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Abstract

The union-closed sets conjecture states that if a finite family of sets F is union-
closed, then there must be some element contained in at least half of the sets of F .
In this work we study the relationship between the union-closed sets conjecture
and union-closed families that have the property of being well-graded. In doing so,
we show how the density and other properties are affected by the extra structure
contained in well-graded families, and we also give several conditions under which
well-graded families satisfy the union-closed sets conjecture.

Mathematics Subject Classifications: 05D05, 06A07

1 Introduction

Let F be a finite family of finite sets with |F| > 2. We say that F is union-closed if, for
any A,B ∈ F , we have A ∪ B ∈ F . Define [n] := {1, 2, . . . , n} and let P(n) = P([n]) be
the power set of [n]. Supposing that F consists of subsets of P(n), define the degree of
x ∈ [n] as d(x) := |{K ∈ F |x ∈ K}|. We say that x is abundant in F if d(x) > 1

2
|F|.

The union-closed sets conjecture, originally attributed to P. Frankl [20], states that if
F ⊆ P(n) is union-closed, then there must be some x ∈ [n] that is contained in at least
half of the sets of F ; in other words, there is at least one element in [n] that is abundant
in F . Some of the more recent examples of work related to the conjecture are given
by [1, 8, 13, 17, 18], and for a thorough survey of the various results pertaining to the
conjecture, as well as an introduction to many of the techniques used in these results, see
[4]. In this work we will explore the connection between the union-closed sets conjecture
and union-closed families that have the property of being well-graded.
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Definition 1. Let ∆ denote the standard symmetric difference operation between sets.
Given a family of sets, F , a finite sequence of sets

A = K0, K1, . . . , Km = B

in F is called a (stepwise) path between A and B if |Ki−1∆Ki| = 1 for all i = 1, . . . ,m.
If, additionally, |A∆B| = m, the sequence of sets is called a tight path between A and B.
The family F is well-graded if there exists a tight path between any A,B ∈ F .

Well-graded families were first studied in [6] and have found widespread use in the
area of knowledge space theory. Knowledge spaces are union-closed families containing
the empty set that are used to model the knowledge of learners in various academic fields
of study [5, 10, 12]. Such families that are also well-graded (known as learning spaces)
have been effectively used in computerized tutoring systems. Thus, in addition to being
of interest for their theoretical properties, well-graded families have become important
for practical reasons; for example, they form the foundation of the artificial intelligence
behind the ALEKS system [10, 11].

In what follows we will study the properties of well-graded families and how they relate
to the union-closed sets conjecture. In the case that a well-graded family contains the
empty set, the conjecture follows easily. To see this, note that since both the empty set
and the full set are contained in the family, there exists a tight path between them, and
this tight path must contain a set with one element; thus, the result follows since it is well
known that a family containing a singleton satisfies the conjecture [see, for example, 21].
On the other hand, if we no longer require that the family contains the empty set, the
problem becomes more interesting since, in general, a well-graded union-closed family does
not necessarily contain a singleton, or even a doubleton. However, intuitively, it would
seem that well-graded families have more structure than families that are not well-graded,
making it plausible that they are more likely to satisfy the union-closed sets conjecture.
In this work we will prove several results that show, in some sense, this is true.

The outline of the paper is as follows. In Section 2 we begin by looking at how the
well-graded property affects the density of a union-closed family. In Section 3 we use the
concept of the outer fringe of a set to prove several results related to the union-closed
sets conjecture; in particular, we show that if a minimal set X (where ‘minimal’ is with
respect to set inclusion) and its outer fringe are small enough, the family containing X
satisfies the conjecture. Finally, in Section 4 we prove a small extension of this last result
by imposing an additional condition on the family containing the set X.

2 Density of well-graded families

For a family of sets F , we say that ∪K∈FK is the universe of F . Also, let ||F|| :=∑
K∈F |K| be the sum of the sizes of the sets in F . In this section we will study the

density of well-graded families with universe [n], where we define density as in [22].
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Definition 2. The density of a family F with universe [n] is given by the formula

ρ(F) :=
||F||
|F| · n

=

∑
x∈[n] d(x)

|F| · n
, (2.1)

where d(x) = |{K ∈ F | x ∈ K}|. In other words, it is the ratio of the average element
degree to the size of F . Note that ρ(F) > 1

2
implies that F contains an abundant element.

Letting sn be the minimum density of a union-closed family on the universe [n], the
values for 1 6 n 6 10 were explicitly computed by Wójcik in [22]; the first six are given
by s1 = s2 = 1

2
, s3 = 4

9
, s4 = 2

5
, s5 = 9

25
, and s6 = 1

3
. The next result will look at these

values for well-graded families when 1 6 n 6 6.

