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Abstract

In this paper we consider binary linear codes spanned by incidence matrices of
Steiner 2-designs associated with maximal arcs in projective planes of even order,
and their dual codes. Upper and lower bounds on the 2-rank of the incidence
matrices are derived. A lower bound on the minimum distance of the dual codes is
proved, and it is shown that the bound is achieved if and only if the related maximal
arc contains a hyperoval of the plane. The binary linear codes of length 52 spanned
by the incidence matrices of 2-(52, 4, 1) designs associated with previously known
and some newly found maximal arcs of degree 4 in projective planes of order 16
are analyzed and classified up to equivalence. The classification shows that some
designs associated with maximal arcs in nonisomorphic planes generate equivalent
codes. This phenomenon establishes new links between several of the known planes.
A conjecture concerning the codes of maximal arcs in PG(2, 2m) is formulated.

Mathematics Subject Classifications: 05B05,51E20,94B05

1 Introduction

We assume familiarity with the basic facts and notions from design theory, finite geome-
tries, and coding theory [3, 5, 10, 13, 23].

the electronic journal of combinatorics 27(1) (2020), #P1.62 1



A 2-(v, k, λ) design (or shortly, a 2-design) is a pair D={X,B} of a set X of v points
and a collection B of subsets of X of size k called blocks, such that every two points
appear together in exactly λ blocks. Every point of a 2-(v, k, λ) design is contained in
r = λ(v − 1)/(k − 1) blocks, and the total number of blocks is b = v(v − 1)λ/k(k − 1).

The incidence matrix of a design D is a (0, 1)-matrix A = (aij) with rows labeled by
the blocks, columns labeled by the points, where ai,j = 1 if the ith block contains the jth
point, and ai,j = 0 otherwise. If p is a prime, the p-rank of a design D is the rank of its
incidence matrix over a finite field of characteristic p. Two designs are isomorphic if there
is a bijection between their point sets that maps every block of the first design to a block
of the second design. An automorphism of a design is any isomorphism of the design to
itself. The set of all automorphisms of D form the automorphism group Aut(D) of D.
The dual design D⊥ of a design D has as points the blocks of D, and as blocks the points
of D. A 2-(v, k, λ) design is symmetric if b = v, or equivalently, r = k. The dual design
D⊥ of a symmetric 2-(v, k, λ) design D is a symmetric design with the same parameters
as D. A symmetric design D is self-dual if D and D⊥ are isomorphic.

A design with λ = 1 is called a Steiner design. An affine plane of order n (n > 2),
is a Steiner 2-(n2, n, 1) design. A projective plane of order n is a symmetric Steiner 2-
(n2 + n+ 1, n+ 1, 1) design with n > 2. The classical (or Desarguesian) plane PG(2, pt)
of order n = pt, where p is prime and t > 1, has as points the 1-dimensional subspaces of
the 3-dimensional vector space V3 over the finite field of order pt, and as blocks (or lines),
the 2-subspaces of V3.

Let D = {X,B} be a Steiner 2-(v, k, 1) design with point set X, collection of blocks
B, and let v be a multiple of k, v = nk. Since every point of X is contained in r =
(v− 1)/(k− 1) = (nk− 1)/(k− 1) blocks, k− 1 divides n− 1. Thus, n− 1 = s(k− 1) for
some integer s > 1, and

v = nk = (sk − s+ 1)k.

A parallel class of D is a set of v/k = n pairwise disjoint blocks, and a resolution of D is
a partition of the collection of blocks B into r = (v− 1)/(k− 1) = sk+ 1 disjoint parallel
classes. A design is resolvable if it admits a resolution.

Any 2-((sk − s+ 1)k, k, 1) design with s = 1 is an affine plane of order k, and admits
exactly one resolution. If s > 1, a resolvable 2-((sk−s+1)k, k, 1) design may admit more
than one resolution.

Let P be a projective plane of order q, and let m and k be positive integers such that
k 6 q + 1 and k 6 m 6 q2 + q + 1. An (m, k)-arc (or an arc of size m and degree k) is
a set A of m points such that every line of P contains at most k points from A. An arc
of degree 2 is also called an oval. Let x be a point in an (m, k)-arc A, let L1, . . . , Lq+1 be
the lines through x, and let ni = |A ∩ Li|, 1 6 i 6 q + 1. Then

m = 1 +

q+1∑
i=1

(ni − 1).

