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Abstract

We introduce the notion of sortability and t-sortability for a simplicial complex
and study the graphs for which their independence complexes are either sortable or
t-sortable. We show that the proper interval graphs are precisely the graphs whose
independence complex is sortable. By using this characterization, we show that
the ideal generated by all squarefree monomials corresponding to independent sets
of vertices of G of size t (for a given positive integer t) has the strong persistence
property, when G is a proper interval graph. Moreover, all of its powers have linear
quotients.

Mathematics Subject Classifications: 13F20, 05E45

the electronic journal of combinatorics 27(1) (2020), #P1.65 1



1 Introduction

The notion of strong persistence property for an ideal in a Noetherian ring R has been
defined in [8]. It is known that any monomial ideal with the strong persistence property
has the persistence property (see [8]). Although finding ideals with the strong persistence
property is of great interest, but there is not much known about them. Few classes of
monomial ideals are known to possess this property. Polymatroidal ideals ([9]) and edge
ideals of graphs ([12]) are some of these families. In this paper, we introduce a new class of
monomial ideals associated to proper interval graphs with the strong persistence property.
To this aim, we introduce the notion of a sortable simplicial complex and show that the
independence complex of a graph G is sortable if and only if G is a proper interval graph.
Using this characterization, we obtain some algebraic properties of the t-independence
ideal It(G) generated by all squarefree monomials corresponding to independent sets of
vertices of G of size t, when G is a proper interval graph. It is proved that this ideal
has the strong persistence property. Moreover, when G is a proper interval graph or an
n-cycle, it is shown that the toric ring K[u : u ∈ G(It(G))] over the field K is Koszul and
a normal Cohen–Macaulay domain.

We recall some definitions and notation that are needed in the sequel. Let G be any
finite simple graph on the vertex set V . A subset F ⊆ V is called an independent set of G
if it contains no edge of G. The set of all independent sets of G forms a simplicial complex
∆(G), which is called the independence complex of G. For a graph G on the vertex set
[n], a subset A ⊆ [n] is called an interval in G, if A = {r, r + 1, . . . , s} for some r 6 s.
The set of all vertices adjacent to a vertex v in G is denoted by NG(v) and by NG[v] we
mean NG(v) ∪ {v}. The path graph and the cycle graph with n vertices are denoted by
Pn and Cn, respectively.

A graph G is called an interval graph, if one can label its vertices with some intervals
on the real line so that two vertices are adjacent in G, when the intersection of their
corresponding intervals is non-empty. A proper interval graph is an interval graph such
that no interval properly contains another. Proper interval graphs are well studied in the
literature, see for example [1, 4, 11, 15]. In this paper we give another characterization of
these graphs in terms of the sortability of their independence complexes.

Let S = K[x1, . . . , xn] be a polynomial ring over a field K and u and v be two
monomials of degree d in S. Write uv = xi1xi2 · · ·xi2d with 1 6 i1 6 i2 6 · · · 6 i2d, and
set u′ = xi1xi3 · · ·xi2d−1

and v′ = xi2xi4 · · ·xi2d . The pair (u′, v′) is called the sorting of
(u, v) and is denoted by sort(u, v). Note that if u and v are squarefree, then u′ and v′ are
squarefree, as well. The pair (u, v) is called a sorted pair, if sort(u, v) = (u, v). Otherwise,
(u, v) is called an unsorted pair. Let Sd be the set of all monomials of degree d in S. A
subset M ⊂ Sd is called sortable if sort(u, v) ∈ M ×M for all (u, v) ∈ M ×M. We
say that a monomial ideal I is sortable, if it is generated in a single degree and G(I) is a
sortable set of monomials, where G(I) is the set of minimal monomial generators of I.

The paper proceeds as follows. In Section 2, we introduce and study sortable and
t-sortable simplicial complexes. As one of the main results of this section, we give a new
characterization of proper interval graphs by means of sortability concept (see Theorem
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8). Moreover, we prove that the independence complex of any cycle graph is t-sortable.
In Section 3, we consider the t-independence ideals of proper interval graphs and prove
that these ideals satisfy the `-exchange property and consequently the strong persistence
property. Finally we show that for any ideal in this class, all of its powers have linear
quotients and hence linear resolutions.