Proposition 3. Let wn be the minimum density of a well-graded union-closed family on
the universe [n]. Then, we have w1 = w2 = 1

2
, w3 = 7

15
, w4 = 4

9
, w5 = 21

50
, and w6 = 9

22
.

Proof. Since the values of wn, for n = 3, . . . , 6, are all computed in a similar fashion (but
with each successive computation getting slightly more tedious), we will only show the
steps for w3. Following [22], we define

ai = |{A ∈ F : |A| = i}|, i = 0, 1, . . . .

Note that ρ ({∅, {1}, {2}, {1, 2}, {1, 2, 3}}) = 7
15

, which implies that w3 6 7
15

. Suppose
that w3 <

7
15

. Then, there exists a well-graded family F such that

a1 + 2a2 + 3

3(a1 + a2 + 2)
<

7

15
. (2.2)

It then follows that 3a2 + 1 < 2a1, which implies that a2 6 1. On the other hand,
since F is well-graded, a2 > 1, leaving a2 = 1 as the only possible value. However,
since 3a2 + 1 = 3(1) + 1 < 2a1 we must have a1 = 3; thus, since F is union-closed, this
contradicts the assumption that a2 = 1 (i.e., the union of each pair of sets in a1 is in F ,
which implies that a2 = 3).

So, as we can see from the previous result, well-gradedness gets us slightly closer to
the union-closed sets conjecture for 3 6 n 6 6. However, we will see shortly that even in
the case of a three-set, well-gradedness alone is not enough to guarantee that one of the
three elements is abundant. Before presenting this result, we will need to introduce a few
additional concepts.

Let F be a union-closed family of sets on [n]. For some i ∈ [n], we say that an atom
at i is a set in F that contains i and is minimal (with respect to set inclusion) among
all such sets. The following result, originally from [14], gives us a way of checking for
well-gradedness when F contains the empty set.

Theorem 4 (Koppen). Let F be a union-closed family of sets on [n]. Assume that F
contains the empty set. Then, F is well-graded if and only if each atom in F is an atom
at only one element of [n].
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Another necessary concept, closely related to that of an atom, is the base of a union-
closed family.

Definition 5. The union-closure of a family of sets G is the family containing any set
which is the union of any nonempty subfamily of G. It follows that the empty set is in
the union-closure of G if and only if it is in G itself. The base of a union-closed family F
is a minimal subfamily B of F such that the union-closure of B is equal to F .

It is known that, for a finite union-closed family, the base always exists, is unique, and
is composed of all the atoms in F (see, for example, Section 3.4 in [10] for more details).
We will also need the following definition and result from [9].

Definition 6. For any family of sets G and any set X ∈ G, let G \X denote the family
of sets {Y \X |Y ∈ G}.

Theorem 7 (Eppstein, Falmagne, and Uzun). Let B be the base of a union-closed family
F . Then, F is well-graded if and only if, for each X in B, the union-closure of the family
B \X is a well-graded family.

Combining Theorems 4 and 7, we now have an efficient way of checking for the well-
gradedness of any union-closed family, whether or not that family contains the empty set.
Before giving our next result, we will need to introduce the following definition from [15].

Definition 8. A family of sets F is X-closed if for any nonempty subfamily G of F ,
we have ∩G ∈ F whenever X ⊆ ∩G. When F is union-closed with base B, we say that
F is upper intersection-closed if F is X-closed for every X ∈ B. In other words, any
intersection of sets that includes an element of the base is contained in F .

Following the notation introduced in [16] and later used in [4], given two families of
sets F and G we define F ] G := {K ∪ L |K ∈ F , L ∈ G}. The next example shows that
having a three-set in a well-graded family, even if that three-set is also X-closed, is not
enough to guarantee that one of the three elements is abundant.

Example 9. Consider the following families of sets.

A1 = {∅, {1}, {2}}
A2 = {∅, {1}, {3}}
A3 = {∅, {2}, {3}}
Bi = {4, 5, 6, i+ 6}, i = 1, . . . , 6

B = {[6] ∪ {13},
[3], [4], [5], [6],

B1 ∪ {13}, . . . , B6 ∪ {13},
A1 ] {B1, B4},A2 ] {B2, B5},A3 ] {B3, B6}}
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We then have that B is the base of a union-closed family F on the universe [13], where
|B| = 29. Using Theorem 4, we can check that, for each B ∈ B, the union closure of B\B
is well-graded; thus, by Theorem 7 it then follows that F is well-graded. Additionally, the
family is X-closed for X = [3]. However, the family F contains 959 total sets, but each
element of X is contained in exactly 479 sets; thus, no element of the minimal three-set
X is abundant. 1

Taking a slightly different approach, we will next look at the asymptotic behavior of
sn and wn as n grows. As mentioned in [22], for r = dlog2 ne or r = blog2 nc the family
2[r] ∪ [n] has a density of (1 + o(1)) log2 n

2n
as n → ∞. Combining this with the following

theorem from [2], we get that sn is on the order of (1 + o(1)) log2 n
2n

as n→∞.

