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Abstract

The hypergraph Ramsey number of two 3-uniform hypergraphs G and H, de-
noted by R(G,H), is the least integer N such that every red-blue edge-coloring of
the complete 3-uniform hypergraph on N vertices contains a red copy of G or a blue
copy of H.

The Fano plane F is the unique 3-uniform hypergraph with seven edges on seven
vertices in which every pair of vertices is contained in a unique edge. There is a
simple construction showing that R(G,F) > 2(v(G)− 1)+ 1 for every connected G.
Hypergraphs G for which the equality R(G,F) = 2(v(G) − 1) + 1 holds are called
F-good. Conlon posed the problem to determine all G that are F-good.

In this short paper we make progress on this problem by proving that the tight
path of length n is F-good.
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1 Introduction

Ramsey theory is one of the most intensively studied topics in combinatorics. Given two
k-uniform hypergraphs G and H, we denote by R(G,H) the hypergraph Ramsey number
of G and H. That is, R(G,H) is the least integer such that any red-blue edge-coloring of
the complete k-uniform hypergraph on that many vertices contains a red G or a blue H
as a subhypergraph. The existence of R(G,H) is guaranteed by Ramsey’s theorem [15].
Given a bounded degree k-uniform hypergraph H, it is known that the Ramsey number
R(H,H) is linear in the number of vertices of H [4, 6, 7, 10, 12]. However, estimating or
even determining Ramsey numbers precisely is often a difficult problem.

In this short paper we will determine exactly the Ramsey number of the tight path
and the Fano plane. This result is the first progress on a question asked at the AIMS
workshop on hypergraph Ramsey problems in 2015 by Conlon [16]. A simple construction
by Burr [1] shows that

R(G,H) > (χ(H)− 1)(v(G)− 1) + σ(H), (1)

provided H is connected and v(G) > σ(H), where χ(H) is the chromatic number of H
and σ(H) is the size of the smallest color class in any χ(H)-coloring of H. Following Burr
and Erdős [1, 2], we will say that G is H-good, if (1) holds with equality. The intuition
behind this definition was that H-good graphs tend to be poor expanders (see [5, Section
2.5] for further details). Denote by F the Fano plane, i.e. the unique 3-uniform hypergraph
with seven edges on seven vertices in which every pair of vertices is contained in a unique
edge. Conlon asked which hypergraphs are F-good [16].

In the graph case, there are many exact Ramsey numbers known. Erdős [2] started
the systematic study of cliques versus large graphs. Nikiforov and Rousseau [13] gave a
new approach to provide exact result for several families of graphs. Recently, the Ramsey
number of the cycle and the clique (Keevash, Long and Skokan [11]), and the Ramsey
number of the clique and the hypercube (Griffiths, Morris, Fiz Pontiveros, Saxton, Skokan
[8]) have been determined. For similar results we refer the interested reader to the excellent
recent survey [5].
In the hypergraph case there are only few instances where the Ramsey number is known
exactly. Our result is the first Ramsey-goodness-result for hypergraphs.

From now on, we consider only 3-uniform hypergraphs. Let P t
n be the tight path on

n vertices, i.e. it contains distinct vertices v1, v2, . . . , vn and edges e1, e2, . . . , en−2 where
ei = {vi, vi+1, vi+2}.

Theorem 1. There exists n0 ∈ N such that for any n > n0, we have R(P t
n,F) = 2n− 1.

Using the definitions from above, Theorem 1 states that P t
n is F-good. The lower

bound R(P t
n,F) > 2n− 1 follows easily by the following folklore construction. Write the

vertex set of the complete 3-uniform hypergraph on 2n− 2 vertices K
(3)
2n−2 as the disjoint

union of two sets A and B with |A| = |B| = n − 1. Color all 3-edges that are fully
contained in either A or in B red, and all other edges blue. Observe that as |A|, |B| < n
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there is no red P t
n in this coloring. Since the chromatic number1 χ(F) = 3, in every copy

of F there is one edge that is fully contained in either A or B, hence this coloring cannot
contain a blue copy of F either. This establishes that R(P t

n,F) > 2n− 2.
There is another almost extremal example, which is very different. For simplicity, let n be
divisible by 6. Write the vertex set of the complete 3-uniform hypergraph on 2n−3 vertices
K

(3)
2n−3 as the disjoint union of three sets A,B and C with |A| = |B| = |C| = 2n/3 − 1.

Color red all triples of vertices {x, y, z} such that either x, y ∈ A and z ∈ A ∪ B, or
x, y ∈ B and z ∈ B ∪ C, or x, y ∈ C and z ∈ A ∪ C. Color all other triples blue. A short
case analysis (see Lemma 4) shows that there is no blue Fano plane F. The longest red
tight path is obtained by alternating between taking two vertices from one of the sets and
one vertex from another. Such a path can have length at most |A|+ |B|/2 + 1 6 n− 1.
The main contribution of our work is to establish the upper bound R(P t

n,F) 6 2n − 1.
In the proof of the upper bound, we will build up a picture of what a potentially bad
coloring could look like and quickly realize that a bad coloring needs to be close to one
of the two previous described colorings. In the remainder of the proof we then rule out
these two types separately.

We remark that this proof technique also works for proving that the tight cycle is F-
good. Let C

(3)
n be the tight cycle on n vertices, i.e. it contains distinct vertices v1, v2, . . . , vn

and edges e1, e2, . . . , en with ei = {vi, vi+1, vi+2} where vn+1 := v1 and vn+2 := v2.

Theorem 2. There exists n0 ∈ N such that for any n > n0, we have R(C
(3)
n ,F) = 2n− 1.

We choose not to present the proof of Theorem 2 since the proof is almost the same
as the proof of Theorem 1 and differs only in some technicalities which do not give the
reader more insight into the methods used.

The organization of the paper is as follows. In Section 2 we will show that Theorem 1
is sharp in the sense that the Ramsey number increases when one adds a small number of
edges to the tight path. In Section 3 we will give some definitions and basic tools which
will be needed for the proof of the upper bound in Theorem 1. The proof itself will be
given in Section 4.

2 Sharpness example

The following example shows that Theorem 1 is best possible in the following sense: Let
P ′ be the 3-uniform hypergraph obtained from the tight path P t

n by adding three edges
{v2, v3, v6}, {v1, v2, v5} and {v1, v4, v6}. We claim that Ramsey number of P ′ and F is
bigger than the Ramsey number of P t

n and F.

