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Abstract

Let m be a positive integer and let ρ(m,n) be the proportion of permutations
of the symmetric group Sym(n) whose order is coprime to m. In 2002, Pouyanne

proved that ρ(n,m)n1−φ(m)
m ∼ κm where κm is a complicated (unbounded) function

of m. We show that there exists a positive constant C(m) such that, for all n > m,

C(m)
( n
m

)φ(m)
m
−1

6 ρ(n,m) 6
( n
m

)φ(m)
m
−1

where φ is Euler’s totient function.

Mathematics Subject Classifications: 20B30, 05A15, 68W20.
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1 Introduction

In a series of papers between 1965 and 1972, Erdős and Turán initiated a systematic
study of probabilistic aspects of group theory (see, for example, [7]). One topic which
has been of particular interest since this time is the distribution of element orders in
finite symmetric groups, and their most relevant work for us on this topic began in [8, 9]
where they studied the proportion p¬m(n) of elements in Sym(n) with no cycle of length
divisible by a fixed prime m. Erdős and Turán obtained an explicit formula for p¬m(n)
and determined the limiting proportion, as n grows, as

(1) p¬m(n) = k(m)
( n
m

)− 1
m

+O(n−1− 1
m ),

where k(m) = Γ
(
1− 1

m

)−1
, noting that π−1/2 6 k(m) < 1 [8, Sections 3 and 4]. Although

m was assumed to be a prime in [8], the formula for p¬m(n) in (1) holds for an arbitrary
positive integer m, see [11], and their asymptotic arguments can be extended to give
explicit convergence bounds [3, Theorem 2.3(b)], again for arbitrary m. These explicit
bounds, together with analogous results for alternating groups [3, Section 3], were used to
analyse algorithms for constructing transpositions and 3-cycles [3, Section 6], procedures
used as components of the constructive recognition algorithms for black-box alternating
and symmetric groups in [4]. Many other authors have also considered the proportion
p¬m(n), see for example [5, 6, 16] and the discussion in [17].

Let us introduce the specific topic of interest for this paper. For positive integers n
and m, let R(n,m) be the set of elements of Sym(n) whose order is coprime to m, and
write

ρ(n,m) :=
|R(n,m)|

n!
.

The proportion ρ(n,m) is equal to the proportion p¬m(n) of Erdős and Turán discussed
above if and only if m is a prime power. Moreover, in [8, Lemma II], Erdős and Turán
demonstrate that if n is sufficiently large and m is the product of two distinct primes p
and q satisfying (log n)3/4 6 p, q 6 10 log n/ log log n, then

(2) ρ(n,m) = n−
1
p
− 1
q (1 +O(log−

1
2 n)).

Pouyanne [19, Proposition, p. 7] used a singularity analysis on the generating function
C(x) =

∑
i>0 ρ(n,m)Xm for ρ(n,m) to give an asymptotic value of ρ(n,m) for arbitrary

m. He gives a nice proof that ρ(n,m)n1−φ(m)/m ∼ κm where κm is a function of m
involving Gamma and Möbius functions, see (12). Unfortunately the elusive nature [19,
Figure 1] of κm makes it hard to apply this result. In particular, upper and lower bounds
ρ(n,m) cannot be extracted from the asymptotics in [19], and our major contribution is
to bound the quantity λm := κm/m

1−φ(m)/m, where φ is Euler’s totient function. We need
these bounds for applications to randomised (1-sided Monte Carlo) permutation group
algorithms where explicit bounds on the probability/proportions are required to assign
explicit upper bounds on the probability that the algorithm returns an incorrect answer,
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i.e. to prove that it is a Monte Carlo algorithm. Examples of the use of such probability
bounds for exhibiting a Monte Carlo algorithm, and analysing its complexity, are given for
example in [4]. Specifically, our algorithm for testing whether a subgroup 〈X〉 of Sym(n)
contains the alternating group Alt(n) either returns the answer “Yes” with no chance of
error, or returns an answer “No” with a (preset arbitrarily) small probability of error, say
10−6.