Theorem 10 (Balla). For all n ∈ N,

sn >
log2 n

2n
.

The next example, which is originally from [7], gives an upper bound on the asymptotic
behavior of wn as n→∞.

Example 11 (Duffus and Sands). For n ∈ N, let r =
⌈
log2

(
n2

log2 n
2

)⌉
or

r =
⌊
log2

(
n2

log2 n
2

)⌋
. Then, the family given by

F = P(r) ∪ {[i] | i = r + 1, . . . , n} (2.3)

is union-closed and well-graded, with

|F| = 2r + n− r (2.4)

and

||F|| = r2r−1 +
n(n+ 1)

2
− r(r + 1)

2
. (2.5)

Thus, we have

ρ(F) =
r2r−1 + n(n+1)

2
− r(r+1)

2

n (2r + n− r)

= (1 + o(1))
log2 n

n
as n→∞.

The rest of this section will be devoted to showing that wn is also bounded below by
the same asymptotic value as n→∞; this would then imply that, as n→∞, the limiting
value of wn is larger than the limiting value of sn by a factor of 2. To derive this lower
bound, we will need to introduce a few additional concepts. Let N(<∞) be the collection

1A Python module that generates the example family and performs these computations is available
at https://github.com/jmatayoshi/uc-conjecture-well-graded.
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of all finite sets of positive integers. For A,B ∈ N(<∞), we define the colex order on N(<∞)

as the linear order < given by

A < B ⇐⇒ max(A∆B) ∈ B.

The beginning of the colex order has the form

∅ < 1 < 2 < 12 < 3 < 13 < 23 < 123 < 4

< 14 < 24 < 124 < 34 < 134 < 234 < 1234, (2.6)

where for convenience we have written, for example, 123 for the set {1, 2, 3}. Following
[3], we will write I(m) for the initial segment of the colex order of length m. We will say
that a family F is separating if for any i and j in [n], there is a set in F that contains
exactly one of i or j. Additionally, a separating family F is normal if each i in [n] is
contained in at least one set of F . The following result from [3] identifies the normal
families of minimum average set size.

Theorem 12 (Balla, Bollobas and Eccles). For n, k ∈ N such that k 6 2n, define the set
F(k) := P(r − 1) ∪ {A + r |A ∈ U}, where U = P(r − 1) \ I(2r − k) and r = dlog2(k)e.
Then, for m ∈ N let f(n,m) be defined by

f(n,m) = min (||F||) ,

where the minimum is taken over all normal union-closed families in P(n) which consist
of m sets. Let F(n, k) be given by

F(n, k) = F(k) ∪ {[i] : 1 6 i 6 n}. (2.7)

Then for any integers m and n with n+1 6 m 6 2n there exists k such that |F(n, k)| = m,
and we then have

f(n,m) = ||F(n, k)||.

The following lemma, also from [3], will be useful.

Lemma 13 (Balla, Bollobas and Eccles). For all m ∈ N,

m(log2(m)− 1)

2
< ||I(m)|| 6 m(log2(m))

2
.

For a well-graded union-closed family with universe [n], the next result gives a lower
bound for the density when the number of sets in the family is small.

Lemma 14. Let F be a well-graded union-closed family with universe [n], and assume
that |F| 6 n. Then,

ρ(F) >
1

2
.
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Proof. Let m = |F| 6 n. By assumption, F contains [n] and is a well-graded union-closed
family of size m. Suppose that M is a family of minimal density over all such families
F . Let M ∈ M be a set of minimal size (i.e., for any other K ∈ M, |M | 6 |K|).
Since M is well-graded, there must be a tight path from M to [n] of the form M =
M0,M1, . . . ,Mj = [n], where j < m and |Mi| + 1 = |Mi+1|, i = 0, . . . , j − 1. Now, we
claim that |M | = n −m + 1. To show this, we begin by observing that we cannot have
|M | < n−m+ 1; otherwise, the tight path from M to [n] would contain more sets than
the entire family M.