Theorem 3. R(P ′,F) > 2n.

Assume, for simplicity, that n is divisible by 3. Take three sets A, B, C of size 2n/3
each. Color red all triples of vertices {x, y, z} such that either x, y ∈ A and z ∈ A∪B, or

1Here, the chromatic number χ(H) of a hypergraph H is the smallest number k of colors for which
there exists a k-coloring of the vertices of H with no monochromatic edge. This is sometimes called the
weak chromatic number of H.
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x, y ∈ B and z ∈ B ∪ C, or x, y ∈ C and z ∈ A ∪ C. All other triples are colored blue.
The following two Lemmas check that there is no blue F and no red P t

n.

Lemma 4. The coloring described above does not contain a blue F.

Proof. Let F be a blue Fano plane in the previously described coloring. For i, j, k ∈ [7]
with i + j + k = 7, we say that a Fano plane is of type (i, j, k) if i vertices come from
A, j vertices come from B and k vertices come from C. Let a1, . . . , ai be the vertices in
A; b1, . . . , bj be the vertices in B; and c1, . . . , ck the vertices in C. Since the chromatic
number of the Fano plane is three, F needs to have one vertex from each set. Thus, F
has to be of type (5, 1, 1), (4, 2, 1), (4, 1, 2), (3, 2, 2) or (3, 3, 1) up to rotation. Since every
5-subset of vertices in a Fano plane contains an edge, F cannot be of type (5, 1, 1). If F
is of type (4, 2, 1), then b1b2c1 forms an edge or there is an edge inside A, because F has
chromatic number three. However, by construction of the coloring both of these edge are
red. If F is of type (4, 1, 2), then again c1c2b1 forms an edge or there is an edge inside
A. Since the edge inside A is red, c1c2b1 forms an edge. In a Fano plane every pair is
in exactly one edge, thus b1 cannot be in any further blue edge. This contradicts that
every vertex is in three edges. Now, let F be of type (3, 2, 2). There has to be an edge
inside {b1, b2, c1, c2}. Without loss of generality let this edge be c1c2b1. Now, b1 can only
be in one further edge (one containing b2). This again contradicts that every vertex is
in three edges. Finally, let F be of type (3, 3, 1). Again, there has to be an edge inside
{b1, b2, b3, c1}. Without loss of generality let this edge be b1b2c1. Now, c1 can only be in
one further edge (one containing b3), contradicting that c1 needs to have degree three.

Lemma 5. The previously described coloring does not contain a red P t
n.

Proof. Let us assume there is an embedding of a red P ′. The first three vertices of such an
embedding cannot come from different sets A,B and C. Without loss of generality, let A
be the set which contains at least two of them. The only way to embed a red copy of P t

n is
to use all vertices of A and n/3 vertices of B. Since between 2 vertices from B there has to
be at least 2 vertices from A, the only way for an embedding of P t

n to start is with the first
6 vertices having the following patterns: AABAAB, ABAABA, ABAAAB, BAABAA,
BAAABA or BAAAAB. However, regardless of which pattern we use, the resulting red
tight path cannot be extended to a red copy of P ′: one of {v2, v3, v6}, {v1, v2, v5} and
{v1, v4, v6} would be of the form BBA and therefore blue.

3 Preparations

Let the hyperedges of H := K
(3)
2n−1 be two-colored with colors red and blue, without a

blue F. In the proof we will build up a picture of how this bad coloring could potentially
look like over a sequence of Lemmas and eventually rule out its existence entirely.
Our starting point in the proof of Theorem 1 will be an upper bound on the off-diagonal
hypergraph Ramsey numbers. We choose to use an upper bound from [3], but any weaker
bound would suffice.
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Theorem 6 (Conlon–Fox–Sudakov [3]). There exists C > 0 so that for every integer
s > 4 and sufficiently large t,

R(K(3)
s , K

(3)
t ) 6 2Cts−2 log t.

In the proof we will make use of the following definitions.

Definition 7. Given two disjoint sets A,B of vertices inH, we say four vertices a1, a2 ∈ A,
b1, b2 ∈ B form a red butterfly if there exists i, j ∈ {1, 2} such that the two hyperedges
a1a2bi, ajb1b2 are red.

We denote with |
−→
AB|r (|

−→
AB|b) the number of red (blue) hyperedges in H of the form

ab1b2 with a ∈ A, b1, b2 ∈ B. Given three disjoint sets A,B,C of vertices in H, we
denote with |ABC|r (|ABC|b) the number of red (blue) hyperedges of the form abc with
a ∈ A, b ∈ B, c ∈ C.

For W ⊂ V (H), v /∈ W , denote Gblue
v,W the blue link graph of v in W , i.e. the graph

on W with ab being an edge iff abv is blue in H. Analogously, Gred
v,W defines the red link

graph.

For t ∈ N, we define the complete directed bipartite graph
−→
K t,t to be the directed

graph on vertex set A ∪ B with |A| = |B| = t, A and B disjoint, and the arc set
{ab | a ∈ A, b ∈ B}.

The following theorem is a directed version of the Kövári–Sós–Turán Theorem [14].

Theorem 8. Let t,m ∈ N. Define D to be a digraph with vertex set A∪B, where A and
B are disjoint, and |A| = |B| = m. If the number of arcs from A to B is at least C ′m2−1/t

for C ′ being a constant large enough only depending on t, then D contains a directed
−→
K t,t

from A to B.

The following tools consisting of the next two Lemmas will be used multiple times in the
main proof.

Lemma 9. Let the hyperedges of H := K
(3)
2n−1 be two-colored with colors red and blue,

without a blue F. Further, let m ∈ N be big enough and A,B,C ⊆ V (H) be disjoint sets
such that |A| = |B| = |C| = m. Assume that there are at most 1000 vertex-disjoint red
butterflies connecting each pair of the three sets A,B,C.

Then there exists an absolute constant t > 0 such that

|
−→
AB|r, |

−−→
BC|r, |

−→
CA|r 6 m3−1/t or |

−→
BA|r, |

−−→
CB|r, |

−→
AC|r 6 m3−1/t.

Proof. Removing at most 4000 vertices from each set, we end up with sets A1 ⊂ A,A2 ⊂
B,A3 ⊂ C so that there are no red butterflies connecting them. Note that if two vertices
a ∈ Ai and b ∈ Aj are not contained in any red butterfly, then either all hyperedges
{abx : x ∈ Ai} or all hyperedges {aby : y ∈ Aj} are blue.