The set π(m) of prime divisors of m is significant as ρ(n,m) = ρ(n,m′) and φ(m)/m =
φ(m′)/m′ when π(m) = π(m′). Given this fact, we will henceforth assume that m is
square-free. We implicitly also assume that the primes in π(m) are at most n, since

ρ(n,m) = ρ(n,mp) for primes p > n. With this in mind, and observing that φ(m)
m
−1 6 0,

we now present our main result.

Theorem 1. Let m be a positive square-free integer. There exists a positive constant
C(m) such that, for all n > m,

C(m)
( n
m

)φ(m)
m
−1

6 ρ(n,m) 6
( n
m

)φ(m)
m
−1

.

The exponent φ(m)
m
− 1 in Theorem 1 is negative, and hence d n

m
e
φ(m)
m
−1 6 ( n

m
)
φ(m)
m
−1

and b n
m
c
φ(m)
m
−1 > ( n

m
)
φ(m)
m
−1, for n > m. Thus, in order to prove Theorem 1 it is sufficient

to prove that

(3) C(m)
⌊ n
m

⌋φ(m)
m
−1

6 ρ(n,m) 6
⌈ n
m

⌉φ(m)
m
−1

.

We prove these inequalities in Section 2. In fact the upper bound holds for n > 1. We
conclude with a conjecture in Section 3 based on computational evidence.

First we make a few remarks concerning the constant C(m) and links between Theo-
rem 1 and the results (1) and (2).

Remark 2.
(a) We prove Theorem 1 with the constant

(4) C(m) := min{ρ(n,m) | m 6 n 6 2m− 1}.

In particular, if m is a prime then C(m) = 1− 1
m

.
(b) If an element of Sym(n) has order coprime to m, then the length of each of its cycles

is certainly not divisible by m. Hence, we have the upper bound ρ(n,m) 6 p¬m(n) =∏b n
m
c

i=1 (1− 1
im

) by [11]. However, this bound grows too quickly as remarked on in (c).

(c) If m is prime, then the exponent is φ(m)
m
− 1 = m−1

m
− 1 = − 1

m
, and we obtain from

Theorem 1 the result (1), apart from determining the constant k(m). In fact, the

exponent φ(m)
m
− 1 is equal to − 1

m
if and only if m is a power of a prime, and in all

other cases the exponent is strictly less than − 1
m

. In other words, if m is divisible
by at least two primes then ρ(n,m) grows more slowly, as n increases, than p¬m(n)
does.
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(d) Suppose m = pq where p < q are primes. Then φ(m)
m
−1 = −1

p
− 1

q
+ 1

pq
and Theorem 1

appears to differ from (2) by a multiplicative factor of n1/pq. However, in our context
m is fixed and n increases without bound, whereas Erdős and Turán assume for (2)
that both p and q are bounded:

(5) (log n)3/4 6 p < q 6
10 log n

log log n
.

Thus, both m and n are assumed to increase in (2). The apparent inconsistency can
be resolved by showing that (5) implies

n
1
pq = 1 +O((log n)−1/2).

For an upper bound, from (5) we have

n1/(pq) 6 n(logn)−3/2

= n(logn)−1(logn)−1/2

= e(logn)−1/2

= 1 +O((log n)−1/2).

For a lower bound we show

n
1
pq > n(log logn)2/(100(logn)2) > 1 +O((log n)−1/2).

Establishing the last inequality is the same as bounding (above) the function

f(n) := (nx(logn)−1 − 1)(log n)1/2 where x =
(log log n)2

100 log n
.

Rewriting f(n) using the identity n(logn)−1
= e gives

f(n) = (ex − 1)(log n)1/2.

Since x → 0 as n → ∞, we can choose n large enough so that x < 1/2. However,
0 6 ex − 1 < 2x for 0 6 x < 1/2 so

0 6 f(n) < 2x(log n)1/2 =
(log log n)2

50(log n)1/2
.

Hence f(n)→ 0 as n→∞, so f(n) is bounded above as claimed.
(e) The proofs by Erdős and Turán of results such as (1) and (2) draw heavily on tools

from complex analysis. In [8, Section 5], Erdős and Turán state that it would be
desirable to obtain a proof of (2) using more direct means:

“A more direct (real-variable or algebraic) approach to the determination
of this coefficient would be desirable.”