Next, suppose that |M | > n−m+1. In this case, the tight path from M to [n] consists
of n− |M |+ 1 sets, with the remaining m− (n− |M |+ 1) sets inM each containing |M |
or more elements (since M is a set of minimal size). In comparison, consider a family,

M̃, consisting solely of a tight path that begins at a minimal set of size n −m + 1 and
that ends at [n]. Putting the sets in M̃ in increasing order based on their sizes, the last

n− |M |+ 1 sets in M̃ have a total size equal to the tight path from M to [n]. However,

the remaining m−(n−|M |+1) sets in M̃ all have fewer than |M | elements, contradicting
the assumption that M is a family of minimal density (and, hence, the assumption that
|M | > n−m+ 1).

Thus, we have now shown that the family of minimal density, M, consists solely of a
tight path from a set M to [n], where |M | = n−m+ 1. It follows that

ρ(F) >
||M||
n|M|

=

∑m−1
i=0 |Mi|
n ·m

=
n(n+1)

2
− (n−m)(n−m+1)

2

n ·m
>

1

2
.

Our next result will show that, to find a well-graded family of minimum density, it
suffices to consider only normal well-graded families.

Lemma 15. Let F be a well-graded union-closed family with universe [n], and suppose

that |F| > n+ 1. Then, there exists a well-graded union-closed family F̃ on [n] such that

F̃ is normal and
ρ(F̃) 6 ρ(F).

Proof. Suppose that F is not separating (otherwise, we are done). Then, there exist
i, j ∈ [n] such that for any K ∈ F , i ∈ K if and only if j ∈ K. Now, we claim that i and
j must be contained in every set of F . Suppose they are not. Then, there exists K ∈ F
such that K ∩ {i, j} = ∅. Note, however, that this contradicts the assumption that F
is well-graded since it is not possible for a tight path to exist between K and any set
containing i and j; that is, since i and j can never appear separately, it is not possible to
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go in a single step from a set without i and j to a set with both i and j. Thus, {i, j} ⊆ K
for any K ∈ F .

Now that we have shown i and j are contained in every set of F , consider the union-
closed family

Fj = {K \ {j} |K ∈ F} ∪ {[n]}.

The family Fj is well-graded, contains sets with i and not j, and contains [n] as a set.
Furthermore, since |F| > n+ 1, we have

||Fj|| = ||F|| − |F|+ n 6 ||F|| − 1 < ||F||,

which, combined with the fact that |Fj| = |F|+ 1, implies that ρ(Fj) < ρ(F).
As a final step, note that if Fj is not separating, we can iteratively repeat this same

procedure until we eventually arrive at a normal well-graded family, as claimed.

Taken together, Theorem 12 and Lemma 15 tell us that for m > n+1, the well-graded
family of minimum average size is given by F(n, k), for some k 6 n; thus, as our next
result will show, we can bound wn from below by finding a lower bound for the density
of F(n, k).

Theorem 16. Let wn be the minimum density of a well-graded union-closed family on
the universe [n]. Then, wn is on the order of (1 + o(1)) log2 n

n
as n→∞.

Proof. By Lemma 14, it suffices to consider F such that |F| > n+1. Thus, from Theorem
12, for integers n and m with n + 1 6 m 6 2n we know that the well-graded family of
minimum density is given by F(n, k), for some k in [n+ 1, 2n]. Combined with Example
11, the result will follow if we can show that F(n, k) > (1 + o(1)) log2 n

n
as n→∞, for any

k in [n+ 1, 2n].

Let r =
⌈
log2

(
n2

log2 n
2

)⌉
and k = 2r − k̃, where 0 6 k̃ < 2r−1. Letting U = {P(r− 1) \

I(2r − k))}, it follows that

P(r − 1) ∪ {A+ r : A ∈ U} = F(k).

We then have

|F(n, k)| = |P(r − 1)|+ |{A+ r : A ∈ U}|+ (n− r)
= 2r−1 + |U|+ (n− r)
= 2r − k̃ + (n− r), (2.8)

and

||F(n, k)|| = ||P(r − 1)||+ ||{A+ r : A ∈ U}||+
n∑

i=r+1

i

=
1

2
(r − 1)2r−1 + ||{A+ r : A ∈ U}||+ 1

2
(n− r)(n+ r + 1), (2.9)
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where in (2.8) we used the fact that |U| = 2r−1 − k̃. Next, note that

||{A+ r : A ∈ U}|| = ||P(r − 1)|| − ||I(2r − k)||+ |U|

=
1

2
(r − 1)2r−1 − ||I(k̃)||+ |U|. (2.10)

Combining (2.9) and (2.10) with Lemma 13, we have

||F(n, k)|| = (r − 1)2r−1 − ||I(k̃)||+ |U|+ 1

2
(n− r)(n+ r + 1)

> (r − 1)2r−1 − 1

2
k̃ log2(k̃) + |U|+ 1

2
(n− r)(n+ r + 1) (by Lemma 13)