Create a digraph
−→
G with V (

−→
G) = A1 ∪ A2 ∪ A3 as follows. We have −→uv ∈ E(

−→
G) for

u ∈ Ai, v ∈ Aj with i 6= j if the set of hyperedges {uvy : y ∈ Aj} is entirely blue. Note
that some edges might be oriented in both ways.
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Let t be the bipartite Ramsey number for K4,4. That is, t is the least integer such
that every two-coloring of the edges of Kt,t contains a monochromatic copy of K4,4. Note
that by Irving [9], we have t 6 48.

Suppose between A1 and A2, both the left and right density is at least C ′m−1/t for

C ′ being a constant large enough. By Theorem 8 we can find complete directed
−→
K t,t’s in

both directions. That is, there are sets D1, D2 ⊂ A1 and E1, E2 ⊂ A2 of sizes t each such

that the edges {
−→
ab : a ∈ D1, b ∈ E1} and {

−→
ba : a ∈ D2, b ∈ E2} are all present in

−→
G .

Let x ∈ D1 and set Nx := N+(x) ∩ A3, where N+(x) denotes the out-neighborhood

of x in
−→
G . We claim |Nx| < t. Suppose towards contradiction that |Nx| > t. Since

|Nx| > t and |E1| > t, there is a directed
−→
K 4,4 between Nx and E1 in

−→
G . That is, we

can find S = {s1, . . . , s4} ⊂ Nx and T = {t1, . . . , t4} ⊆ E1 such that all edges of the form

{−→st : s ∈ S, t ∈ T} or all edges of the form {−→ts : s ∈ S, t ∈ T} are present in
−→
G . Without

loss of generality let all edges of the form {−→st : s ∈ S, t ∈ T} be present. However, this is
impossible as the hyperedges {xs1s2, xt1t2, xt3t4, s1t1t4, s1t2t3, s2t1t3, s2t2t4} form a blue
Fano plane in H. Thus we conclude |Nx| < t.

Since x was an arbitrary vertex in D1, every vertex in D1 has an out-neighbourhood
in A3 of size at most t. Repeating the same argument after replacing D1 by E2, we get
that every vertex in E2 has an out-neighbourhood in A3 of size at most t. So by removing
at most 2t2 vertices from A3 we get a set A′3 of the property that all edges from A′3 to

D1 and all edges from A′3 to E2 are present in
−→
G . By the choice of t, we can find sets

W1 ⊂ D1 and W2 ⊂ E2 of sizes at least four such that without loss of generality (W1,W2)
forms a directed K4,4. Hence we have found a 4-blowup of a transitive triangle. But this is
impossible, as letting W1 = {v1, v2, v3, v4}, W2 = {w1, w2, w3, w4}, a ∈ A′3 the hyperedges
{av1v2, aw1w2, aw3w4, v1w1w4, v1w2w3, v2w1w3, v2w2w4} are all blue in H and form a Fano
plane.

This proves that in
−→
G between A1 and A2, in one of the directions the density has

to be less than C ′m−1/t. Repeating this argument for the other two pairs, we get that
between any pair of sets from A1, A2, A3, in one of the directions the density has to be less
than C ′m−1/t whereas the density in the other direction has to be at least 1 − C ′m−1/t.
The majority orientation forms a transitive triangle or an oriented 3-cycle. Suppose now
that the majority orientation forms a transitive triangle. Pick four vertices from each
set at random. Then the probability that the 12 vertices do not form a 4-blowup of the
transitive triangle is at most 48C ′m−t. Therefore, there exists a 4-blowup of a transitive

triangle in
−→
G , giving a blue Fano plane in H. Thus, the majority orientation has to form

a 3-cycle.
Without loss of generality let A1 → A2 → A3 → A1 be the majority orientation in−→

G . Then the density between A1 and A2 is at least 1− C ′m−1/t in
−→
G , then this implies

|
−−−→
A1A2|r 6 C ′m3−1/t and as we only deleted at most 12000 vertices in the beginning,

also |
−→
AB|r 6 2C ′m3−1/t. Repeating this argument for the other pairs gives us |

−−→
BC|r 6

2C ′m3−1/t and |
−→
CA|r 6 2C ′m3−1/t. By choosing t slightly bigger we get rid of the constant

2C ′ for large enough m.
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Lemma 9 can be improved in the following way.

Lemma 10. Let the hyperedges of H := K
(3)
2n−1 be two-colored with colors red and blue,

without a blue F. Further, let m ∈ N be big enough and A,B,C ⊆ V (H) be disjoint sets
such that |A| = |B| = |C| = m. Assume that there are at most 1000 vertex-disjoint red
butterflies connecting each pair of the three sets A,B,C.

Then there exists an absolute constant t > 0 such that

|
−→
AB|r, |

−−→
BC|r, |

−→
CA|r, |

−→
BA|b, |

−−→
CB|b, |

−→
AC|b 6 m3−1/t

or
|
−→
BA|r, |

−−→
CB|r, |

−→
AC|r, |

−→
AB|b, |

−−→
BC|b, |

−→
CA|b 6 m3−1/t.

Proof. Applying Lemma 9, we get a positive constant t′ such that w.l.o.g.

|
−→
AB|r, |

−−→
BC|r, |

−→
CA|r 6 m3−1/t′ .

Let t = 3t′. For the sake of contradiction, say that |
−→
AC|b > m3−1/t. Define

Z1 :=

{
v ∈ A

∣∣∣∣ e(Gblue
v,B ) >

99

100

(
m

2

)}
and Z ′1 :=

{
v ∈ A

∣∣∣∣ e(Gblue
v,C ) >

1

2
m2−1/t

}
.

Then |A \ Z1| 6 600m1−1/t′ , as otherwise |
−→
AB|r > 600m1−1/t′ 1

100

(
m
2

)
> 2m3−1/t′ . Also

|Z ′1| > 800m1−1/t′ , as otherwise |
−→
AC|b < 800m1−1/t′m2 + 1

2
m2−1/tm 6 m3−1/t. Thus, one

can choose a vertex v ∈ Z1 ∩ Z ′1. Let

Y1 :=

{
w ∈ B

∣∣∣∣e(Gw,C,r) 6 10m2−1/t′
}
.