The proof of Theorem 1 is principally algebraic: we determine and exploit a recursive
formula for ρ.
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(f) In a different direction, restricting m to a prime number and determining the pro-
portion ρ(G,m) of elements of an arbitrary finite group G whose order is coprime
to m has been the subject of papers by many authors. For example, see [14] when
G is a permutation group of degree n and see [1, 12, 13] when G is a finite simple
classical group.

(g) The set Sym(n)(m) = {πm | π ∈ Sym(n)} of mth powers, and its cardinality, have
been extensively studied, e.g. [15, 18]. As every permutation of order coprime to m
is an mth power, we have R(n,m) ⊆ Sym(n)(m). The containment is proper in
general, for example (1, 3)(2, 4) ∈ Sym(4)(2) \ R(4, 2). However, if m divides the
exponent e of Sym(n) and gcd(m, e/m) = 1, then R(n,m) = Sym(n)(m). Hence, one
may guess that |Sym(n)(m)| and |R(m,n)| have the same asymptotic density. This
follows from [15, 18] and [19].

2 Proof of Theorem 1

For the remainder of the paper, fix m as a square-free positive integer. Recall that
R(n,m) is the set of elements in Sym(n) of order coprime to m. Since m is fixed we
will write R(n) := R(n,m) and similarly (except in some formal statements) we write
ρ(n) := ρ(n,m). Additionally, we denote the greatest common divisor of integers c and d
by (c, d), and we write

Φ = Φ(m) := {1 6 i 6 m | (i,m) = 1},

noting that φ := φ(m) = |Φ|.
The following lemma generalises [3, Lemma 2.1]. For convenience, we adopt the con-

vention that ρ(0) = 1.

Lemma 3. The following recursive formula holds for integers n > m > 0,

nρ(n) = (n−m)ρ(n−m) +
∑
k∈Φ

ρ(n− k).

Proof. The permutations x ∈ R(n) can be enumerated according to the length k of the
cycle containing the point 1. The number of choices for the cycle (1, i2, . . . ,ik) of x is
(n− 1)(n− 2) · · · (n− k+ 1). Note that (k,m) = 1 and that the permutation induced by
x on the n− k points outside {1, i2, . . . , ik} lies in R(n− k). Thus

|R(n)| =
∑

16k6n
(k,m)=1

(n− 1)(n− 2) · · · (n− k + 1)|R(n− k)|.

Dividing this equation by (n − 1)!, and noting that |R(a)| = a!ρ(a) for all a ∈ N, we
obtain

nρ(n) =
∑

16k6n
(k,m)=1

ρ(n− k).
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Replacing n above with n−m and observing that (k +m,m) = (k,m) yields

(n−m)ρ(n−m) =
∑

16k6n−m
(k,m)=1

ρ(n−m− k) =
∑

m+16k6n
(k,m)=1

ρ(n− k).

Subtracting these two equations gives

nρ(n)− (n−m)ρ(n−m) =
∑
k∈Φ

ρ(n− k).

We now present a technical lemma which will be of use in the proof of Theorem 1.

Lemma 4. Let y and a be real numbers such that −1 < y < 0 and a > 2. Then

0 < 1− y + 1

a

(
1− y

a

)
6

(
a− 1

a

)y+1

< 1− y + 1

a
.

Proof. Let x = −1/a and x0 = −1/2, and note that x0 6 x < 0. We seek upper and
lower bounds for f(x) := (1 + x)y+1 = (a−1

a
)y+1. As |x| < 1, the binomial series below

converges absolutely

f(x) =
∑
i>0

(
y + 1

i

)
xi.