= (r)2r−1 − 1

2
k̃ log2(k̃)− k̃ +

1

2
(n− r)(n+ r + 1), (2.11)

where the last equality again uses the fact that |U| = 2r−1 − k̃. Using (2.8) and (2.11),
we can bound the density of F(n, k) from below with the inequality

ρ(F(n, k)) >
(r)2r−1 − 1

2
k̃ log2(k̃)− k̃ + 1

2
(n− r)(n+ r + 1)

n(2r − k̃ + (n− r))
. (2.12)

Notice that, when viewed as a function of k̃, (2.12) has no critical points on the interval
(0, 2r−1), which implies that the minimum must occur at either 0 or 2r−1. Thus, we now
have

ρ(F(n, k)) >
(r)2r−1 + 1

2
(n− r)(n+ r + 1)

n(2r + (n− r))
, (2.13)

where k = 2r for some r ∈ [2, 3, . . . , n]; note that the right-hand side of (2.13) is equal
to the density of the family from Example 11. Thus, letting g(r) be equal to the right-

hand side of (2.13), the discussion in Example 11 shows that, for r =
⌈
log2

(
n2

log2 n
2

)⌉
or

r =
⌊
log2

(
n2

log2 n
2

)⌋
, g(r) = (1 + o(1)) log2 n

n
as n→∞.

It remains to show that g(r) is bounded below by (1 + o(1)) log2 n
n

as n → ∞, for all

r. To that end, note that for any r >
⌈
log2

(
n2

log2 n
2

)⌉
, the first term in the numerator of

g(r) dominates with a value bounded below by (1 + o(1)) log2 n
n

as n → ∞. On the other

hand, for r <
⌊
log2

(
n2

log2 n
2

)⌋
, the second term in the numerator dominates, again with a

value bounded below by (1 + o(1)) log2 n
n

as n→∞.

3 The outer fringe

Given a setX in a union-closed family F , consider an element i /∈ X such thatX∪{i} ∈ F .
If F is well-graded, and if X ⊂ [n], such an i must exist; this follows from the fact that
there exists a tight path in F from X to [n]. In the knowledge spaces literature, an element
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with such a property is said to be in the outer fringe of the set X, denoted by XO, and
for convenience we will use that terminology here. In this section, given a minimal set X
(where ‘minimal’ is with respect to set inclusion) in a well-graded family of sets, we will
prove several results pertaining to the elements in the outer fringe of X. To do this, we
will need to make use of the following lemma.

Lemma 17. Let F be a well-graded union-closed family of sets, and let X be a set in F .
Then, for any K ∈ F such that K \X 6= ∅, we have K ∩XO 6= ∅.

Proof. Since F is well-graded, there exists a tight path from X to K ∪X. Let L be the
first set of this tight path that is not equal to X; thus, L has the form X ∪ {i}, for some
i ∈ [n], which implies that i ∈ XO. Also, i ∈ K ∪ X since L ⊂ K ∪ X; thus, combined
with the fact that X ∩XO = ∅, it must then be the case that i ∈ K.

Theorem 18. Let X be a minimal set in a well-graded union-closed family F , where
X ⊂ [n], and suppose that |XO| 6 2. Then, one of the elements in XO is abundant.

Proof. First, suppose that i is the only element in XO and let K be a set in F . Since X
is minimal in F , either K = X, or K \X 6= ∅. Assume the latter. Then, by Lemma 17,
K must contain an element of XO, and since we are assuming that i is the only element
in XO, we must have i ∈ K. So, we have now shown that the only set in F that does not
contain i is X, from which it follows that i is abundant.

Next, suppose that XO = {i, j}. Consider the following partition of F :

Ai,j = {K ∈ F | i, j ∈ K}
Ai,j = {K ∈ F | i ∈ K, j /∈ K}
Ai,j = {K ∈ F | i /∈ K, j ∈ K}
Ai,j = {K ∈ F | i, j /∈ K}.

Without loss of generality, assume that |Ai,j| > |Ai,j|. By the argument in the previous
paragraph, we know that Ai,j = {X}. Also, since [n] ∈ Ai,j we have |Ai,j| > 1 = |Ai,j|.
Thus, it follows that

d(i) =
|Ai,j|+ |Ai,j|

|Ai,j|+ |Ai,j|+ |Ai,j|+ |Ai,j|

=
|Ai,j|+ |Ai,j|

|Ai,j|+ |Ai,j|+ |Ai,j|+ 1

>
|Ai,j|+ |Ai,j|

|Ai,j|+ 2|Ai,j|+ 1

>
1

2
,

as claimed.
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Corollary 19. Let X be a minimal set in a well-graded union-closed family F , where
X ⊂ [n], and suppose that |X ∪ XO| 6 5. Then, one of the elements in X ∪ XO is
abundant.

