
Stability for maximal independent sets

Jeff Kahn∗† Jinyoung Park∗

Department of Mathematics
Rutgers University
New Jersey, U.S.A.

{jkahn, jp1324}@math.rutgers.edu

Submitted: Feb 25, 2019; Accepted: Feb 9, 2020; Published: Mar 20, 2020

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Answering questions of Y. Rabinovich, we prove “stability” versions of upper
bounds on maximal independent set counts in graphs under various restrictions.
Roughly these say that being close to the maximum implies existence of a large
induced matching or triangle matching (depending on assumptions).

A mild strengthening of one of these results is a key ingredient in a proof (to
appear elsewhere) of a conjecture of L. Ilinca and the first author giving asymptotics
for the number of maximal independent sets in the graph of the Hamming cube.

Mathematics Subject Classifications: 05C69

1 Introduction

Denote the number of maximal independent sets in a graph G by mis(G). We recall two
well-known bounds for these numbers:

Theorem 1 (Moon-Moser [10]). For any n-vertex graph G,

mis(G) 6 3n/3,

with equality iff G is the disjoint union of n/3 triangles.

Theorem 2 (Hujter-Tuza [5]). For any n-vertex, triangle-free graph G,

mis(G) 6 2n/2,

with equality iff G is a perfect matching.

∗Supported by the National Science Foundation under Grant Award DMS1501962
†Supported by a Simons Fellowship
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As usual M is an induced matching of G if it is an induced subgraph of G that is a
matching. Similarly, T is an induced triangle matching of G if it is an induced subgraph
of G that is a vertex disjoint union of triangles.

Write itm(G) for the number of triangles in a largest induced triangle matching in G,
and im(G) for the number of edges in a largest induced matching.

In what follows we will usually prefer to work with log mis (log = log2), thought of as
the number of bits needed to specify a maximal independent set. Note that itm(G) log 3
and im(G) are obvious lower bounds on log mis(G). We will be interested in questions
suggested to us a few years ago by Yuri Rabinovich [11] concerning “stability” aspects of
upper bounds on mis, meaning, roughly: does large mis imply existence of a large induced
triangle matching or large induced matching (as appropriate)? Formally, his conjectures
were unquantified versions of the following three statements, whose proofs are the content
of the present work. (The questions were motivated by [12], which includes a proof of
Theorem 4 for bipartite graphs.)

Theorem 3. For any ε > 0, there is a δ = δ(ε) = Ω(ε) such that for an n-vertex graph
G, if itm(G) < (1− ε)n

3
then log mis(G) < (1

3
log 3− δ)n.

Theorem 4. For any ε > 0, there is a δ = δ(ε) = Ω(ε) such that for a triangle-free
n-vertex graph G, if im(G) < (1− ε)n

2
then log mis(G) < (1

2
− δ)n.

One reason to be interested in Theorem 4—or in what its proof actually gives; see The-
orem 14 below—is its key role in a proof of the following statement, which was conjectured
in [6] (see also [2]) and whose proof is completed in [7] and [8].

Theorem 5. With Qn denoting the n-dimensional Hamming cube,

mis(Qn) ∼ 2n exp2[2
n−2].

While Theorem 14 is one of the easier ingredients in the proof of Theorem 5, it is in
some sense the basis for the whole; in particular, it was understanding the connection
between induced matchings and stability that first suggested that the conjecture of [6],
which had seemed out of reach, might in fact be manageable.

Theorem 4 applies to bipartite graphs, of course. If G is bipartite with bipartition
X ∪ Y , then log mis(G) is trivially at most min{|X|, |Y |} (since a maximal independent
set is determined by its intersection with either of X, Y ); so the statement is uninteresting
unless G is close to balanced. But Rabinovich asked whether something analogous also
holds for unbalanced (bipartite) G; more precisely, whether something along the following
lines is true.

Theorem 6. For any ε > 0, there is a δ = δ(ε) = 2−O(1/ε) such that for a bipartite graph
G on X ∪ Y with |X| = n and |Y | = 2n, if im(G) < (1− ε)n then log mis(G) < (1− δ)n.