Since ni 6 k, it follows that
m 6 qk + k − q,
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and the equality m = qk+ k− q holds if and only if every line of P is either disjoint from
A or meets A in exactly k points. An (m, k)-arc is called maximal if m = qk + k − q. A
hyperoval is a maximal arc of degree 2.

Let A be a maximal (qk+ k− q, k)-arc with k 6 q, thus m = qk+ k− q 6 q2, and let
y be a point outside A. Let n be the number of lines that meet A in k points. We have

nk = qk + k − q.

Thus, k divides q, and q = sk for some integer s > 1 1. If q = sk, the size qk + k − q of a
maximal arc of degree k can be written in terms of s and k as (sk − s+ 1)k.

The set of lines that are disjoint from a maximal ((sk−s+1)k, k)-arc A in a projective
plane P of order q = sk, form a maximal ((sk − k + 1)s, s)-arc A⊥ in the dual plane P⊥,
called the dual arc of A.

Maximal arcs with 1 < k < q do not exist in any Desarguesian plane of odd order q [2],
and are known to exist in every Desarguesian plane of order q = 2t [11, 20, 21, 28, 34], as
well as in some non-Desarguesian planes of even order q = 2t [14, 15, 17, 18, 19, 22, 32, 35].

If k > 1, the non-empty intersections of a maximal ((sk − s+ 1)k, k)-arc A with lines
of a projective plane P of order q = sk are the blocks of a resolvable 2-((sk−s+ 1)k, k, 1)
design D. Similarly, if s > 1, the dual ((sk − k + 1)s, s)-arc A⊥ in the dual plane P⊥ is
the point set of a resolvable 2-((sk − k + 1)s, s, 1) design D⊥. We will refer to D (resp.
D⊥) as a design embeddable in P (resp. P⊥) as a maximal arc.

Two maximal arcs A′, A′′ in a projective plane P are equivalent if there is a collineation
of P that maps A′ to A′′. Designs associated with equivalent arcs are necessarily isomor-
phic, while the converse is not true in general.

Let D be a resolvable Steiner 2-(v, k, 1) design. Two resolutions R1, R2 of D, where

R1 = P
(1)
1 ∪ P

(1)
2 ∪ · · ·P (1)

r , R2 = P
(2)
1 ∪ P

(2)
2 ∪ · · ·P (2)

r , (1)

are called compatible [36], if they share one parallel class, P
(1)
i = P

(2)
j , and

|P (1)
i′ ∩ P

(2)
j′ | 6 1

for (i′, j′) 6= (i, j).
The following theorem gives an upper bound on the number of pairwise compatible

resolutions of a resolvable 2-((sk − s+ 1)k, k, 1) design, and characterizes the designs for
which this upper bound is achieved.

Theorem 1. [36]. Let S = {R1, . . . , Rm} be a set of m mutually compatible resolutions
of a 2-((sk − s+ 1)k, k, 1) design D = {X,B}. Then

m 6 (sk − k + 1)s.

The equality
m = (sk − k + 1)s

holds if and only if there exists a projective plane P of order q = sk such that D is
embeddable in P as a maximal ((sk − s+ 1)k, k)-arc.

1In all known examples, q is a power of 2.
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In Section 2, we consider binary linear codes spanned by the rows of incidence matrices
of Steiner 2-designs associated with maximal arcs in projective planes of even order, and
their dual codes. Upper and lower bounds on the 2-rank of the incidence matrices are
derived. A lower bound on the minimum distance of the dual codes is proved, and it
is shown that the bound is achieved if and only if the related maximal arc contains a
hyperoval of the plane.

In Section 3, we analyze the binary linear codes of length 52 spanned by the incidence
matrices of 2-(52, 4, 1) designs associated with maximal arcs of degree 4 in projective
planes of order 16. The codes associated with maximal arcs in PG(2, 16) are distance
optimal, while one code associated with an arc in the semi-field plane is shown to be
optimal with respect to each of its parameters: minimum distance, dimension, and length.
A conjecture concerning the codes of maximal arcs in PG(2, 2m) is formulated.

The codes are classified according to their dimension, and all codes having the same
dimension are further classified up to equivalence. The classification shows that some
designs associated with maximal arcs in nonisomorphic planes generate equivalent codes.
This phenomenon establishes new links between several of the known planes that are
discussed in Section 4.

Section 5 lists explicitly eleven new maximal arcs of degree 4 found recently in the
planes DEMP, SEMI2, LMRH, HALL, and BBH1.

2 Binary codes of designs arising from maximal arcs

An oval of a Steiner 2-(v, k, 1) design D with k > 2 is a set S that meets every block in
at most two points.