Then |Y1| > 4/5m as otherwise |
−−→
BC|r > 2m3−1/t′ . Because of the size of Y1, G

blue
v,B has to

contain an edge inside Y1. Let w1w2 be such an edge. The number of 4-tuples (a, b, c, d)
of distinct vertices a, b, c, d ∈ C with ab, cd ∈ E(Gblue

v,C ) is at least

∑
ab∈E(Gblue

v,C )

(
e(Gblue

v,C )− deg(a)− deg(b)
)
> e(Gblue

v,C )(e(Gblue
v,C )− 2m) >

1

5
m4−2/t.

The number of 4-tuples (a, b, c, d) of distinct vertices a, b, c, d ∈ C with ad /∈ E(Gblue
w1,C

)

or bc /∈ E(Gblue
w1,C

) is at most e(Gred
w1,C

)m2 +m2e(Gred
w1,C

) 6 20m4−1/t′ . Similarly, the number
of 4-tuple (a, b, c, d) of distinct vertices a, b, c, d ∈ C with ac /∈ E(Gblue

w2,C
) or bd /∈ E(Gblue

w2,C
)

is at most 20m4−1/t′ . Since 20m4−1/t′+20m4−1/t′ < 1
5
m4−2/t, there exists a, b, c, d ∈ C such

that ab, cd ∈ E(Gblue
v,C ); ad, bc ∈ E(Gblue

w1,C
) and ac, bd ∈ E(Gblue

w2,C
). Thus, the hyperedges

vw1w2, vab, vcd, w1ad, w1bc, w2ac, w2bd form a blue Fano plane; a contradiction, therefore

we conclude that |
−→
AC|b 6 m3−1/t. Similarly, we get |

−−→
CB|b 6 m3−1/t and |

−→
BA|b 6 m3−1/t.
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4 Proof of Theorem 1

4.1 Set up of the proof

For the sake of contradiction, assume that there is a red-blue edge-coloring of H := K
(3)
2n−1

without a blue F and without a red P t
n. Fix such a coloring. Let ε > 0 be a sufficiently

small constant and assume that n is sufficiently large. Set

m =

⌈
ε 5

√
log n

log log n

⌉
.

Observe that m5 logm 6 ε5

5
log n, hence we have by Theorem 6

R(K(3)
m , K

(3)
7 ) 6 2Cm5 logm 6 nε4 .

Since H contains no blue F, it cannot contain a blue K
(3)
7 and we conclude that it

contains a red K
(3)
m , call it D1. Set H1 := H \ V (D1) and find a red K

(3)
m , call it D2, in

H1. Repeating this process, setting Hi+1 := Hi \V (Di), we can find a red copy of K
(3)
m in

Hi+1, calling it Di+1, as long as |V (Hi)| > nε4 . At the end of this process we end up with

a collection of vertex-disjoint red K
(3)
m -s D1, D2, . . . , Dd, and a set J of remaining vertices

with |J | 6 nε4 .
Create a graph G1 with V (G1) = {D1, . . . , Dd}, by connecting Di, Dj if in H there

are at least 1000 vertex-disjoint red butterflies between them. The vertices of G1 will be
called blobs. The next two lemmas give information on the structure of G1.

Lemma 11. The complement of G1 contains no K4.

Proof. For the sake of contradiction, assume that there are 4 blobs A1, A2, A3 and A4

which form a K4 in the complement of G1. Define a directed graph D with vertex set

V (D) = {A1, A2, A3, A4} and an edge from blob Ai to Aj (i 6= j) iff |
−−−→
AiAj|r 6 m3−1/t with

t from Lemma 10. Applying Lemma 10 on all subsets of size 3 of the 4 blobs gives that
every edge in D is oriented in exactly one direction. This means that D is a tournament.
However, a tournament on 4 vertices contains a transitive triangle and Lemma 10 says
this cannot happen.

Lemma 12. G1 has one of the following forms:

(i) V (G1) = {A1, . . . , Aa, B1, . . . , Bb} such that A1, . . . , Aa and B1, . . . , Bb form vertex-
disjoint paths or

(ii) V (G1) = {A1, . . . , Aa, B1, . . . , Bb, C1, . . . , Cc} such that A1, . . . , Aa; B1, . . . , Bb and
C1, . . . , Cc form vertex-disjoint paths.

Proof. Let A1, . . . , Aa be a longest path in G1. If V (G1) = {A1, . . . , Aa} then one can
find a red P t

n in H just by jumping from red blob to red blob along the path using
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the red butterflies. Let B1, . . . , Bb be a longest path in G1 on the vertices V (G1) \
{A1, . . . , Aa}. If V (G1) = {A1, . . . , Aa, B1, . . . , Bb} we are in case (i). Otherwise we can
take the longest path C1, . . . , Cc in V (G1)\{A1, . . . , Aa, B1, . . . , Bb}. In this case V (G1) =
{A1, . . . , Aa, B1, . . . , Bb, C1, . . . , Cc} as otherwise any blob in V (G1)\{A1, . . . , Aa, B1, . . . ,
Bb, C1, . . . , Cc} would form a K4 in the complement of G1 together with A1, B1 and C1.
This is not possible by Lemma 11.

In the next two Subsections the two cases from Lemma 12 will be handled separately.
The strategy is to build a long red tight path using these two or three blocks.

Remark 13. For the proof of Theorem 2 one can use the fact that when a long path say
starting in A1 and ending in Aa is found, it is clear that some of the vertices inside the
block can be used to close the cycle.

4.2 The two paths case

In this case G1 is the vertex-disjoint union of two paths, i.e. in H we have vertex-disjoint
red Km-s {A1, . . . , Aa, B1, . . . , Bb} and a set J of junk vertices with |J | 6 nε4 . For every
i, j there are at least 1000 red butterflies between Ai and Ai+1 and also between Bj and
Bj+1. Slightly abusing notation, let P1 = ∪iAi and P2 = ∪jBj. Note that if |Pi| > n for
some i ∈ {1, 2} then we can embed the tight path P t

n into Pi just by walking through each
blob and jumping from blob to blob by using the hyperedges from the red butterflies. We
know that |P1|+ |P2|+ nε4 > |V (H)| = 2n− 1. So n− nε4 6 |Pi| 6 n− 1 for i = 1, 2.

Definition 14. A red triple triangle between Ai and Bj is a set of vertices w, x, y, z ∈ Ai

and v ∈ Bj (or w, x, y, z ∈ Bj and v ∈ Ai) so that wxv, xyv, yzv is red in H.

Observe that when we have a red triple triangle between Ai and Bj we can find a red
tight path of length m + 1 by swallowing one additional vertex from Bj using the red
triple triangle. If there is no red triple triangle between two blobs then there also have to
be few red hyperedges between the blobs.