The proof of this is easily adapted to |Y | = Bn (with δ then δ(ε, B)), but to keep things
simple we just state the result for B = 2.
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Rabinovich suspected that, as in Theorems 3 and 4, δ(ε) should be linear in ε, but
this is not true. In fact, Theorem 6 is tight (up to the implied constant); a construction
to show this will be given in Section 4.2.

The rest of the paper is organized as follows. Section 2 recalls some background,
in particular Füredi’s upper bounds on mis for paths and cycles, and Shearer’s entropy
lemma. Section 3 gives the proofs of Theorems 3 and 4. The proof of Theorem 6 and the
example to show its tightness are given in Section 4.

The proofs of Theorems 3 and 4 are similar, while that of Theorem 6 is related but
somewhat trickier. The general approach has its roots in an idea for counting (ordinary)
independent sets due to A.A. Sapozhenko [13], [14].

Strictly speaking we prove the theorems only for sufficiently large n, since we occasion-
ally hide minor terms in o(1)’s. Of course combined with the characterizations of equality
in Theorems 1 and 2 this does give the stated versions, though the δ’s we produce may
not be valid for small n. Since we are really interested in large n anyway, this approach
seems preferable to carrying explicit error terms.

Notation. We use “∼” for adjacency, N(x) for the neighborhood of x, N(S) = ∪x∈SN(x),
and dS(x) = |N(x) ∩ S|. As usual, G[S] is the subgraph of G induced by S ⊆ V (G).

2 Preliminaries

For the proof of Theorem 4 we need the following upper bounds on mis for paths and
cycles, given by Z. Füredi [4].

Proposition 7. Let γ (≈ 1.325) be the unique real solution of the equation 1 + γ = γ3.

1. For Pn, the path with n vertices,

mis(Pn) 6 2γn−2.

2. For Cn, the cycle with n vertices,

mis(Cn) 6 3γn−3.

We very briefly recall a few entropy basics (see also e.g. [9]).
For discrete random variables X, Y , the (binary) entropy of X is

H(X) =
∑
x

p(x) log
1

p(x)
,

and conditional entorpy of X given Y is

H(X|Y ) =
∑
y

p(y)
∑
x

p(x|y) log
1

p(x|y)

(where p(x) = P(X = x) and p(x|y) = P(X = x|Y = y)).

the electronic journal of combinatorics 27(1) (2020), #P1.59 3



Lemma 8.

(a) H(X) 6 log |Range(X)|, with equality iff X is uniform from its range;

(b) H(X, Y ) = H(X) +H(Y |X).

In addition to these very basic properties we need the following version of Shearer’s
Lemma [1].

Lemma 9. If ψ = (ψ1, . . . , ψm) is a random vector and α : 2[m] → R>0 satisfies∑
A3i

αA = 1 ∀i ∈ [m], (1)

then
H(ψ) 6

∑
A⊆[m]

αAH(ψA) (2)

(where ψA = (ψi : i ∈ A)).

Finally, we will need the following standard fact (see e.g. Lemma 16.19 in [3]; this is
also implied by Lemma 9 with αA equal to 1 if |A| = 1 and zero otherwise).

Proposition 10. For k 6 1
2
n,

k∑
i=0

(
n

i

)
6 2H( k

n
)n.

3 Proofs of Theorems 3 and 4

In this section, I is always a maximal independent set in G. The basis for what we do is
the following algorithm, which, given G and I, encodes some portion of Ias a string ξ(I),
with the numbers of possibilities for both ξ(I) and the full specification of I given ξ(I)
not too large.

3.1 Algorithm

Given G, fix an order “≺” on V (G).
For a given maximal independent set I, let X0 = V (G) and repeat for i = 1, 2, . . .:

1. Let xi be the first vertex of Xi−1 in ≺ among those with largest degree in Xi−1.

2. If xi ∈ I then let Xi = Xi−1 \ ({xi} ∪N(xi)); otherwise, let Xi = Xi−1 \ {xi}.

3. Terminate the process if dXi
(x) 6 2 for all x ∈ Xi.

Let X∗ = X∗(I) = Xt be the final Xi, t(I) = t, and G∗ = G∗(I) = G[X∗]. Define the
sequence ξ = ξ(I) = (ξ1, ξ2, · · · , ξt) by ξi := 1{xi∈I}. Notice that ξ encodes a complete
description of the run of the algorithm (so we may also write G∗ = G∗(ξ)), including, in
particular, the identities of the xi’s. Finally, let s = s(I) = |supp(ξ)|.
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3.2 Proof of Theorem 3