Lemma 2. (a) The size of an oval S of a Steiner 2-(v, k, 1) design is bounded above by

|S| 6 r + 1,

where r = (v − 1)/(k − 1) is the number of blocks through a point.
(b) The equality |S| = r + 1 holds if and only if every block is either disjoint from S, or
meets S in exactly two points.

Proof. Let ni (i = 0, 1, 2) denote the number of blocks meeting S in i points. Counting
in two ways the incident pairs of points from S and blocks, and incidence pairs of pairs
of points from S and blocks, we have

n1 + 2n2 = |S|r,
2n2 = |S|(|S| − 1),

hence
n1 = |S|r − |S|(|S| − 1) > 0,

and the statement follows.

An oval of size r + 1 is called a hyperoval.
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Note 3. If D is a symmetric Steiner design, that is, a projective plane, a hyperoval is
simply a maximal arc of degree two.

Theorem 4. Let C be a binary linear code of length n = 2m+s − 2m + 2s, spanned by
the rows of the incidence matrix A of a Steiner 2-(2m+s − 2m + 2s, 2s, 1) design D with
m > s > 1.
(i) The all-one vector 1̄ = (1, . . . , 1) belongs to C ∩ C⊥.
(ii) The dual code C⊥ admits majority-logic decoding that corrects up to t = 2m−1 errors.
(iii) The minimum distance d⊥ of C⊥ is an even number equal to 2m + 2 if D contains
hyperovals, and d⊥ > 2m + 4 if D has no hyperovals.
(iv) The minimum distance d of C is an even number smaller than or equal to 2s.
(v) The dimension k of C, or equivalently, the 2-rank of A, rank2A, satisfies the inequal-
ities

1 + dlog2(
t∑

i=0

(
n− 1

i

)
)e 6 rank2A 6 n− 1− blog2(

d/2−1∑
i=0

(
n− 1

i

)
)c,

where t = 2m−1 if d⊥ = 2m + 2, and t = d⊥/2− 1 if d⊥ > 2m + 4.

Proof. (i) Since all rows of A are of even weight 2s, every row is orthogonal to 1̄ over
GF (2), hence 1̄ ∈ C⊥. Every point of D is contained in r = 2m + 1 blocks. Thus, every
column of A contains 2m + 1 nonzero entries, and the binary sum of all rows of A is equal
to 1̄, hence 1̄ ∈ C.
(ii) The rows of A provide a set of checks that can be used to correct up to

t = br
2
c = b2

m + 1

2
c = 2m−1

errors in C⊥ by using the Rudolph majority-logic decoding algorithm (cf. [33], [37, The-
orem 8.1, page 1252]).
(iii) It follows from (ii) that d⊥ > 2t + 1 = 2m + 1. Assume that d⊥ = 2m + 2, and let
S be the support of a minimum weight codeword in C⊥. Clearly, S meets every block of
D in an even number of points. Let n2i denote the number of blocks that meet S in 2i
points, 0 6 i 6 2s−1. Counting in two ways the occurrences of single points, and ordered
pairs of points of S in blocks of D, we have

2s−1∑
i=1

2in2i = (2m + 2)(2m + 1),

2s−1∑
i=1

2i(2i− 1)n2i = (2m + 2)(2m + 1).

Subtracting the first of the above equations from the second gives

2s−1∑
i=2

4i(i− 1)n2i = 0,

the electronic journal of combinatorics 27(1) (2020), #P1.62 5



hence n2i = 0 for i > 1, and S is a hyperoval of D. Consequently, by Lemma 2, the
number of codewords of C⊥ having weight 2m + 2 is equal to the number of hyperovals
of D. If D has no hyperovals, then d⊥ > 2m + 2, and since all weights in C⊥ are even by
part (i), it follows that d⊥ > 2m + 4.

Part (iv) is obvious. The upper bound in Part (v) follows from applying the sphere
packing bound (cf., e.g. [24, 1.12]), to a punctured [n − 1, k, d − 1] code C ′ of C. The
lower bound in Part (v) follows from applying the sphere packing bound to a punctured
[n− 1, n− k, d⊥ − 1] code of C⊥.

Note 5. According to Theorem 4 (ii) and (iii), if D contains hyperovals then the dual code
C⊥ can correct the maximum number of errors guaranteed by its minimum distance, by
using majority-logic decoding, and in addition, the number of codewords in C⊥ having
minimum weight is equal to the number of hyperovals of D.