Proof. If |X| 6 2, X must contain an abundant element. If |X| > 3, then |XO| 6 2
since |X ∪XO| 6 5, and from Theorem 18 it follows that XO must contain an abundant
element.

The following example shows that having three elements in the outer fringe of a min-
imal set in a well-graded family is not enough to guarantee that one of the elements is
abundant.

Example 20. Consider the following family of sets on the universe [6]:

F = {{1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}, {2, 3, 5}, {1, 2, 3, 5}, {1, 3, 6}, {1, 2, 3, 6},
{1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 3, 4, 5, 6}}. (3.1)

Note that F is union-closed and well-graded, and note also that X = {1, 2, 3} is minimal
in F with an outer fringe consisting of XO = {4, 5, 6}. However, since each element of
XO appears in only 5 of the 11 sets in F , XO does not contain an abundant element.

For a set X in a well-graded union-closed family F , we have now seen examples where
one of X or XO contains an abundant element, but not the other; however, we have yet
to see an example where neither of the two contains an abundant element. The next
result gives a set of conditions under which we can always expect an abundant element
in X ∪XO.

Theorem 21. Let X be a set in a well-graded union-closed family F . Suppose also that
F is X-closed. If F contains an abundant element, then one of the elements in X ∪XO
must be abundant.

Proof. Let i be abundant in F , and assume that i /∈ X ∪ XO (otherwise, we are done).
Let Ai = {A ∈ F | i ∈ A}. Then, since F is X-closed, we have that

K =
⋂

A∈Ai

(A ∪X)

is a set in F containing X. We first claim that K ∩XO is non-empty. To see this, note
that there must be a tight path in F from X to K. Thus, since X ⊂ K, the first set on
this path has the form X ∪ {j}, for some j ∈ [n], which in turn implies that j ∈ XO;
furthermore, j 6= i since we are assuming that i /∈ XO.

Next, we claim that for any L ∈ F , j ∈ L whenever i ∈ L. Assume the opposite; that
is, suppose there exists L ∈ F such that i ∈ L but j /∈ L. Since L ∪X ∈ Ai, this would
imply that j /∈ K, contradicting our assumption that X ∪{j} is part of a tight path from
X to K. Thus, j appears in at least as many sets as i, from which it follows that j is
abundant as well.
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Thus, if the union-closed sets conjecture holds, Theorem 21 tells us that one of the
elements in X ∪ XO will be abundant whenever F is both well-graded and X-closed.
Generalizing these results further, we make the following conjecture for all well-graded
families.

Conjecture 22. Let F be a well-graded union-closed family, and let X be a set in F .
Then, one of the elements in X ∪XO is abundant.

4 Density of a set and its outer fringe

Given a set X in a well-graded family F , in this section we will analyze the behavior
of the density of X ∪ XO under various conditions. Based on these results, our final
theorem will show that given a minimal set X in an X-closed family F , the union-closed
sets conjecture is satisfied if |X ∪ XO| 6 6, extending Corollary 19. To start, we will
need the following result from [19], which gives a lower bound on the average set size of
a union-closed family.

Theorem 23 (Reimer). Let F be a union-closed family with universe [n]. We then have∑
K∈F |K|
|F|

>
1

2
log2 (|F|) . (4.1)

For a given family F and a subset of elements Y , we will be interested in computing
the density of F restricted to the elements in Y ; that is, we are interested in the value of

ρY (F) =
||F||Y
|F| · |Y |

, (4.2)

where ||F||Y =
∑

K∈F |K ∩ Y |. Note that if ρY (F) > 1
2
, then one of the elements in Y

must be abundant in F .
The following lemma, which is an application of Theorem 23, will be useful.

Lemma 24. Let G be a union-closed family with universe [n]. Let L ⊆ [n], and suppose
that for any K ∈ G we have L ⊆ K. We then have∑

K∈G |K|
|G|

>
1

2
log2 (|G|) + |L|. (4.3)

Proof. Define the family GL = {K \ L |K ∈ G}. Note that since GL is a union-closed
family, we can apply Theorem 23 to get the following bound:∑

K∈GL

|K| > |GL|
2

log2 (|GL|) . (4.4)
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Next, observe that the mapping f : G → GL defined by f(K) = K \ L defines a bijection
from G to GL. Combining this with (4.4), we get∑

K∈G

|K| =
∑
K∈GL

|K|+ |G| · |L|

>
|GL|

2
log2 (|GL|) + |G| · |L| (by (4.4))

=
|G|
2

log2 (|G|) + |G| · |L|,

as claimed.