The argument for Theorem 3 goes roughly as follows. Noting that

ξ(I) determines both X∗ and I \X∗, (3)

and
I ∩X∗ is a maximal independent set of G∗(I) (= G∗(ξ)), (4)

we find that
mis(G) 6

∑
ξ

mis(G∗(ξ)) (5)

(If we restrict the sum to possible ξ’s—those corresponding to actual I’s—then we have
equality in (5).)

It turns out that running the algorithm for very long is “expensive” in the sense
that the loss in |X∗|, and so in possibilities for I ∩ X∗, outweighs what is contributed
to (5) by possibilities for ξ; this limits the number of I’s with t(I) large. Similarly, the
difference between the bounds in Theorems 1 and 2 says there are “few” I’s for which
the triangle-free part of G∗ is large. (Note G∗, having maximum degree at most two, is
a disjoint union of triangles and a triangle-free part, below called R.) But the part of
mis(G) corresponding to I’s for which both t and R are small must come mainly from
counting choices for the restriction of I to the triangles of G∗, and these are limited by
our assumption on itm(G).

To begin with, the following lemma bounds the number of I’s with large t(I).

Lemma 11. Let α = − log(4 · 3−4/3) (≈ 0.113). For any x ∈ [0, 1],

log |{I : t(I) > xn}| 6 (
1

3
log 3− αx+ o(1))n. (6)

Proof. For given t and s, consider I’s for which t(I) = t and s(I) = s. Note that for each
such I, |V (G∗)| 6 n − (t + 3s), so by Theorem 1 we have mis(G∗) 6 3(n−(t+3s))/3. Also,
there are at most

(
t
s

)
possibilities for ξ(I), so by (3) and (4) we have

|{I : t(I) = t, s(I) = s}| 6
(
t

s

)
3(n−(t+3s))/3, (7)

so

|{I : t(I) = t}| 6
t∑

s=0

(
t

s

)
3(n−(t+3s))/3 = 3n/3αt1,

where α1 = 4 · 3−4/3. Thus,

|{I : t(I) > xn}| 6 3n/3αxn1 /(1− α1),

yielding (6).

the electronic journal of combinatorics 27(1) (2020), #P1.59 5



Let T = T (I) be the union of the triangles in X∗ (so the unique maximal induced
triangle matching in G∗), R = R(I) = G∗[X∗ \ V (T )], and r = r(I) = |V (R)|. Note that
there are no edges between V (T ) and V (R), since G∗ has maximum degree at most 2, so

mis(G∗) = mis(T )mis(R). (8)

Note also that R is triangle-free, so

log mis(R) 6 r/2 (9)

by Theorem 2. Now, the following lemma bounds the number of I’s with large r.

Lemma 12. Let β = − log(21/23−1/3) (≈ 0.028). For any y ∈ [0, 1],

log |{I : r(I) > yn}| 6 (
1

3
log 3− βy + o(1))n. (10)

Proof. By (8) and (9), we have

|{I : r(I) = r, t(I) = t, s(I) = s}| 6
(
t

s

)
3(n−(t+3s+r))/32r/2,

so

|{I : r(I) = r}| 6
n∑
t=0

t∑
s=0

(
t

s

)
3(n−(t+3s+r))/32r/2

6 3n/3βr1/(1− α1),

where α1 = 4 · 3−4/3 (as in Lemma 11) and β1 = 21/23−1/3. Thus,

|{I : r(I) > yn}| 6 3n/3βyn1 /((1− α1)(1− β1)),

which gives (10).