Since −1 < y < 0, for each i > 0, the binomial coefficient(
y + 1

i

)
=

(y + 1)y(y − 1) · · · (y − (i− 2))

i!

has i−1 negative factors. Hence, the product
(
y+1
i

)
xi is negative for each i > 0. Therefore,

f(x) =
∑
i>0

(
y + 1

i

)
xi < 1 + (y + 1)x = 1− y + 1

a

yielding the desired upper bound.
Now we consider the lower bound. Temporarily we assume that i > 2. Since (y −

1) · · · (y − (i − 2)) has i − 2 negative factors, the product (y − 1) · · · (y − (i − 2))xi−2 is
positive for each i > 2. Hence,

0 <
i−2∏
j=1

(y − j)x =
i−2∏
j=1

(j − y)(−x) 6
i−2∏
j=1

(j + 1)(−x0) = (i− 1)!(−x0)i−2.

This in turn shows that

0 >

(
y + 1

i

)
xi =

(y + 1)y(y − 1) · · · (y − (i− 2))xi

i!
>

(y + 1)y(−x0)i−2x2

i
.
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Taking the terms with 0 6 i < 2, together with the above lower bound for the sum of the
terms with i > 2, gives

f(x) > 1 + (y + 1)x+
∑
i>2

(y + 1)y(−x0)i−2x2

i

= 1 + (y + 1)x+
(y + 1)y

x2
0

(∑
i>2

(−x0)i

i

)
x2.

Now
∑

i>1
(−x0)i

i
= − log(1 + x0), and hence, since x0 = −1/2, we have

x−2
0

∑
i>2

(−x0)i

i
= x−2

0 (x0 − log(1 + x0)),

and this lies in the open interval (0, 1). Then since (y + 1)yx2 < 0, we obtain the desired
lower bound

f(x) = (1 + x)y+1 > 1 + (y + 1)x+ (y + 1)yx2 = 1− y + 1

a

(
1− y

a

)
.

Finally, since −1 < y < 0 and a > 2, this lower bound is positive.

We now prove our main result.

Proof of Theorem 1. The result is true when m = 1 and C(1) = 1. Suppose n > m > 2.
Recall the notation Φ = Φ(m) and φ = |Φ|, and write

y :=
φ

m
− 1.

Observe that −1 < y < 0. In addition, for 0 6 i 6 m− 1, write

(6) xi = |{k ∈ Φ | k < m− i}| and yi = |{k ∈ Φ | k 6 i}|.

Note that xi 6 m− i− 1, yi 6 i, xi + i > φ(m) and yi + (m− i) > φ(m). In summary

(7) φ(m)− i 6 xi 6 m− i− 1 and φ(m)−m+ i 6 yi 6 i.

We begin by proving the required upper bound, namely

(8) ρ(n) 6
⌈ n
m

⌉y
for n > m > 2.

Although we do not require it for this proof, the upper bound above holds trivially if
1 6 n 6 m as then ρ(n) 6 1 =

⌈
n
m

⌉y
= 1. We proceed by induction on n. Now let

n > m + 1, so that a :=
⌈
n
m

⌉
> 2. Write n = am − b, and note that 0 6 b 6 m − 1.
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Assume the upper bound in (8) holds for all positive integers strictly less than n. By
Lemma 3,

ρ(am− b) =
(a− 1)m− b
am− b

ρ((a− 1)m− b) +
1

am− b
∑
k∈Φ

ρ(am− b− k).

By the inductive hypothesis, ρ((a − 1)m − b) 6 (a − 1)y. Similarly, for each k ∈ Φ, if
k < m−b then am−b−k > (a−1)m so by induction ρ(am−b−k) 6 ay, and if k > m−b
then ρ(am− b− k) 6 (a− 1)y. Therefore, using the definition of xi in (6), we obtain

ρ(am− b) 6 (a− 1)m− b
am− b

(a− 1)y +
xba

y + (φ− xb)(a− 1)y

am− b

= ay

((
a− 1

a
− b/a

am− b

)(
a− 1

a

)y
+
xb + (φ− xb)

(
a−1
a

)y
am− b

)

= ay

((
a− 1

a

)y+1(
1− b− aφ+ axb

(a− 1)(am− b)

)
+

xb
am− b

)
.

By Lemma 4, (a−1
a

)y+1 < 1− y+1
a

, and as y + 1 = φ
m

and a > 2, we have

ρ(am− b) 6 ayY where Y =

(
1− φ

am

)(
1− b− aφ+ axb

(a− 1)(am− b)

)
+

xb
am− b

.