As a corollary of Theorem 4, we have the following.

Theorem 6. Let C be a binary code of length n = 2m+s − 2m + 2s, spanned by the inci-
dence matrix A of a Steiner 2-(2m+s−2m + 2s, 2s, 1) design D with m > s > 1, associated
with a maximal arc S of degree 2s in a projective plane Π of even order q = 2m. Let d
and d⊥ denote the minimum distance of C and C⊥ respectively.

(a) The minimum distance d⊥ of C⊥ is d⊥ = 2m + 2 if D contains a hyperoval of Π,
and d⊥ > 2m + 4 otherwise.

(b) The minimum distance d of C is an even number smaller than or equal to 2s. If
d = 2s then

1 + dlog2(
t∑

i=0

(
n− 1

i

)
)e 6 rank2A 6 n− 1− blog2(

2s−1−1∑
i=0

(
n− 1

i

)
)c,

where t = 2m−1 if D contains a hyperoval of Π, and t = d⊥/2 − 1 > 2m−1 + 1 if D does
not contain any hyperoval of Π.

Proof. Since every hyperoval of D is also a hyperoval of Π, (a) and (b) follow from part
(iii) and (v) of Theorem 4 respectively.

Note 7. If s = 1, the design D from Theorems 4 and 6 is the trivial design on 2m+2 points
having as blocks all pairs of points. In this case, rank2A = 2m + 1, and the code C is the
unique binary code consisting of all vectors of even weight, while C⊥ = C ∩C⊥ = {0, 1̄},
where 0 denotes the zero vector.

Apart from this trivial case, the question about the 2-rank of designs arising from
maximal arcs is widely open, with one notable exception concerning the case s = m− 1:
it was proved by Carpenter [9] that the 2-rank of a 2-(22m−1 − 2m−1, 2m−1, 1) design
associated with the dual arc of a regular hyperoval in PG(2, 2m) is equal to 3m − 2m.
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3 Binary codes associated with maximal arcs of degree 4

A Steiner design D associated with a maximal arc of degree 4 in a projective plane of
order 2m has parameters 2-(3 ·2m+4, 4, 1), and its binary code C is of length n = 3 ·2m+4
and has minimum distance d = 2 or d = 4. In this section, we consider 2-(3 · 2m + 4, 4, 1)
designs and their binary codes when m = 2, 3 and 4.

If m = 2, D is the unique (up to isomorphism) 2-(16, 4, 1) design, being isomorphic to
the affine plane of order 4, and can be viewed as the design associated with a maximal
arc of degree 4 in the projective plane of order 4. The 2-rank of its incidence matrix A
is 9, hence the code C spanned by A has dimension 9. The minimum distance of C is 4,
and there are exactly 20 codewords of minimum weight 4, being the rows of the incidence
matrix A. The design D contains ovals, hence d⊥ = 6 by Theorem 4, (iii). The lower
bound, and the upper bound on rank2A from Theorem 4, are 8 and 11 respectively. The
code C is distance optimal in the sense that 4 is the largest possible minimum distance
for a binary linear code of length 16 and dimension 9. The dual [16, 7, 6] code C⊥ is also
distance optimal (see [16]).

In the next case, m = 3, the design parameters are 2-(28, 4, 1). There are at least
4653 known nonisomorphic designs with these parameters [4, 26], having 2-ranks ranging
from 19 to 26 [4], with the exception of 2-rank 20. It was shown in [25] that there are
no 2-(28, 4, 1) designs with 2-rank 20. It was proved in [29] that the minimum 2-rank of
any 2-(28, 4, 1) design is 19, and up to isomorphism, there is only one design of minimum
2-rank 19, being isomorphic to the design D associated with a maximal (28, 4)-arc in the
projective plane of order 8, PG(2, 8) (also referred to as the Ree unital [7]). The minimum
distance of the code C of the Ree unital D is 4, and every codeword of minimum weight
corresponds to a block of D. The Ree unital contains ovals that are hyperovals in the
projective plane of order 8, hence the minimum distance of the dual code C⊥ is d⊥ = 10,
and C⊥ can correct up to b(10 − 1)/2c = 4 errors by majority-logic decoding. The
[28, 19, 4] code C and its dual [28, 9, 10] code C⊥ are both distance optimal (cf. [16]).

If m = 4, the parameters of the design D from Theorems 4 and 6 are 2-(52, 4, 1), and
correspond to a design arising from a maximal (52, 4)-arc in a projective plane of order 16.