Lemma 13. If itm(G) < (1− ε)n/3 then for any x, y ∈ [0, 1],

log |{I : t(I) < xn, r(I) < yn}| 6 ((1− ε)1

3
log 3 + x+ y/2 + o(1))n. (11)

Proof. For any I, with G∗ = G∗(I) and r = r(I), we have (using (8), (9) and |V (T (I))| =
3itm(G∗) < (1− ε)n)

mis(G∗) 6 3(1−ε)n/32r/2.

Therefore,
|{I : t(I) = t, r(I) = r}| 6 2t3(1−ε)n/32r/2,

so

|{I : t(I) < xn, r(I) < yn}| 6
∑
t<xn

∑
r<yn

3(1−ε)n/32r/2+t

6 3(1−ε)n/3 · 2xn+1 · (
√

2− 1)−12(yn+1)/2,

giving (11).
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Proof of Theorem 3. This is now just a matter of combining the above bounds. With
δ1 = εα/8 and δ2 = εβ/4, Lemmas 11 - 13 give (respectively)

log |{I : t(I) > δ1n/α}| 6 (
1

3
log 3− δ1 + o(1))n,

log |{I : r(I) > δ2n/β}| 6 (
1

3
log 3− δ2 + o(1))n

and (using 1
3

log 3 > 1/2)

log |{I : t(I) < δ1n/α, r(I) < δ2n/β}| 6 (
1

3
log 3− ε/4 + o(1))n.

Thus, with δ = min{δ1, δ2, ε/4} (= Ω(ε)), we have

log mis(G) 6 (
1

3
log 3− δ + o(1))n.

3.3 Proof of Theorem 4

We first give the slightly stronger version of Theorem 4 mentioned in Section 1. For
I ⊆ V (G), writem(I) = mG(I) for the maximum size of an induced matchingM satisfying

• each edge of M meets I and

• there are no edges joining V (M) (the set of vertices covered by M) and I \ V (M).

Given G we now write I = I(G) for the collection of maximal independent sets of G and
set

Iε = I(G, ε) = {I ∈ I(G) : m(I) < (1− ε)n/2}

and mis(G, ε) = |Iε|.

Theorem 14. For any ε > 0 there is a δ = Ω(ε) such that for any n-vertex, triangle free
G,

log mis(G, ε) < (1− δ)n/2.

(We have omitted the corresponding strengthening of Theorem 3.)

As mentioned earlier, the argument for Theorem 14 is similar to the one in Section 3.2,
so we will try to be brief. We again start from the algorithm in Section 3.1, and continue
to use the notation (X∗, G∗ etc.) defined in the paragraph following the algorithm’s
description. (For most of this we just need I ∈ I; the role of Iε will appear in Lemma 18.)

Lemma 15. Let α = − log( 1√
2

+ 1
4
) (≈ 0.063). For any x ∈ [0, 1],

log |{I ∈ I : t(I) > xn}| 6 (
1

2
− αx+ o(1))n. (12)
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Proof. Arguing as for (7) in Section 3.2, we obtain

|{I ∈ I : t(I) = t, s(I) = s}| 6
(
t

s

)
2(n−(t+3s))/2, (13)

where we used mis(G∗) 6 2(n−(t+3s))/2, as given by Theorem 2 (since G is triangle-free).
Thus

|{I ∈ I : t(I) = t}| 6
t∑

s=0

(
t

s

)
2(n−(t+3s))/2 = 2n/2αt1,

where α1 = 1√
2

+ 1
4
, and

|{I ∈ I : t(I) > xn}| 6 2n/2αxn1 /(1− α1),

yielding (12).

Say an edge vw of G∗ is isolated if G∗[{v, w}] is a component of G∗. Let M = M(I)
be the set of isolated edges in G∗, R = R(I) = G∗[X∗ \ V (M)], and r = r(I) = |V (R)|.
Notice that M satisfies the two •’s from the definition of m(I) (the first by maximality
of I, the second by the definition of M and the fact that there are no edges joining X∗

and I \X∗); so if I ∈ Iε then |M | < (1 − ε)n/2. Also, since there are no edges between
V (M) and V (R),

mis(G∗) = mis(M)mis(R). (14)

Note that R is triangle-free, so is a vertex-disjoint union of isolated vertices, cycles
with at least 4 vertices, and paths with at least 3 vertices. Combining this with Propo-
sition 7, we obtain an upper bound for mis(R). (Recall that γ ≈ 1.325 was defined in
Proposition 7.)