We want to show that Y 6 1, so we write Y = 1 − Y0 where Y0 is an algebraic fraction
in a, b, xb,m, φ. It suffices, therefore, to show that Y0 > 0 for all input values satisfying
a > 2, 0 6 b < m, and φ 6 min{b+xb,m} c.f. (7). We use a computer to factor Y0 giving

Y0 = 1− Y =
(m− φ)(b+ xb − φ)

m(a− 1)(am− b)
> 0.

Thus Y 6 1 and hence ρ(am− b) 6 ay, proving the upper bound (8) for all n > 1.
We now turn to the lower bound. Recall the definition of C := C(m) in (4), and note

that C > 0 since ρ(n) > 0 for all n > 1. We will prove that,

(9) ρ(n) > C
⌊ n
m

⌋y
for n > m > 2.

As for the proof of the upper bound, we use induction on n. Observe that if m 6 n 6
2m−1, then

⌊
n
m

⌋
= 1, and hence ρ(n) > C = C

⌊
n
m

⌋y
holds by (4). Now suppose n > 2m.

Then a :=
⌊
n
m

⌋
> 2. Write n = am + b, and note that 0 6 b 6 m − 1. (Be aware that

the definitions of a and b differ from their definitions in the proof of the upper bound.)
Assume that the lower bound (9) holds for all positive integers strictly less than n. By
Lemma 3,

ρ(am+ b) =
(a− 1)m+ b

am+ b
ρ((a− 1)m+ b) +

1

am+ b

∑
k∈Φ

ρ(am+ b− k).
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By the inductive hypothesis, ρ((a − 1)m + b) > C(a − 1)y. Similarly, for each k ∈ Φ, if
k 6 b then am + b − k > am so by induction, ρ(am + b − k) > Cay, and if k > b then
am > am+ b−k > (a−1)m so by induction ρ(am+ b−k) > C(a−1)y. Therefore, using
the definition of yb in (6), we obtain

ρ(am+ b) > C

(
(a− 1)m+ b

am+ b
(a− 1)y +

yba
y + (φ− yb)(a− 1)y

am+ b

)
= Cay

((
a− 1

a
+

b/a

am+ b

)(
a− 1

a

)y
+
yb + (φ− yb)

(
a−1
a

)y
am+ b

)

= Cay

((
a− 1

a

)y+1(
1 +

b+ aφ− ayb
(a− 1)(am+ b)

)
+

yb
am+ b

)
.

By Lemma 4, since a > 2, y = φ
m
−1 and −1 < y < 0, we have

(
a−1
a

)y+1
> 1− y+1

a

(
1− y

a

)
,

so

ρ(am+ b) > Cay
((

1− φ

am

(
1 +

m− φ
am

))(
1 +

b+ aφ− ayb
(a− 1)(am+ b)

)
+

yb
am+ b

)
.

Write the above expression as CayY where Y is an algebraic fraction in a, b, yb,m, φ. We
want to show that Y > 1, so we write Y = 1 + Y0. It suffices, therefore, to show that
Y0 > 0 for all input values satisfying a > 2, 0 6 b < m, m > φ and φ −m + b 6 yb 6 b
(see (7)). We use a computer to factor Y0 giving

Y0 = Y − 1 =
(m− φ)(am(b− yb) + φ(yb − b+m− φ))

m2a(a− 1)(am+ b)
> 0.

Therefore, ρ(am + b) > CayY > Cay and the claim in (9) holds for all n > m. This
establishes the lower bound and completes the proof of the theorem.

3 Computational evidence

Let n > m > 1 and assume that m is square-free. First suppose that m is prime. Recall
that p¬m(n) is the proportion of elements in Sym(n) with no cycle of length divisible by
m, so p¬m(n) = p¬m(n+ i) for 0 6 i < m. Since ρ(n,m) = p¬m(n), it follows that for all
a > 1,

(10) ρ(am,m) = ρ(am+ 1,m) = · · · = ρ(am+ (m− 1),m).