Up to isomorphism, there are 22 known projective planes of order 16. The only pro-
jective plane of order 16 for which all inequivalent maximal arcs of degree 4 have been
completely classified, is the Desarguesian plane PG(2, 16). There are exactly two inequiv-
alent maximal (52, 4)-arcs in PG(2, 16) [1], with collineation groups of order 68 and 408.
The maximal arc with group of order 408 admits a cyclic collineation of order 51 [12]. The
maximal arcs of degree 4 have not been classified completely in any of the 21 known non-
Desarguesian planes of order 16. Maximal arcs of degree 4 have been found in all but four
of the known non-Desarguesian planes of order 16 [14, 15, 22]. All previously known max-
imal (52, 4)-arcs can be found in [15] and [22]. Eleven new maximal arcs of degree 4 are
given in Section 5 of this paper. The line sets of the projective planes of order 16 and all
known maximal arcs of degree 4, including the new arcs described in Section 5, are avail-
able online at https://www.combinatorics.org/ojs/index.php/eljc/article/view/
v27i1p62/8052 and https://www.combinatorics.org/ojs/index.php/eljc/article/
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view/v27i1p62/8051 respectively.
Table 2 contains data about the 2-(52, 4, 1) designs associated with previously known

and the eleven newly found maximal arcs of degree 4 described in Section 5. Column
3 lists the orders of the stabilizers of the maximal arcs, which happen to be also the
full automorphism groups of the related designs. Column 4 gives the number of parallel
classes of the design D associated with the given arc, followed by the number of parallel
classes of the design D⊥ associated with the dual arc. Column 5 lists the number of
resolutions of D and D⊥. The last column lists the orders of the automorphism groups of
the codes C(D) and C(D⊥) respectively. Cliquer [31] and Magma [8] were used for these
computations.

Since the number of parallel classes, resolutions, code dimension and minimum dis-
tance are invariant under isomorphism of designs, the data from Table 2 implies that the
number of pairwise nonisomorphic resolvable 2-(52, 4, 1) designs associated with maximal
arcs is greater than or equal to 55. Further computation of possible isomorphisms using
Magma [8] shows that the number of nonisomorphic designs is exactly 55.

We note that the previously known lower bound on the number of nonisomorphic
resolvable 2-(52, 4, 1) designs given in [10] is 30.

The 2-ranks of these 55 designs vary from 41 to 49, and the minimum 41 is achieved
only by designs associated with maximal arcs in the Desarguesian plane PG(2, 16).

The codes of the 55 nonisomorphic 2-(52, 4, 1) designs arising from maximal (52, 4)-
arcs were sorted according to their weight distributions, and codes having the same weight
distribution were tested for equivalences using Magma. This classification shows that the
55 codes of the 55 nonisomorphic 2-(52, 4, 1) designs are partitioned into 27 equivalence
classes. Table 3 lists the 2-ranks of the designs, and gives a partition of the codes into
equivalence classes, the numbers A2 and A4 of codewords of weight 2 and 4 respectively,
and the orders of the automorphism groups of the codes.

The main result implied by this classification of the codes up to equivalence is the
surprising fact that in several instances the codes of designs arising from maximal arcs
in different planes are equivalent, hence these codes provide new connections between
the corresponding planes (see lines 4, 5, 6, 11, 13, 17, 18, 20, 24, 26 and 27 in Table
3). For example, the Mathon plane MATH is linked to the Johnson plane JOHN, the
Lorimer-Rahilly plane LMRH, the semi-field plane SEMI2, and the Hall plane HALL.

Table 4 lists the parameters of the codes and their dual codes, as well as the number
Ad⊥ of codewords of minimum weight in C⊥. We note that according to Theorem 6, in
the cases when d⊥ = 18, Ad⊥ is equal to the number of hyperovals of the plane contained
in the point set of D.

Four of the 55 codes associated with these designs have minimum distance d = 4:
the codes C ′, C ′′ of the two maximal arcs in PG(2, 16), and the codes C ′′′ and Civ of
dimension 45 associated with the maximal arcs SEMI4.1 and SEMI2.7 (see Table 3 and
Table 4). Every codeword of minimum weight in C ′ and C ′′ is the incidence vector of a
block, while the number A4 = 4469 of minimum weight codewords in C ′′′ and Civ is larger
than the number of blocks. These observations suggest that the following statement may
be true in general.
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Conjecture 8. The binary code spanned by the incidence matrix A of a design D asso-
ciated with a maximal arc of degree 4 in PG(2, 2m), where m > 2, has minimum distance
4, and every codeword of minimum weight is a row of A.