Lemma 16. With R and r as above, mis(R) 6 (3γ)r/4.

Proof. Let lp (resp. lc) be the number of vertices in the union of all paths (resp. cycles)
in R. Clearly lp + lc 6 r, while the number of paths (resp. cycles) in R is at most lp/3
(resp. lc/4). Thus

mis(R) 6 (2/γ2)lp/3(3/γ3)lc/4γr

< (3/γ3)r/4γr = (3γ)r/4,

where the first inequality is given by Proposition 7 and the second follows from the fact
that (2γ−2)1/3 < (3γ−3)1/4.

Lemma 17. Let β = − log(2−1/2(3γ)1/4) (≈ 0.0023). For any y ∈ [0, 1],

log |{I ∈ I : r(I) > yn}| 6 (
1

2
− βy + o(1))n. (15)
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Proof. By (14) and Lemma 16,

|{I ∈ I : r(I) = r, t(I) = t, s(I) = s}| 6
(
t

s

)
2(n−(t+3s+r))/2(3γ)r/4,

and summing this over t and s gives

|{I ∈ I : r(I) = r}| 6 2n/2βr1/(1− α1),

where α1 = 1√
2

+ 1
4

(as in Lemma 15) and β1 = 2−1/2(3γ)1/4. Thus,

|{I ∈ I : r(I) > yn}| 6 2n/2βyn1 /((1− α1)(1− β1)),

which gives (15).

Lemma 18. For any x, y ∈ [0, 1],

log |{I ∈ Iε : t(I) < xn, r(I) < yn}| 6 ((1− ε)/2 + x+ (log(3γ)/4)y + o(1))n. (16)

Proof. As in the proof of Lemma 13 (now using |M | < (1− ε)n/2),

mis(G∗) 6 2(1−ε)n/2(3γ)r/4

for any I ∈ Iε with r(I) = r. Therefore,

|{I ∈ Iε : t(I) = t, r(I) = r}| 6 2t2(1−ε)n/2(3γ)r/4,

and summing over the relevant t’s and r’s gives

|{I ∈ Iε : t(I) < xn, r(I) < yn}| 6 2(1−ε)n/2 · 2xn+1 · ((3γ)1/4 − 1)−1(3γ)(yn+1)/4;

so we have (16).

Proof of Theorem 14. With δ1 = εα/8 and δ2 = εβ/(2 log(3γ)), Lemmas 15, 17 and 18
give (respectively)

log |{I ∈ I : t(I) > δ1n/α}| 6 (
1

2
− δ1 + o(1))n,

log |{I ∈ I : r(I) > δ2n/β}| 6 (
1

2
− δ2 + o(1))n,

and

log |{I ∈ Iε : t(I) < δ1n/α, r(I) < δ2n/β}| 6 (
1

2
− ε/4 + o(1))n.

Thus, with δ = min{δ1, δ2, ε/4}, we obtain

log mis(G, ε) 6 (
1

2
− δ + o(1))n.
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4 Proof of Theorem 6

For a bipartite graph G on X ∪ Y , say X ′ ⊆ X is irredundant if ∀x ∈ X ′, N(x) 6⊆
N(X ′ \ {x}). (So for this discussion “irredundant” sets are always subsets of X.) Denote
the number of irredundant sets in G by irr(G).

Proposition 19. For any G as above, mis(G) 6 irr(G).

Proof. This follows from the observation that for each maximal independent set I there
is an irredundant set J ⊆ I ∩X with N(J) = N(I ∩X) (= Y \ I); namely, this is true
whenever J ⊆ I ∩X is minimal with N(J) = N(I ∩X).

Thus the following statement implies Theorem 6.

Theorem 20. For any ε > 0, there is a δ = δ(ε) = 2−O(1/ε) such that for a bipartite graph
G on X ∪ Y with |X| = n and |Y | = 2n, if im(G) < (1− ε)n then log irr(G) < (1− δ)n.

For the rest of this section, G is as in Theorem 20.