Moreover, in this case (since m is prime),

(11) ρ(n,m) = k(m)
( n
m

)φ(m)
m
−1

+O(n
φ(m)
m
−2),

where k(m) = Γ(1 − 1
m

)−1, noting that π−1/2 6 k(m) < 1 (see [8, Sections 3 and 4] and
[3, Theorem 2.3]).
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In this final section we investigate the extent to which an analogue of the relationship
in (11) holds for general positive integers m. We do this by presenting some computational
evidence which led the authors to the statement of Theorem 1 and to Question 5 below.

The recursive formula for ρ in Lemma 3 provides an efficient means of computing
ρ(n,m) from the values ρ(0,m), ρ(1,m), . . . , ρ(m−1,m). In Figures 1–3 we fix the value
of m as 6, 15 and 30, respectively, and we plot

f(n,m) := ρ(n,m) ·
( n
m

)1−φ(m)
m

against n for many values of n greater than m.

0 500 1,000 1,500 2,000
0.05

0.10

0.15

0.20

0.25

n

ρ
(n

)(
n
/6

)1
−
φ

(6
)/

6

Figure 1: Plot of f(n, 6) versus n for 7 6 n 6 2000.

0 500 1,000 1,500 2,000

0.26

0.28

0.30

0.32

n

ρ
(n

)(
n
/1

5)
1
−
φ

(1
5
)/

1
5

Figure 2: Plot of f(n, 15) versus n for 16 6 n 6 2000.
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0 1,000 2,000 3,000

2.00

4.00

6.00

·10−2

n

ρ
(n

)(
n
/3

0)
1
−
φ

(3
0
)/

3
0

Figure 3: Plot of f(n, 30) versus n for 31 6 n 6 3000.

It is evident from Figures 1–3 that (10) does not hold if m is composite. Figures 1–3
suggest that for fixed 0 6 b < m the function f(n,m) is either increasing or decreasing as
n→∞ with n ≡ b (mod m), and moreover that the limit is independent of b. This would
imply [19, Proposition, p. 7] and give even sharper bounds than in our main theorem as we
explain below. Pouyanne [19, Proposition, p. 7] defined a constant κm (for not necessarily
square-free m) as follows:

(12) κm =
1

Γ
(
φ(m)
m

)∏
d|m

d−
µ(d)
d where µ(d) =

{
(−1)|π(d)| if d is square-free,

0 otherwise.

Thus f(n,m) ∼ λm := κm/m
1−φ(m)/m as n → ∞ paraphrases Pouyanne’s result. Theo-

rem 1 proves that C(m) 6 λm 6 1. Figures 1–3 show that the convergence as n → ∞
of f(n,m) to λm can be very slow. Computational evidence suggests that the sequence
(f(am+ b,m))∞a=0 is eventually monotonic. This leads us to the following question.

Question 5. Let m be a positive square-free integer. Does there exists an integer a0 such
that for each b the sequence (f(am+ b,m))a>a0 is monotonic?

Remark 6. If this is true, then for a > a0, f(am+b,m) is bounded between f(a0m+b,m)
and λm = κm/m

1−φ(m)/m. When m = p is prime and 0 6 b 6 p−1
2

, Theorem 8 below
shows λp 6 f(ap+ b, p) 6 1− 1

p
and for all a > 1. This improves (1).

Remark 7. We used the optimised Magma [2] code in [10], and the recurrence in Lemma 3,
to compute values of ρ(n,m) for n up to 105 and m 6 30. This allowed us to both test the
veracity of Question 5, and to discover some surprising patterns. The six curves in Figure 1
(unsurprisingly) correspond to the six possible choices for b = n mod 6, but in a strange
order viz. b = 1, 6, 2, 5, 3, 4 going from the highest curve to the lowest. (Incidentally,
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this observation motivated our “modulo m” proof of Theorem 1.) We noticed also that
for many choices of m and b the sequence f(am + b,m) for 0 6 a 6 1000 was strictly
decreasing, or strictly increasing. However, for very few choices e.g. (m, b) = (26, 24), the
sequence initially increased (6 times), and then increased (596 times) and then increased
(397 times). (The graph is a very flat sawtooth and so looks horizontal.) These unusual
patterns lead us to question the existence of a simple proof of Question 5.

