist of three or four vertices, we can construct
a state with bn/3c discordant blue and 2bn/3c discordant red vertices.

Lemma 9. Let n,m, i ∈ Z such that n > 3, m = bn/3c and i < m/2. Assume that the
discordant push protocol starts from an initial state on the n-cycle with m runs of each
color, such that all the blue runs are singletons and all the red runs have length at least
two. Then after i steps the ratio of discordant blue vertices and discordant vertices is at
most 1

3
+ i

3m
.

Proof. In any given state, let db and dr denote the number of discordant blue and dis-
cordant red vertices, and let d = db + dr. Then db/d = db/(db + dr) = 1/(1 + dr/db) is
maximal wherever dr/db is minimal. In any asynchronous protocol on a cycle graph (i.e.,
when in one step only one vertex alters its opinion), the following analysis applies.

Case 1: The number of runs does not change in a step. If color c is spreading, then the
number of discordant vertices of color c changes by 0 or +1, and the number of discordant
vertices of the other color changes by 0 or −1. Note that the increment of the expression
dr − db is at least −2.

Case 2: The number of runs decreases in a step. If color c is spreading, then the
number of discordant vertices of color c changes by −2,−1 or 0, and the number of
discordant vertices of the other color changes by −1. In particular, the increment of the
expression dr − db is at least −1.

Thus in the first i steps, there are always more red discordant vertices than blue, as
i < m/2 and the difference dr − db in the initial state is m. Moreover, both dr and db are
positive numbers throughout the process, as the increments of dr and db are both at least
−2 in every step, and in the initial state we have db = m and dr = 2m.

the electronic journal of combinatorics 27(1) (2020), #P1.58 10



From now on, we are looking for the minimum of the expression dr/db after i steps
as described in Case 1 and Case 2. That is, we assume that at any point in time any
manipulation of the values dr and db is allowed as long as it is consistent with Case 1
or Case 2, whether or not it is combinatorially feasible. We claim that the minimum is
attained when in all steps we apply Case 1 such that c is the color blue and the increment
of db and dr are +1 and −1, respectively. We are going to refer to this particular choice
of parameters in a step as the favored option.

If Case 1 is applied in a step, then to attain the minimum of dr/db, we must choose the
favored option: otherwise, switching to the favored option in that step would yield values
d′r and d′b after i steps such that d′r 6 dr and d′b > db, and at least one of the inequalities
would be strict.

Similarly, if Case 2 is applied in a step with c as the color blue, then the increment
of dr has to be −1 and that of db has to be 0 to attain the minimum of dr/db. We
compare the outcome of this process to the one where in that step we apply the favored
option, yielding d′r = dr and d′b = db + 1. Then the original outcome dr/db is modified to
dr/(db + 1), which is clearly smaller.

Finally, if c is chosen as the color red in Case 2, then the increment of dr has to be −2
and that of db has to be −1, as this choice dominates all other possibilities. We compare
the outcome of this process to the one where in that step the favored option is applied
yielding d′r = dr + 1 and d′b = db + 2. Then the original outcome dr/db is modified to
(dr + 1)/(db + 2), and the calculation

dr
db
>
dr + 1

db + 2
⇔ drdb + 2dr > dbdr + db ⇔ 2dr > db

and the fact that dr > db > 0 show that it is worth switching to the favored option,
proving the claim.

Hence, the highest possible ratio db/d is attained after applying the favored option i
times, yielding db = m+ i, dr = 2m− i, d = 3m, and consequently, db/d = 1

3
+ i

3m
.

Theorem 10. For any n > 5000 there exists a state on the n-cycle with β blue vertices
and probability p of reaching the blue consensus with the discordant push protocol such
that |p− β/n| > 0.005.

Proof. Let ε be the largest absolute error of the estimate β/n over all states on the n-cycle.
Let m = bn/3c, and pick an initial state for the push protocol with m discordant blue
and 2m discordant red vertices as in Lemma 9. Let N = bm/4c, δ = 5/12, γ = 51/120,
and let Xi be the random variable that is 1 if a blue vertex is pushing in the i-th step
and 0 otherwise. In particular, the increment of blue vertices in the i-th step for i 6 N is
2Xi − 1.

According to Lemma 9, in any of the first N steps of the process, the probabil-
ity that a blue vertex is pushing is at most 1

3
+ N

3m
6 1

3
+ 1

12
= δ, independently of

the outcome of the earlier steps. Thus the conditions of Theorem 8 apply, and then

P
(

N∑
i=1

Xi > γN

)
6 exp(−ND(γ‖δ)). As n > 5000, we have N > 416, and then
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P
(

N∑
i=1

Xi > γN

)
6 exp(−ND(γ‖δ)) 6 0.001. Moreover, if

N∑
i=1

Xi < γN , then the num-

ber of blue vertices after N steps, which is m−N + 2
N∑
i=1

Xi, is at most m−N + 2γN =

m − (1 − 2γ)N . Hence, by the definition of ε and the law of total probability, we have
P(blue wins) > m

n
− ε and

P(blue wins) =

(
1− P

(
N∑
i=1

Xi > γN

))
· P

(
blue wins |

N∑
i=1

Xi < γN

)
+

P

(
N∑
i=1

Xi > γN

)
· P

(
blue wins |

N∑
i=1

Xi > γN

)
6

P

(
blue wins |

N∑
i=1

Xi < γN

)
+ P

(
N∑
i=1

Xi > γN

)
6

(
m− (1− 2γ)N

n
+ ε

)
+ 0.001.

By comparing the two estimations for P(blue wins), we obtain

m

n
− ε 6 m− (1− 2γ)N

n
+ ε+ 0.001

and then

1

2
·
(

(1− 2γ)N

n
− 0.001

)
6 ε.

Using the trivial estimations n 6 12N + 11 and N > 416, the left hand side is at least
1
2
·
(

1−2γ
12+11/N

− 0.001
)
> 1

2
·
(

1−51/60
12+11/416

− 0.001
)
> 0.005.

Due to Proposition 3 and Theorem 7 it is however possible to estimate the desired
probability up to an error term O(1/

√
n) by running the process for O(n3/2) steps. This

is a good trade-off as the expected time to reach a consensus from the worst initial
case is n2/4 +O(n3/2), and it is quadratic in general (cf. Theorem 5). In fact, using this
observation, it is possible to write a relatively fast program that runs the experiment on the
cycle with 5000 vertices 5000 times from the initial state described before Lemma 9. The
result suggests that in that very symmetrical state, the estimate 1/3 for the probability
that the blue consensus be reached is highly accurate. If this empirical result is correct,
then there must be a more complicated formula than the one suggested by Theorem 7.
It should take into consideration the position of blue vertices around the cycle as well as
their number, and coincidentally, this formula should assign a value close to 1/3 to the
above mentioned initial state.

5 Further results and future work

It is also possible to obtain asymptotically sharp estimates for the corresponding problems
in the star graph with n vertices. This is a typical network when one server is connected
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to several clients. It was already pointed out in [3] that, quite counter-intuitively, the
discordant pull protocol is faster than the discordant push protocol on such graphs if n is
large enough. The author of the present paper together with coauthors were able to refine
this result and obtain asymptotically sharp estimations for both expected runtimes. It
seems plausible to find estimates to the higher moments of the runtime of these protocols
with similar techniques, as well.
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