4.1 Proof

The algorithm we use for Theorem 20 is slightly different from the one in section 3.1. In
what follows, I is always an irredundant set (thus I ⊆ X).

Algorithm Let X0 = X, Y0 = Y and M = Mε = 12/ε. Fix an order “≺” on X. For a
given I, repeat for i = 1, 2, . . .:

1. Let xi be the first vertex of Xi−1 in ≺ among those with largest degree in Xi−1.

2. If xi ∈ I then set Yi = Yi−1 \ N(xi); otherwise, set Yi = Yi−1. In either case, set
Xi = Xi−1 \ {xi}.

3. Terminate the process if dYi(x) < M for all x ∈ Xi.

Let X∗ = X∗(I) = Xt and Y ∗ = Y ∗(I) = Yt be the final Xi and Yi, respectively. Set
t = t(I) and G∗ = G∗(I) = G[X∗∪Y ∗]. As in section 3.1, define ξ = ξ(I) = (ξ1, ξ2, · · · , ξt)
by ξi := 1{xi∈I}, and let |ξ| be the length of ξ (so |ξ(I)| = t(I)). Finally, let s = s(I) =
|supp(ξ)| and define ψ = ψ(I) = I ∩X∗.

Notice that I is determined by (ξ, ψ), namely (as earlier) I \ X∗ is determined by ξ
(and I ∩X∗ = ψ).

Consider a random (uniform) irredundant set I. Our various parameters (ξ, ψ, . . .) are
then random variables, which will be denoted by ξ and so on. Since each of I and (ξ,ψ)
determines the other and ξ determines t, we have (using parts (a) and (b) of Lemma 8)

H(I) = H(ξ) +H(ψ|ξ)

= H(t) +H(ξ|t) +H(ψ|ξ)

6 log n+H(ξ|t) +H(ψ|ξ). (17)
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Notice that, by Lemma 8 (a),

H(ξ|t = t) 6 t

for any t and
H(ψ|ξ = ξ) 6 n− |ξ| (= n− t) (18)

for any ξ. Thus the sum of the last two terms in (17) is at most

∑
t

P(t = t)

H(ξ|t = t) +
∑
|ξ|=t

P(ξ = ξ|t = t)H(ψ|ξ = ξ)

 6 n,

and we would like to somewhat improve these bounds. (Since we aim for H(I) < n−Ω(n),
the log n in (17) is irrelevant.) The next lemma, giving such a gain in (18) when t is small,
is our main point.

Lemma 21. For any ξ with |ξ| = t < εn/2,

H(ψ|ξ = ξ) 6 n− t− ϑn,

where ϑ = ϑ(ε) = 2−O(1/ε).

Proof. Given ξ as in the Lemma, set

X̃ = X̃(ξ) = {x ∈ X∗ : NY ∗(x) ⊆ NY ∗(X∗ \ {x})}.

We have
(1− ε)n > im(G) > im(G∗) > n− t− |X̃|,

where the last inequality holds since for each x ∈ X∗ \ X̃ there is some yx ∈ Y ∗ with
NX∗(yx) = {x}, and {(x, yx) : x ∈ X∗\X̃} is an induced matching of G∗ of size |X∗\X̃| =
n− t− |X̃|. Thus

|X̃| > εn− t > εn/2. (19)

For each x ∈ X̃ fix some Zx ⊆ X∗ \ {x} such that

NY ∗(x) ⊆ NY ∗(Zx), (20)

|Zx| < M (21)

and
∀z ∈ X∗ |{x ∈ X̃ : z ∈ Zx}| < 2M. (22)

To see that we can do this: For each y ∈ NY ∗(X̃) let Πy be a partition of NX∗(y) into
blocks of size 2 or 3. (Note y ∈ NY ∗(X̃) implies dX∗(y) > 2.) Then to form Zx, for each
y ∈ NY ∗(x) choose one x′ 6= x from the block of Πy containing x and take x′ ∈ Zx. Note
that each x ∈ X∗ has degree less than M in G∗ (see step 3 of the algorithm), so we have
(21) and (22) (and (20) is clear).
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Let Wx = Zx ∪ {x} (x ∈ X̃), and ψ
A

= ψ ∩ A for any A ⊆ X. Note that for each
x ∈ X∗,

H(ψ
Wx
|ξ = ξ) 6 log[2|Wx| − 1] (23)

= |Wx|+ log(1− 2−|Wx|)

< |Wx| − 2−M log e.