Lemma 25. Let X be a set in a well-graded union-closed family F , and let X̃ = X∪XO.
For sets K,L ∈ F , define the equivalence relation R as

(K,L) ∈ R ⇐⇒ K ∪ X̃ = L ∪ X̃. (4.5)

We then have the equivalence class

[K]R = {L ∈ F | (K,L) ∈ R},

where [K]R is a well-graded union-closed family. Furthermore, if F is also X-closed, and

if K \ X̃ 6= ∅, then there exists q ∈ XO such that q ∈M for any M ∈ [K]R.

Proof. It is clear that [K]R is union-closed. To check that it is well-graded, for L,M ∈
[K]R we must show that there exists a tight path from L to M . Since F is well-graded,
there exists a tight path L = L0, L1, . . . , Lm = M in F from L to M . To show that this
path exists in [K]R, we simply need to show that Li ∪ X̃ = K ∪ X̃, for i = 1, . . .m − 1.
To that end, we first observe that since L and M are both in [K]R, by (4.5) they can only

differ on elements in X̃. Thus, it follows that each Li, i = 1, . . . ,m − 1 must also differ
from L and M only on elements in X̃, and the result then follows.

Next, assume also that F is X-closed and that K \ X̃ 6= ∅. To show that there
exists some q ∈ XO that is in every set of [K]R, we will proceed by contradiction. That
is, suppose that for each q ∈ XO, there exists some Kq ∈ [K]R such that q /∈ Kq.
Furthermore, since Kq ∪X ∈ [K]R as well, without loss of generality we can assume that
X ⊂ Kq. Thus, we can define

I =
⋂

q∈XO

Kq,

where I ∩ XO = ∅, and I ∈ F since F is X-closed. Since K \ X̃ 6= ∅, it follows that

I \ X̃ 6= ∅ as well; that is, because the sets in [K]R only differ on elements in X̃, the

elements in K \ X̃ must be in every set of [K]R. Now, note that by the well-gradedness
of F , there exists a tight path X = X0, X1, . . . , Xm = I from X to I. Furthermore, since
X is strictly contained in I (and, hence, in X1), it follows that X1 = X ∪ {j}, for some
j ∈ [n]; thus, j ∈ XO, contradicting the assumption that I ∩XO = ∅.
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Lemma 26. Let X be a set in a well-graded union-closed family F , and assume also that
F is X-closed and that |X| = 3. Let X̃ = X ∪ XO. Then, for any K ∈ F such that

K \ X̃ 6= ∅, we have ρX̃([K]R) > 1
2
.

Proof. Without loss of generality, assume X = {1, 2, 3}. To start, observe that we can
partition [K]R into the following union-closed families:

K1 = {L ∈ [K]R |X ⊆ L}
K2 = {L ∈ [K]R | 1 /∈ L}
K3 = {L ∈ [K]R | 2 /∈ L, 1 ∈ L}
K4 = {L ∈ [K]R | 3 /∈ L, {1, 2} ⊂ L}.

(4.6)

By assumption, K \ X̃ 6= ∅. Let M ⊆ K ∪ X̃ be the largest set of elements in K ∪ X̃
such that M ⊆ L for any L ∈ [K]R; note that since F is X-closed, by Lemma 25 we have
|M ∩ XO| = k > 1. We claim that K1 is equal to (M ∪ X) ] P(XO \M). Since [K]R
is union-closed, the claim will follow if we can show that, for any r ∈ XO \M , the set
M ∪X ∪ {r} is contained in [K]R.

To that end, note that the sets in [K]R differ only on the elements in (K∪X̃)\M ⊂ X̃.
Next, define the set

IM =
⋂

q∈XO\M

Kq,

where each Kq is defined as in the proof of Lemma 25 (and where we are again assuming
that each Kq contains X). We claim that IM = M ∪X. To see this, we first note that the
relation IM ⊇ M ∪X is clear, as each Kq contains X, while M is contained in every set
of [K]R. Next, let r ∈ IM . Then, by construction r /∈ XO \M ; thus, since the universe of
[K]R is given by M ∪X ∪XO, either r ∈ X or r ∈M , and it follows that IM ⊆M ∪X.
Combining these two arguments, we have now shown that IM = M ∪X.

Next, since F is X-closed, we have M ∪X = IM ∈ F . Finally, we note that X ∪{r} ∈
F , since r ∈ XO, and the fact that F is union-closed implies that M ∪X ∪ {r} ∈ F as
well, from which the claimed result then follows.