We note that the codes C ′′′ and Civ are equivalent (see Table 3 that lists the equivalence
classes of codes), while the codes C ′, C ′′ of the two arcs in PG(2, 16) are inequivalent,
despite the fact that both codes have identical weight distributions. It follows from [12]
that one of these codes, namely the code with full automorphism group of order 408, is an
extended cyclic code. Both (52, 4)-arcs in PG(2, 16) contain hyperovals, hence d(C ′)⊥ =
d(C ′′)⊥ = 18 by Theorem 6. In addition, the number of codewords of minimum weight
Ad⊥ in each of the codes (C ′)⊥ and (C ′′)⊥ equals the number of hyperovals contained in
the corresponding maximal arcs, namely Ad⊥ = 54 (see Table 4).

A comparison with the parameters of best known error-correcting codes [16] shows
that the highest known minimum distance of a binary code of length 52 and dimension
41 is d = 4, while the best known theoretical upper bound is d 6 5.

In comparison, the [52, 45, 4] code C ′′′ of the arc SEMI4.1 is distance optimal. The
dimension 45 of C ′′′ is just by one shorter from the upper bound 46 obtained from Theorem
6. However, the minimum distance of any binary [52, 46] code is at most 3 (which is
seen by applying the sphere packing bound on a punctured [51, 46, 3] code), therefore the
[52, 45, 4] code C ′′′ is both distance and dimension optimal. This implies that if the binary
code of a 2-(52, 4, 1) design D has minimum distance 4, the 2-rank of D cannot exceed
45. In addition, since a binary [51, 45, 4] code does not exist, because the parameters of a
punctured [50, 45, 3] code violate the sphere packing bound, the [52, 45, 4] code C ′′′ is also
length optimal, that is, 52 is the smallest possible length for a binary code of dimension
45 and minimum distance 4.

4 New connections between projective planes

Table 1 lists all previously known connections, as well as some new connections described
in this section, between nonisomorphic projective planes of order 16. An entry in a row
and a column labeled by the same (non self-dual) plane indicates a connection between
the plane and its dual plane that is based on designs associated with maximal arcs or
their codes.

An entry 1 indicates that the corresponding planes are connected by derivation [22, 30],
2 indicates that the corresponding planes are connected by super-derivation [27], and 3
indicates that the planes share a semi-biplane [30].

An entry 4 indicates that the planes share isomorphic 2-(52, 4, 1) designs associated
with maximal (52, 4)-arcs via the construction based on Theorem 1. Connections of this
type were established in [15].

An entry 5 indicates a new connection between a pair of nonisomorphic planes that
share equivalent codes of non-isomorphic 2-(52, 4, 1) designs arising from maximal (52, 4)-
arcs.
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5 New maximal (52, 4)-arcs

The specific line sets of the known projective planes of order 16 that we are using in
this paper were graciously provided to the third author by Gordon F. Royle, and are
available online at https://www.combinatorics.org/ojs/index.php/eljc/article/

view/v27i1p62/8052. All previously known maximal arcs of degree 4 are given in [15]
and [22], and are available online at https://www.combinatorics.org/ojs/index.php/
eljc/article/view/v27i1p62/8051.

Our notation in this section follows [15]. Recently, the first author found eight new
maximal arcs in some of the projective planes of order 16. The new arcs are unions of
orbits of appropriate subgroups of the automorphism group of the corresponding plane.
Two new arcs, stabilized by a nonabelian group of order 12, were found in the plane
DEMP. Five new arcs in the plane SEMI2, and one new arc in the plane LMRH, were
found as unions of orbits under subgroups of order 16.

The point sets of these eight new maximal arcs are listed below.

DEMP.3 = {263, 265, 266, 258, 32, 122, 142, 243, 187, 102, 61, 197, 84, 232,
210, 156, 18, 126, 140, 251, 181, 112, 52, 195, 88, 237, 214, 154, 30, 117, 144, 244,
178, 109, 54, 202, 83, 236, 219, 152, 24, 116, 139, 252, 189, 99, 62, 208, 82, 229,
218, 150},

DEMP.4 = {273, 260, 257, 258, 14, 69, 61, 27, 34, 128, 255, 232, 153, 97, 84,
186, 7, 71, 60, 22, 39, 124, 246, 227, 147, 108, 86, 179, 8, 68, 63, 32, 45, 122, 242,
225, 149, 110, 89, 187, 133, 194, 224, 175, 222, 161, 212, 138, 200, 141, 203, 169},