Lemma 15. If there is no red triple triangle between Ai and Bj, then |AiBj|r + |BjAi|r 6
20m2.

Proof. Pick any vertex v ∈ Bj and consider its red link graph in Ai. If v is not in a red
triple triangle, then the red link graph does not contain a path of length 3, hence the
number of edges in this link graph is at most 10m. So the number of red hyperedges
between Bj and Ai, assuming that there are no red triple triangles, is at most 20m2.

Lemma 16. V (H) can be decomposed as V (H) = A∪B∪J ′ with |A|, |B| > n−nε3 , |J ′| 6
nε3 such that there are at most 500n3/m blue hyperedges inside A and respectively in B.

Proof. Consider the bipartite graph G2, with vertex sets {A1, . . . , Aa} and {B1, . . . , Bb}.
Connect AiBj by an edge iff between Ai and Bj there is a red triple triangle in H. Let
M be a largest matching in G2. Then we can embed into H a tight red path of length
|Pi|+ |M |/2 for some i ∈ {1, 2}, because at least half of the triple triangles represented by

the electronic journal of combinatorics 27(1) (2020), #P1.60 9



edges from the matching have to go in the same direction. In particular since |Pi| > n−nε4

for i = 1, 2 this implies |M | 6 2nε4 . Put all blobs covered by M into J and get a new
rubbish set J ′. We will have |J ′| 6 |J |+ 2|M |m 6 nε3 vertices.
The subgraph of G2 on the blobs which have not been removed spans an independent set.
Let A be the set of vertices in P1 which have not been removed and let B be the vertices
in P2 which have not been removed. The following argument shows that for three different
blobs A′1, A

′
2, A

′
3 from {A1, . . . , Aa} which have not been removed, |A′1A′2A′3|b 6 400m2.

For contradiction, assume there are more than that many blue hyperedges. Take a blob
Bi which has not been removed from {B1, . . . , Bb}. By Lemma 15

|
−−−→
A′1Bi|r, |

−−−→
A′2Bi|r, |

−−−→
A′3Bi|r, |

−−−→
BiA

′
1|r, |
−−−→
BiA

′
2|r, |
−−−→
BiA

′
3|r 6 20m2.

Picking at random one vertex each of A′1, A
′
2 and A′3, and 4 vertices from Bi, these vertices

do not form a blue Fano plane with probability at most 1 − 400m−1 + 6 · 50m−1, thus,
there has to exist a blue Fano plane. We conclude |A′1A′2A′3|b 6 400m2. Therefore there
are at most 400m2(n/m)3 + m3(n/m)2 6 500n3/m blue hyperedges inside A. Similarly,
this holds for B.

Definition 17. Call a vertex v ∈ B special if e(Gred
v,A) > 1

5
ε5
(
n
2

)
. Similarly, call a vertex

v ∈ A special if e(Gred
v,B) > 1

5
ε5
(
n
2

)
.

Lemma 18. Let V (H) = A ∪ B ∪ J ′ be the decomposition from Lemma 16. If there are
at least nm−1/20 special vertices in A or B, then one can find a red P t

n in H.

Proof. Suppose there are at least nm−1/20 special vertices in w.l.o.g. B. We now show that
we can absorb enough of these special vertices from B to find a tight red path of length n.
Let a, b, c, d ∈ A, v ∈ B. A tuple (c, d) is called reachable from (a, b) if both abc and bcd
are red. Further, a tuple (c, d) is called reachable from (a, b) via v if all abv, bvc, vcd are
red. A tuple (a, b) is called open if there exists at most n2m−1/4 tuples (c, d) with c, d ∈ A
such that (c, d) is not reachable from (a, b). Define O to be the set of all open tuples. As
there are at most 500n3/m blue hyperedges inside A, |O| > |B|(|B| − 1)− n2m−1/4. Call
a tuple (a, b) good for v ∈ B if there exists at least ε100n2 tuples (c, d), c, d ∈ A such that
(c, d) is reachable from (a, b) via v. Denote Good(v) the set of all tuples being good for
v. For v ∈ B special, |Good(v)| > ε100n2, because otherwise the number of P4’s in Gblue

v,B

would be at most 2ε100n4. However, since e(Gblue
v,B ) > 1

5
ε5
(
n
2

)
, the number of P4’s in Gblue

v,B

is more than 2ε100n4.
We will now walk along the red hyperedges step by step adding in each step 5 vertices

to the tight path. Let v1, v2, . . . be the special vertices in B. Let (a1, b1) ∈ Good(v1)
and (c1, d1) be an open tuple such that (c1, d1) is reachable from (a1, b1) via v1. We
begin the walk with a1, b1, v1, c1, d1. Now take a look at step i. Assume we already have
defined a1, b1, v1, c1, d1, a2, . . . , ai−1, bi−1, vi−1, ci−1, di−1 with (ci−1, di−1) being open. Pick
(ai, bi) ∈ Good(vi) such that (ai, bi) is reachable from (ci−1, di−1). For i 6 nm−1/20, this is
possible, because

|Good(vi)| − n2m−1/4 − 5ni >
ε100

2
n2.
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Now pick (ci, di) ∈ O such that (ci, di) is reachable from (ai, bi) via v1. For i 6 nm−1,
this is possible, because

ε100n2 − n2m−1/4 − 5ni >
ε100

2
n2.

Now enlarge the path with aibivicidi. After i 6 nm−1/20 steps we end up with a path
of length 5nm−1/20 such that the last two vertices form an open tuple. Now, we just keep
picking open tuples and walk from an open tuple to an open tuple. We can keep doing
this until at most nm−1/10 vertices are not used inside A. This means we found a tight
red path of length at least

n− nε4 − nm−1/10 + nm−1/20 > n.

Lemma 19. Let V (H) = A ∪ B ∪ J ′ be the decomposition from Lemma 16. If there are
at most nm−1/20 special vertices in A and B, then the vertex set V (H) can be decomposed
into V (H) = A′ ∪ B′ ∪ J ′′ with |A′|, |B′| > n − εn, |J ′′| 6 εn such that H[A′] and H[B′]
are entirely red, for all v ∈ A′ e(Gred

v,B′) 6
1
5
ε5n2 and for all v ∈ B′ e(Gred

v,A′) 6
1
5
ε5n2.