Using this representation of K1, and letting N = |X̃|, we have

|K1| = 2N−k−3

and

||K1||X̃ =
1

2
(N + k + 3)2N−k−3.

From Lemma 24 we have

||K2||X̃ >
1

2
|K2| log2(|K2|) + k|K2|

||K3||X̃ >
1

2
|K3| log2(|K3|) + (k + 1)|K3|

||K4||X̃ >
1

2
|K4| log2(|K4|) + (k + 2)|K4|.
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Combining these results, we get

||[K]R||X̃ = ||K1||X̃ + ||K2||X̃ + ||K3||X̃ + ||K4||X̃

>
1

2

(
(N + k + 3)2N−k−3

+ |K2| log2(|K2|) + 2k|K2|
+ |K3| log2(|K3|) + (2k + 2)|K3|

+ |K4| log2(|K4|) + (2k + 4)|K4|
)
.

(4.7)

Now, in order for ρX̃ ([K]R) to be greater than 1
2
, we need to show that

2||[K]R||X̃ −N

(
4∑

i=1

|Ki|

)
= 2||[K]R||X̃ −N

(
2N−k−3 +

4∑
i=2

|Ki|

)
(4.8)

is greater than 0. Using (4.7), we can bound (4.8) from below by the function

(k + 3)2N−k−3 + |K2| log2(|K2|) + (2k −N)|K2|
+ |K3| log2(|K3|) + (2k + 2−N)|K3|
+ |K4| log2(|K4|) + (2k + 4−N)|K4|.

(4.9)

Since (4.9) is a convex function, we can minimize it over each of the variables |Ki|,
i = 2, 3, 4, independently. Thus, the global minimum is at

|K2| = 2N−2k− 1
ln 2

|K3| = 2N−2k−2− 1
ln 2

|K4| = 2N−2k−4− 1
ln 2 .

(4.10)

Plugging (4.10) into (4.9) gives

= (k + 3)2N−k−3 − 1

ln 2

(
2N−2k− 1

ln 2 + 2N−2k−2− 1
ln 2 + 2N−2k−4− 1

ln 2

)
= 2N−k

[
(k + 3)2−3 − 2−k−

1
ln 2

ln 2

(
1 +

1

4
+

1

16

)]
,

which is positive for any value of k > 1.

Note that the bounds given by Theorem 23 can be improved using the results in [3].
However, even with these improved bounds the techniques used in Lemma 26 fail when
|X| > 4. Furthermore, if F is simply well-graded, but not X-closed, the same techniques
also fail when |X| > 3. In any case, in its current form Lemma 26 is enough to prove our
next result.
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Theorem 27. Let X be a minimal set in a well-graded union-closed family F , and assume
also that F is X-closed. Then, F satisfies the union-closed sets conjecture if |X∪XO| 6 6.

Proof. Let X̃ = X∪XO. From Corollary 19 we know that F satisfies the union-closed sets
conjecture if |X̃| 6 5; furthermore, by Theorem 18 we know that XO contains an abundant
element if |XO| 6 2. Combining this with the fact that a singleton or a doubleton always
contains an abundant item, we only need to consider the case when |X| = |XO| = 3.

With that in mind, consider any K ∈ F . We claim that F satisfies the union-closed
sets conjecture if ρX̃([K]R) > 1

2
. To see this, let [K1]R, [K2]R, . . . , [Km]R be the set of

equivalence classes associated with the equivalence relation R; note that these classes
form a partition of F . By assumption, for each i = 1, . . . ,m we have

ρX̃([Ki]R) =
||[Ki]R||X̃
|[Ki]R| · |X̃|

>
1

2
,

from which it follows that

||[Ki]R||X̃ >
1

2
|[Ki]R| · |X̃|. (4.11)

We then have

||F||X̃ =
m∑
i=1

||[Ki]R||X̃

>
1

2

m∑
i=1

|[Ki]R| · |X̃| (by (4.11))

=
1

2
|F| · |X̃|,

which implies that ρX̃(F) > 1
2
; thus, it follows that at least one element of X̃ is abundant

in F .
It remains to shows that, for any K ∈ F , we have ρX̃([K]R) > 1

2
. By Lemma 26, the

inequality holds if K \ X̃ 6= ∅. On the other hand, suppose K ⊆ X̃. Note that by (4.5),

since K ⊆ X̃ it follows that L ⊆ X̃ for any L ∈ [K]R. Now, if |L| 6 2 then one of the
elements in L is abundant, and we are done. Thus, assume that |L| > 3 for any L ∈ [K]R.

We then have |L ∩ X̃| = |L| > 3 (i.e., every set in [K]R contains at least three elements

of X̃) which implies that ρX̃([K]R) > 1
2
.
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