SEMI2.3 = {263, 268, 265, 267, 23, 28, 228, 25, 27, 234, 240, 229, 4, 16, 124,
5, 123, 10, 121, 119, 49, 251, 76, 63, 56, 145, 252, 247, 75, 73, 50, 159, 152, 249, 71,
146, 36, 88, 202, 48, 37, 216, 82, 81, 197, 208, 42, 210, 209, 95, 196, 223},

SEMI2.4 = {259, 269, 262, 270, 20, 233, 32, 21, 231, 236, 26, 235, 4, 16, 124,
5, 123, 10, 121, 119, 33, 90, 208, 47, 40, 209, 85, 96, 196, 202, 34, 223, 216, 84, 197,
210, 49, 251, 66, 63, 56, 155, 252, 247, 72, 79, 50, 156, 151, 249, 65, 153},

SEMI2.5 = {260, 272, 266, 261, 23, 27, 121, 25, 124, 28, 119, 123, 1, 2, 232,
15, 239, 8, 225, 226, 66, 146, 69, 154, 72, 152, 74, 149, 49, 241, 58, 245, 63, 255, 53,
250, 36, 96, 44, 219, 48, 89, 199, 84, 224, 43, 212, 220, 196, 87, 208, 201},

SEMI2.6 = {260, 268, 266, 263, 18, 136, 216, 26, 25, 153, 133, 135, 30, 213,
215, 131, 158, 146, 211, 154, 35, 79, 120, 39, 37, 112, 80, 76, 40, 117, 119, 70, 111,
102, 115, 108, 6, 175, 206, 12, 16, 57, 176, 172, 15, 201, 202, 166, 62, 50, 194, 58},

SEMI2.7 = {261, 263, 271, 262, 25, 58, 250, 30, 32, 31, 128, 50, 60, 242, 252,
54, 246, 127, 121, 126, 85, 110, 139, 88, 91, 93, 206, 105, 111, 141, 133, 112, 136,
201, 207, 208, 5, 149, 70, 8, 11, 13, 226, 152, 155, 76, 66, 157, 74, 234, 230, 236},

LMRH.2 = {46, 78, 250, 90, 42, 74, 94, 254, 260, 266, 270, 269, 20, 29, 132,
141, 4, 13, 164, 173, 25, 27, 50, 194, 137, 145, 209, 139, 9, 11, 146, 210, 169, 49,
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193, 171, 37, 70, 64, 195, 69, 147, 224, 38, 246, 208, 86, 51, 85, 211, 245, 160}.

A probabilistic search algorithm developed by the second author was used to find
three new maximal arcs in the planes DEMP, HALL and BBH1. Each of these new arcs
has a stabilizer of order 4, so it is computationally unfeasible to find these arcs with the
previous method that works well for stabilizers of order at least 12.

A randomized local search was performed to find sets in projective planes with pre-
scribed line intersections. At the start of a new experiment, a set of points is selected at
random. At each move, a neighborhood of the current subset, defined by a single inter-
change between a point in the set and a point outside, is examined in order to generate a
list of swaps that minimize an objective function formed from the actual and desired line
intersections, respectively. A locally optimal move is then randomly selected from that
list and the set updated to reflect it. A tabu list of the most recent moves is maintained
to prevent cycling, and occasional random moves are performed to improve the search
efficiency. This search algorithm worked well for projective planes of order 16 and re-
produced all the known (52,4)-arcs with frequencies inversely proportional to their group
orders. We have run typically 104 experiments with 5 × 104 moves per experiment on a
MacBook Pro. The same approach was used to verify the existence of 4-arcs PG(2, 32)
in [28].

The point sets of these three new maximal arcs are:

DEMP.5 = {1, 3, 8, 15, 23, 24, 25, 28, 36, 38, 41, 43, 51, 54, 61, 64, 66, 69, 70,
78, 81, 82, 89, 96, 100, 104, 106, 109, 129, 133, 139, 140, 149, 154, 156, 160, 178,
183, 189, 190, 195, 202, 206, 207, 228, 231, 235, 239, 257, 260, 271, 272},

HALL.2 = {1, 2, 5, 14, 19, 27, 28, 32, 34, 39, 40, 45, 49, 53, 54, 63, 81, 84, 88,
95, 103, 107, 108, 109, 131, 134, 142, 143, 147, 153, 154, 155, 166, 169, 170, 173,
180, 183, 184, 185, 197, 202, 204, 208, 210, 212, 222, 224, 257, 260, 262, 266},

BBH1.3 = {11, 13, 14, 16, 18, 27, 30, 31, 34, 38, 39, 42, 55, 56, 59, 63, 65, 69,
70, 79, 81, 85, 89, 91, 130, 135, 137, 144, 146, 153, 156, 159, 161, 167, 170, 173,
181, 190, 191, 192, 197, 205, 207, 208, 241, 245, 246, 254, 262, 263, 266, 269}.