Proof. We can remove all special vertices from A and B and add them to the junk set
J ′. So we obtain A′, B′, J ′′ so that for each v ∈ A′ the red link graph in B′ has at most
1
5
ε5n2 edges, for each w ∈ B′ the red link graph of w in A′ has at most 1

5
ε5n2 edges and

|J ′′| 6 |J ′|+ 2nm−1/20 6 εn.
Suppose abc is a blue hyperedge in A′. Let Gblue

a,B′ , G
blue
b,B′ , G

blue
c,B′ be the blue link graphs in B′.

By the previous observation e(Gblue
a,B′ ∩Gblue

b,B′ ∩Gblue
c,B′) >

9
10

(
n
2

)
and thus Gblue

a,B′ ∩Gblue
b,B′ ∩Gblue

c,B′

contains a K4. The four vertices from the K4 together with a, b, c contain a blue copy of
the Fano plane in H. Hence H[A′] is entirely red. The same holds for H[B′].

Lemma 20. In the setting of Lemma 19, we can decompose J ′′ = J1 ∪ J2 such that for
all v ∈ J1 e(Gblue

v,A′) 6 εn2 and all v ∈ J2 e(Gblue
v,B′) 6 εn2.

Proof. Let V (H) = A′ ∪B′ ∪ J ′′ be the decomposition from Lemma 19. We actually will
prove that if a rubbish vertex v ∈ J ′′ has e(Gblue

v,A′) > εn2, then it cannot have a blue
hyperedge into B′. Indeed suppose there are a, b ∈ B′ with abv blue. Then both a and b
are part of at least

(|A′|
2

)
− 1

5
ε5n2 blue hyperedges with the other two vertices being in A′ by

the final statement in Lemma 19. Therefore there are at least
(|A′|

2

)
− 2

5
ε5n2 pairs (c, d) with

c, d ∈ A′ and cda, cdb blue, call this set of edges S. Now suppose v leads at least εn2 blue
hyperedges into A′, i.e. e(Gblue

v,A′) > εn2 and hence Gblue
v,A′ contains a path P of length ε2n.

The restriction of S onto the vertex set of P = {p1, p2, . . .} contains at least (1 − ε)
(|P |

2

)
edges and hence contains four vertices pi, pi+1, pj, pj+1 with pipj, pipj+1, pi+1pj, pi+1pj+1

in S. Then apipj+1, avb, apjpi+1, pj+1bpi+1, pj+1vpj, pivpi+1, pipjb form a blue Fano plane.
Hence we can split up the junk set J ′′ = J1 ∪ J2 such that for all v ∈ J1 e(Gblue

v,A′) 6 εn2

and all v ∈ J2 e(Gblue
v,B′) 6 εn2.

Lemma 21. In the setting of Lemma 19, we can find a red P t
n in H.
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Proof. Let J ′′ = J1 ∪ J2 be the decomposition of the junk vertices from Lemma 20. Set
A∗ = A′ ∪ J1 and B∗ = B′ ∪ J2. Then either |A∗| > n or |B∗| > n. W.l.o.g. |A∗| > n.
Now one can find a red tight path of length n inside A∗. Let v1, v2, . . . be the vertices
from J1. Call a tuple (a, b), a, b ∈ A′ good* for v ∈ J1 if the red link graph of v in A′

contains at least 9
10
n2 tuples (c, d), c, d ∈ A′ such that abv, bvc, vcd are red in H. Since

the blue link graph of v contains at most εn2 edges, for each v ∈ J1 the number of good*
tuples is at least 9

10
n2. Now start with an arbitrary good* tuple (a1, b1) for v1. The start

of the walk is a1, b1, v1. Now assume we already have chosen a1, b1, v1, . . . , ai−1, bi−1, vi−1
such that (ai−1, bi−1) is good* for vi−1. Take a good* tuple (ai, bi) for vi of unused vertices
such that bi−1vi−1ai, vi−1aibi are red. This is possible for all i 6 εn, because

9

10
n2 − 1

10
n2 − 3in > 0.

Enlarge the path by aibivi. After all vertices from J1 are used, just walk through A′

until all vertices in A′ are used. This is possible, because all hyperedges inside A′ are red.
Thus, we find a red tight path of length |A∗| > n.

4.3 The three paths case

Let A,B,C with A = {A1, A2, . . . , Aa}, B = {B1, . . . , Bb} and C = {C1, . . . , Cc} be the
three paths in G1. There cannot be an edge between blobs of different paths, otherwise we
can reduce this case to the two path case from Section 4.2 in the following way. Without
loss of generality, assume that there is an edge between Aj and Bk. Split up each blob
from A and B into two blobs of equal size (if m is odd one vertex ends up in J) in such a
way that blobs coming from consecutive blobs still have at least 100 disjoint red butterflies
between them and such that there are also still at least 100 disjoint red butterflies between
the blobs coming from Aj and Bk. Now, when one constructs the graph of all new blobs,
where two blobs are adjacent with each other when they have at least 100 disjoint red
butterflies between them, then this graph can be decomposed into two paths. We already
handled this case in Subsection 4.2. Therefore we can assume that there are no edges
between blobs of different paths in G1.

Using Lemma 10 it follows that w.l.o.g. |
−−−→
AiBj|r, |

−−−→
BjCk|, |

−−−→
CkAi|r 6 m3−1/t for all i, j, k.

Let P1 = ∪Ai, P2 = ∪Bi and P3 = ∪Ci. Clearly, |P1|, |P2|, |P3| < n as otherwise one could
find a red tight path of length n just by going through a blob and then jumping to the
next by using a red butterfly and so on.

Definition 22. For X, Y ⊂ V (H) and 0 6 α 6 1, denote G(X, Y, α) the graph with
vertex set X, and ab is an edge iff the number of red hyperedges abc with c from Y is at
least α|Y |.