(The first inequality follows from irredundancy: we cannot have ψ
Wx

= Wx.)
Now aiming to use Lemma 9, form α : 2X

∗ → R>0 by assigning weight 1/(2M) to each
Wx (thus assigning each set weight some multiple of 1/(2M), with the total weight of the
sets containing any given x′ at most 1 by (22)) and supplementing with weights on the
singletons to get to (1). Then by Lemma 9,

H(ψ|ξ = ξ) 6
∑
A⊆X∗

αAH(ψA|ξ = ξ)

=
∑
x∈X̃

α
Wx
H(ψ

Wx
|ξ = ξ) +

∑
x∈X∗

α{x}H(ψ{x}|ξ = ξ). (24)

Now (23) and the fact that α assigns total weight |X̃|/(2M) to the Wx’s give∑
x∈X̃

α
Wx
H(ψ

Wx
|ξ = ξ) <

∑
x∈X̃

α
Wx
|Wx| − |X̃|(2M2M)−1 log e,

while the second sum in (24) is at most
∑

x∈X∗ α{x} (since H(ψ{x}|ξ = ξ) 6 1). Thus the
entire bound in (24) is at most∑

x∈X̃

α
Wx
|Wx|+

∑
x∈X∗

α{x} − |X̃|(2M2M)−1 log e = |X∗| − |X̃|(2M2M)−1 log e

< n− t− ϑn,

where ϑ = (ε/2)(2M2M)−1 log e = 2−O(1/ε) (see (19)) and we use∑
x∈X̃

α
Wx
|Wx|+

∑
x∈X∗

α{x} =
∑
x∈X∗

∑
A3x

αA = |X∗|.

Corollary 22. Let ζ = P(t < εn/2). Then with ϑ as in Lemma 21,

H(ψ|ξ) 6 n− Et− ζϑn.

Proof. Using Lemma 21 and (18) we have

H(ψ|ξ) =
∑
t

∑
|ξ|=t

P(ξ = ξ)H(ψ|ξ = ξ)

6
∑
t<εn/2

P(t = t)(n− t− ϑn) +
∑
t>εn/2

P(t = t)(n− t)

= n− Et− ζϑn.
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The gain for larger t is easier. Noting that

s 6 s0 := 2n/M = εn/6,

setting H(1/3) = 1− γ and using Proposition 10, we have, for any t > εn/2,

H(ξ|t = t) 6 log
∑
s6s0

(
t

s

)
6 H(1/3)t = (1− γ)t,

whence (recall ζ = P(t < εn/2))

H(ξ|t) 6
∑
t<εn/2

P(t = t)t+
∑
t>εn/2

P(t = t)(1− γ)t

6 Et− (1− ζ)γεn/2.

Finally, combining this with (17) and Corollary 22 yields

H(I) 6 log n+ n− [ζϑ+ (1− ζ)γε/2]n

6 log n+ n− ϑn

(since the ϑ produced in Lemma 21 is much smaller than γε/2), proving Theorem 20.

4.2 Tightness

Define a bipartite graph Bm on X ∪Y = [m]∪ [2m] (disjoint copies, of course) as follows.

1. If x ∈ X and x 6 m− 1, then x ∼ y iff y = x or y = m− 1 + x.

2. If x = m ∈ X, then x ∼ y iff m 6 y 6 2m− 2.

It is easy to see that im(Bm) = m− 1, and mis(Bm) = 2m − 1.

Now, for ε > 0 and n with 1/ε and εn integers, let G be the union of εn disjoint copies
of B1/ε. Then G is bipartite on [n] ∪ [2n], im(G) = (1 − ε)n, and mis(G) = (21/ε − 1)εn.
So,

log mis(G) = εn log(21/ε − 1)

= εn(
1

ε
+ log (1− 2−1/ε))

= n(1− 2−1/εε log e+O(2−2/ε))

(where the implied constant does not depend on ε).
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