Question 5 is true in the very special case when p is a prime.

Theorem 8. Let p be a prime. The sequence (f(ap+ b, p))a>0 increases strictly for 0 6
b 6 bp−1

2
c; whereas for a > p−1

2
, the sequence decreases strictly for bp−1

2
c < b 6 p− 1.

Proof. Write n = ap + b where 0 6 b < p. It follows from the closed formula ρ(n, p) =∏a
i=1(1− 1

ip
) of [8, Lemma I], that ρ(n+ p, p) = ρ(n, p)(1− 1

(a+1)p
). Hence

f(n+ p, p)

f(n, p)
=

(
1− 1

(a+ 1)p

) (n+p
p

)1−φ(p)
p

(
n
p

)1−φ(p)
p

=

(
1− 1

(a+ 1)p

)(
1 +

1

a+ b
p

) 1
p

.

Fix p and b. Our proof has two cases. Case 1 proves that the above ratio is at least 1
for 0 6 b 6 bp−1

2
c, and Case 2 shows the ratio is at most 1 for bp−1

2
c < b < p.

Case 1. 0 6 b 6 bp−1
2
c. The above ratio is at least 1 if and only if

(13)

(
1− 1

(a+ 1)p

)p
>

a+ c

a+ c+ 1
where c =

b

p
.

Observe that 0 6 c < 1, and for 0 6 c1, c2 < 1 we have

(14)
a+ c1

a+ c1 + 1
<

a+ c2

a+ c2 + 1
if and only if c1 < c2.

The left-hand side of (13) is independent of c, and by (14) the right-hand side of (13) is
largest when c equals c0 := 1

2
(1− 1

p
). Set x = (a+ 1)p. Then

a+ c0

a+ c0 + 1
=

a+ 1
2
(1− 1

p
)

a+ 1
2
(1− 1

p
) + 1

=
2ap+ p− 1

2ap+ 3p− 1
=

2x− p− 1

2x+ p− 1
.

Hence (13) is true if for all a > 0 and all integers p > 1, we have

(15)

(
x− 1

x

)p
>

2x− p− 1

2x+ p− 1
for all real numbers x > 2.

We now prove (15) by induction on p for all integers p > 1. The case p = 1 is clearly
true. In the following display, the first inequality follows from the inductive hypothesis,
and the second requires proof:(

x− 1

x

)p+1

=

(
x− 1

x

)p(
x− 1

x

)
IH

>

(
2x− p− 1

2x+ p− 1

)(
x− 1

x

)
?

>
2x− p− 2

2x+ p
.
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The second inequality is equivalent to

(2x+ p)(2x− p− 1)(x− 1) > (2x− p− 2)(2x+ p− 1)x.

The left minus the right side is p2 + p > 0. This proves Case 1.
Case 2. bp−1

2
c < b < p. In this case it suffices to prove

(16)

(
1− 1

(a+ 1)p

)p
<

a+ c

a+ c+ 1
where c =

b

p
.

First note that bp−1
2
c + 1 = dp

2
e. Hence b

2
6 dp

2
e 6 b and so 1

2
6 c. For c > 1

2
, the

right-hand side of (16) is smallest for c = 1
2

by (14). As before, set x = (a + 1)p. We
prove (16) by establishing the inequality below:

(17)

(
x− 1

x

)p
<
a+ 1

2

a+ 3
2

=
2a+ 1

2a+ 3
=

2x− p
2x+ p

.

Reasoning as in Case 1, we prove (17) for p > 1 by induction on p. Certainly (17) is true
for p = 1. Assume it is true for some p > 1. By the inductive hypothesis:(

x− 1

x

)p+1

=

(
x− 1

x

)p(
x− 1

x

)
IH
<

(
2x− p
2x+ p

)(
x− 1

x

)
?

6
2x− p− 1

2x+ p+ 1
,

where the last inequality is equivalent to

(2x− p)(x− 1)(2x+ p+ 1) 6 (2x− p− 1)x(2x+ p) or p2 + p 6 2x.

Finally, 2x > p2 + p is true for a > p−1
2

. This proves Case 2, and the theorem.
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