Lemma 23. There exists a constant C ′ such that

2

3
n− C ′nm−1/t 6 |Pl| 6

2

3
n+ C ′nm−1/t

for l = 1, 2, 3.
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Proof. Let Ai ∈ A,Bi ∈ B. We will show that one can find a red tight path of length at
least 3m/2 − 4000m1−1/t just using Ai and Bi starting with two vertices from Ai, end-
ing with two vertices from Ai, not using two vertices being part of a butterfly to Ai−1
and not using two other vertices being part of a butterfly to Ai+1. Consider the graph
G(Ai, Bi, 0.99). The number of vertices in this graph with degree at most 0.9m is at

most 2000m1−1/t as otherwise |
−−→
BiAi|r > 2000m1−1/t · 0.1m · 0.01m · 0.5 = m3−1/t. Let

A′ ⊆ Ai be the set of all vertices of degree at least 0.9m not containing the two ver-
tices being part of a butterfly to Ai−1 and not containing the two vertices being part
of a butterfly to Ai+1. Then |A′| > m − 2000m1−1/t − 4, G(A′, Bi, 0.99) has mini-
mum degree at least 0.8m and thus there exists a Hamiltonian path v1, v2, . . . , vA′ in
this graph. After every second vertex in this path we will now add a vertex from Bi

to find a long red tight path in Ai ∪ Bi. Assume we already found the tight red path
v1, v2, w1, v3, v4, w2, . . . , v2j−1, v2j. Then we can pick a vertex wj ∈ Bi which has not been
used yet and such that v2j−1v2jwj, v2jwj, v2j+1, wj, v2j+1v2j+2 are red for j < |A′|/2. This
is possible because m − 0.01m − 0.01m − 0.01m − j > 0. Thus, we can find a red tight
path of length at least

3

2
(m− 2001m1−1/t) >

3m

2
− 4000m1−1/t.

If |P1| 6 |P2|, then we can find a tight red path of length at least 3/2|P1| − 5000nm−1/t

by the following argument. Jump from blob to blob in A using the vertices from the
butterflies and always absorbing the vertices from the index corresponding blob in B.
When we are done with all blobs in A we stop and have found a red tight path of length
at least(

3

2
m− 4000m1−1/t

)⌊
|P1|
m

⌋
>

(
3

2
m− 4000m1−1/t

)(
|P1|
m
− 1

)
>

3

2
|P1| − 5000nm−1/t.

If |P1| > |P2|, then we can find a tight red path of length at least (|P1| + |P2|/2) −
5000nm−1/t by the following argument. Jump from blob to blob in A using the vertices
from the butterflies and always absorbing the vertices from the index-corresponding blob
in B. When we are done with all blobs in B we go back to A and walk through the
remaining blobs from A using the butterflies. So we can find a tight red path of length
at least (

3

2
m− 4000m1−1/t

)⌊
|P2|
m

⌋
+ |P1| − |P2| > |P1|+

|P2|
2
− 5000nm−1/t.

We will now show that the sizes of the blocks P1, P2, P3 is at most 2/3n + C ′nm−1/t

and at least 2/3n − C ′nm−1/t for an absolute constant C ′. W.l.o.g. let P1 be a biggest
block. If |P1| 6 2/3n+ 30000nm−1/t, then also |P2|, |P3| 6 2/3n+ 30000nm−1/t, but since
|P1|+ |P2|+ |P3| = 2n−1−|J |, we also get |P1|, |P2|, |P3| > 2/3n−60001nm−1/t. Assume
|P1| > 2/3n+ 30000nm−1/t. If |P2| > 2(n− |P1|) + 10000nm−1/t, then we find a red tight
path of length at least

(|P1|+
1

2
|P2|)− 5000nm−1/t > n+ 5000nm−1/t.
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Otherwise, |P2| 6 2(n−|P1|) +10000nm−1/t. Then, |P1|+ |P2| 6 2n−|P1|+ 10000nm−1/t

and thus |P3| > |P1| − 10001nm−1/t > 2/3n + 19999nm−1/t. But now we can find a red
tight path of length at least 3

2
|P1| − 5000nm−1/t > n. This shows that there exists a

constant C ′ such that

2

3
n− C ′nm−1/t 6 |Pl| 6

2

3
n+ C ′nm−1/t

for l = 1, 2, 3.

Lemma 24. V (H) can be decomposed as V (H) = P ′′1 ∪ P ′′2 ∪ P ′′3 ∪ J such that |P ′′1 | =
|P ′′2 | = |P ′′3 |; |J | 6 C ′′nm−1/t for some constant C ′′ > 0 and each of H[P ′′1 ],H[P ′′2 ],H[P ′′3 ]
is entirely red.

Proof. The number of vertices v ∈ A1 with e(Gblue
v,B1

) 6 29/30
(
m
2

)
is at most 30m1−1/t

as otherwise |
−−−→
A1B1|r > m3−1/t. This means one can move at most 30m1−1/t(n/m) 6

30nm−1/t vertices v from P1 to J (and obtain P ′1 ⊆ P1) such that all vertices in P ′1 satisfy
e(Gblue

v,B1
) > 29/30

(
m
2

)
. Now assume there is a blue hyperedge v1v2v3 inside P ′1. Since

e(Gblue
v1,B1

∩ Gblue
v2,B1

∩ Gblue
v3,B1

) > 27/30
(
m
2

)
, Gblue

v1,B1
∩ Gblue

v2,B1
∩ Gblue

v3,B1
contains a K4. These 4

vertices together with v1, v2, v3 form a blue Fano plane. Thus P ′1 is entirely red. Repeating
this cleaning procedure for P2 and P3 one ends up with entire red blocks P ′1, P

′
2, P

′
3 and a

rubbish set J ′ of size at most 100nm−1/t. Considering that the blocks had roughly equal
size, we can remove a few more vertices from the blocks and end up with entirely red
blocks P ′′1 , P

′′
2 , P

′′
3 of equal size and a rubbish set J ′′ of size at most C ′′nm−1/t vertices

with C ′′ being an absolute constant.

Lemma 25. Let V (H) = P ′′1 ∪ P ′′2 ∪ P ′′3 ∪ J be the decomposition from Lemma 24. Then
|P ′′1 P ′′2 P ′′3 |r 6 7n3−1/t.

Proof. Applying Lemma 10 gives w.l.o.g. that

|
−−−→
P ′′1 P

′′
2 |r, |
−−−→
P ′′2 P

′′
3 |r, |
−−−→
P ′′3 P

′′
1 |r, |
−−−→
P ′′2 P

′′
1 |b, |
−−−→
P ′′3 P

′′
2 |b, |
−−−→
P ′′1 P

′′
3 |b 6 n3−1/t.