PG(2,16) DEMP SEMI4 SEMI2 LMRH MATH HALL BBH1 JOWK JOHN DSFP BBH2 BBS4
PG(2,16) 1
DEMP 1,5 5 5 5 3 5 2,5
SEMI4 2 3,5 1 1 1 1 1
SEMI2 1,5 3,5 5 5 5
LMRH 5 1 5 4,5 5 2 5 3
MATH 5 5 5 5 5 2,5 5
HALL 1 5 5 1 1 1
BBH1 1 4,5
JOWK 3 1 2 2,5 4,5
JOHN 5 1 5 5 5 1 4,5 4,5
DSFP 2,5 1 3
BBH2 1
BBS4 1

Table 1: Connections between projective planes of order 16
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No. Arc |Aut(D)| # Par. cl. # Resol. |Aut(C(D))|/|Aut(C(D⊥))|
1 PG(2,16).1 68 2329 / 2329 409 / 409 22171 / 22171

2 PG(2,16).2 409 2550 / 2550 460 / 460 2331171 / 2331171

3 DEMP.1 24 250 / 319 52 / 52 2463195976113133173 / 23332

4 DEMP.2 144 543 / 1023 52 / 214 244314 / 218345171

5 DEMP.3 24 611 / 645 52 / 52 245313 / 2413115272

6 DEMP.4 48 531 / 691 52 / 52 244314 / 245315

7 DEMP.5 4 255 / 377 52 / 52 2463195976113133173 / 23332

8 SEMI4.1 96 2569 / 2569 52 / 52 21733 / 21733

9 SEMI2.1 24 327 / 327 52 / 52 245315 / 245315

10 SEMI2.2 144 1279 / 1279 55 / 55 218345171 / 218345171

11 SEMI2.3 32 1497 / 1497 52 / 52 22631 / 22631

12 SEMI2.4 32 1313 / 1313 52 / 52 22531 / 22531

13 SEMI2.5 16 1045 / 1045 52 / 52 23736 / 23736

14 SEMI2.6 48 547 / 691 52 / 52 245315 / 21733

15 SEMI2.7 48 691 / 547 52 / 52 21733 / 245315

16 LMRH.1 96 2265 / 2265 104 / 104 245315 /245315

17 LMRH.2 32 2377 / 2289 64 / 64 245315 /245315

18 MATH.1 24 291 / 275 52 / 52 2493205976113133 / 2493205976113133

19 MATH.2 32 1729 / 1553 52 / 52 23732 / 245315

20 MATH.3 32 2401 / 2217 64 / 104 245315 / 245315

21 MATH.4 32 1665 / 1473 52 / 52 23835 / 23835

22 MATH.5 16 1233 / 1457 52 / 52 2433125272 / 23634

23 MATH.6 16 1329 / 1405 52 / 52 2483145676 /245315

24 MATH.7 16 1125 / 1505 52 / 52 2483145676 / 245315

25 HALL.1 24 274 / 558 52 / 52 2493205976113133 / 2632

26 HALL.2 4 309 / 445 52 / 52 2463195976113133173 / 21534

27 BBH1.1 24 330 / 330 52 / 52 2403135373 / 2403135373

28 BBH1.2 32 2017 / 2017 136 / 136 23835 / 23835

29 BBH1.3 4 285 / 285 52 / 52 243316567411 / 243316567411
30 JOWK.1 16 1389 / 1241 52 / 52 23732 / 2443145171

31 JOWK.2 32 2409 / 2321 104 / 52 23732 / 2383651

32 JOHN.1 32 1953 / 1641 144 / 52 245315 / 2483145676

33 JOHN.2 32 1953 / 1841 144 / 52 245315 / 2483145676

34 JOHN.3 32 2017 / 1761 136 / 52 23835 / 2483145676

35 JOHN.4 32 2409 / 1929 104 / 52 23732 / 2483145676

36 DSFP.1 24 1045 / 1121 52 / 52 245313 / 243311

Table 2: Designs associated with maximal (52,4)-arcs
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