Assume |P ′′1 P ′′2 P ′′3 |r > 7n3−1/t. Pick v1, w1 ∈ P ′′1 , v2, w2, x2 ∈ P ′′2 , v3 ∈ P ′′3 uniformly at
random. The hyperedge v1w1v2 is blue or not a proper hyperedge with probability at most
2n−1/t. Similarly, v2w2v3 and v3w2x2 is blue or not an hyperedge each with probability
at most 2n−1/t. The hyperedge v1v2v3 is blue with probability at most 1− 7n3−1/t. Thus,
the probability that one of the hyperedges v1w1v2, v1v2v3, v2v3w2, v3w2x2 is blue is at
most 1 − 7n3−1/t + 6n3−1/t < 1. Thus, there exists v1, v2, v3, w1, w2, w3 such that all the
hyperedges v1w1v2, v1v2v3, v2v3w2, v3w2x2 are red. Now one can find a red tight path of
length at least |P ′′1 |+ |P ′′2 |+ 1 > n by first going through all vertices in P ′′1 besides v1 and
w1, then going along w1v1v2v3w1w2 and then through all vertices in P ′′2 . Recall that all
hyperedges inside P ′′1 , P

′′
2 or P ′′3 are red.

Lemma 26. There exists a decomposition of the vertices of H into V (H) = P †1 ∪ P
†
2 ∪

P †3 with 0.66n 6 |P †l | 6 0.67n for l = 1, 2, 3 such that all graphs G(P †1 , P
†
2 , 0.98),

G(P †2 , P
†
3 , 0.98) and G(P †3 , P

†
1 , 0.98) have minimum degree at least 0.39n.
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Proof. Let V (H) = P ′′1 ∪P ′′2 ∪P ′′3 ∪J be the decomposition from Lemma 24. The number
of vertices in G(P ′′1 , P

′′
2 , 0.99) with degree less than 0.4n is at most 1500n1−1/t. Removing

at most 1500n1−1/t vertices from each P ′′1 , P
′′
2 , P

′′
3 leaves us with sets P ∗1 , P

∗
2 , P

∗
3 and a

junk set J∗ such that every vertex in the graphs G(P ∗1 , P
∗
2 , 0.98), G(P ∗2 , P

∗
3 , 0.98) and

G(P ∗3 , P
∗
1 , 0.98) has minimum degree at least 0.39n.

We now check that every vertex v in J∗ has degree at least 0.39n in one of the
graphs G(P ∗1 ∪ {v}, P ∗2 , 0.98), G(P ∗2 ∪ {v}, P ∗3 , 0.98) and G(P ∗3 ∪ {v}, P ∗1 , 0.98). Assume
this is not the case, then there exists v ∈ J∗, X1 ⊆ P ∗1 , X2 ⊆ P ∗2 and X3 ⊆ P ∗3 with
|X1| = |X2| = |X3| > 0.65n − 0.39n = 0.26n such that for each x1 ∈ X1 there are at
least 0.02 · 0.65n > 0.01n many vertices y2 ∈ P ∗2 such that vx1y2 is blue. Similarly, for
each x2 ∈ X2 there are at least 0.01n many vertices y3 ∈ P ∗3 such that vx2y3 is blue
and for each x3 ∈ X3 there are at least 0.01n many vertices y1 ∈ P ∗1 such that vx3y1 is
blue. Now pick x1 ∈ X1, x2 ∈ X2, x3 ∈ X3 independently uniformly at random. There
exist random sets Y1 ⊂ P ∗1 , Y2 ⊂ P ∗2 , Y3 ⊂ P ∗3 with |Y1| = |Y2| = |Y3| > 0.01n such that
vx1y2, vx2y3, vx3y1 for all y1 ∈ Y1, y2 ∈ Y2, y3 ∈ Y3. Now pick y1 ∈ Y1, y2 ∈ Y2, y3 ∈ Y3
independently uniformly at random. The hyperedges vx1y2, vx2y3, vx3y1 are blue. As
|X1X2X3|r 6 |P ′′1 P ′′2 P ′′3 |r 6 n3−1/t, x1x2x3 is red with probability at most 43n−1/t. Since

|Y1X2Y2|r 6 |
−−−→
P ′′1 P

′′
2 |r 6 n3−1/t, |Y2X3Y3|r 6 |

−−−→
P ′′2 P

′′
3 |r 6 n3−1/t

and |Y3X1Y1|r 6 |
−−−→
P ′′3 P

′′
1 |r 6 n3−1/t, the probability that each of the hyperedges y1x2y2,

y2x3y3, y3x1y1 is red is at most C∗n−1/t for an absolute constant C∗. Thus, with positive
probability vx1y2, vx2y3, vx3y1, x1x2x3, y1x2y2, y2x3y3, y3x1y1 form a blue Fano plane. We
therefore can assume that every vertex v ∈ J∗ has degree at least 0.39n in one of the
graphs G(P ∗1 ∪{v}, P ∗2 , 0.98), G(P ∗2 ∪{v}, P ∗3 , 0.98) and G(P ∗3 ∪{v}, P ∗1 , 0.98). Thus every
vertex from J can be added to P ∗1 or P ∗2 or P ∗3 such that one obtains blocks P †1 , P

†
2 , P

†
3

(0.66n 6 |P †l | 6 0.67n for l = 1, 2, 3) with P †1 ∪ P
†
2 ∪ P

†
3 = [2n − 1] in such a way that

afterwards all graphs G(P †1 , P
†
2 , 0.98), G(P †2 , P

†
3 , 0.98) and G(P †3 , P

†
1 , 0.98) have minimum

degree at least 0.39n.

Lemma 27. In the setting of Lemma 26 we can find a red P t
n.

Proof. Since P †1 ∪ P
†
2 ∪ P

†
3 = [2n − 1] one of the blocks has size at least 2n/3. W.l.o.g.

|P †1 | > 2n/3. The minimum degree of G(P †1 , P
†
2 , 0.98) assures that this graph contains a

Hamiltonian path. Label such a path a1, a2, a3, . . . , a|P †1 |
. In order to find a tight path of

length n, we will add after every second vertex in this path a vertex from P †2 . Assume we
already have found a1, a2, b1, a3, a4, b2, . . . , a2i−1a2i then we can choose bi from P †2 which
has not been used so far such that a2i−1a2ibi, a2ibia2i+1 and bia2i+1, a2i+2 is red, because
|P †2 | − 0.02|P †2 | − 0.02|P †2 | − 0.02|P †2 | − i > 0 for i < 0.94|P †2 | and thus especially for
i < 0.5n. Hence, we can embed a red tight path of length at least 2n/3 + n/3 = n.

Acknowledgement

We would like to thank an anonymous referee for helpful comments.

the electronic journal of combinatorics 27(1) (2020), #P1.60 15



References

[1] S. A. Burr, What can we hope to accomplish in generalized Ramsey theory?, Discrete
Mathematics, 67(3) (1987), 215–225.
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