2 Sortable simplicial complexes

Let ∆ be a (finite) simplicial complex on the vertex set V (∆) ⊂ N. For any finite set
F ⊂ N, we associate with F the monomial xF =

∏
i∈F xi.

Given two faces F,G ∈ ∆ with |F | = r and |G| = s we write

xFxG = xi1xi2 · · ·xir+s with i1 6 i2 6 · · · 6 ir+s.

We define the sorting operator as follows:

sort(F,G) = (F ′, G′),

where F ′ = {ik : 1 6 k 6 r + s, k is odd} and G′ = {ik : 1 6 k 6 r + s, k is even}.
Notice that |F ′| = |G′| if r + s is even, and |F ′| = |G′|+ 1 if r + s is odd.

Definition 1. Let ∆ be a finite simplicial complex with V (∆) ⊂ N. Then ∆ is sortable
with respect to the given labeling on V (∆), if for any F,G ∈ ∆, one has sort(F,G) ∈
∆ × ∆. Moreover, ∆ is sortable, if it is sortable with respect to some suitable labeling
with integers on V (∆).

A weaker property than sortability which is called t-sortability is defined as follows.

Definition 2. Let t be a positive integer. A finite simplicial complex ∆ with V (∆) ⊂ N
is called t-sortable with respect to the given labeling on V (∆), if for any F,G ∈ ∆ with
|F | = |G| = t we have sort(F,G) ∈ ∆ ×∆. Moreover, ∆ is t-sortable, if it is t-sortable
with respect to some suitable labeling with integers on V (∆).

Note that if ∆ is t-sortable and F,G ∈ ∆ such that |F | = |G| = t and sort(F,G) =
(F ′, G′), then |F ′| = |G′| = t.

We have the following simple observations.

Remark 3. Let ∆ be a finite simplicial complex with V (∆) ⊂ N.

(i) If ∆ is sortable (t-sortable), then for any T ⊂ V (∆), the simplicial complex ∆T =
{F ∈ ∆: F ⊂ T} is also sortable (t-sortable).

(ii) If ∆ is sortable, then it is t-sortable for any positive integer t.

(iii) The converse of (ii) does not hold in general. Indeed for any n > 4, ∆(Cn) is
t-sortable for all t and is not sortable (see Theorem 8 and Proposition 11).
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Recall that if ∆1 and ∆2 are simplicial complexes on disjoint sets of vertices, then
the join of ∆1 and ∆2 denoted by ∆1 ∗ ∆2 is a simplicial complex on the vertex set
V (∆1 ∗∆2) = V (∆1) ∪ V (∆2) defined as ∆1 ∗∆2 = {F ∪G : F ∈ ∆1 and G ∈ ∆2}.

Proposition 4. Let ∆1 and ∆2 be simplicial complexes on disjoint sets of vertices. Then
∆1 ∗∆2 is sortable, if and only if ∆1 and ∆2 are sortable.

Proof. Let ∆1 and ∆2 be sortable. One may consider sorting labelings on the vertices
of ∆1 and ∆2 in N such that i < j for all i ∈ V (∆1) and j ∈ V (∆2). Consider two
elements F1 ∪ F2 and G1 ∪ G2 in ∆1 ∗ ∆2 with F1, G1 ∈ ∆1 and F2, G2 ∈ ∆2. Let
(F ′1, G

′
1) = sort(F1, G1) and (F ′2, G

′
2) = sort(F2, G2). One can see that if |F1| + |G1| is

even, then sort(F1 ∪ F2, G1 ∪ G2) = (F ′1 ∪ F ′2, G
′
1 ∪ G′2) and if |F1| + |G1| is odd, then

sort(F1 ∪ F2, G1 ∪G2) = (F ′1 ∪G′2, G′1 ∪ F ′2). Since F ′1, G
′
1 ∈ ∆1 and F ′2, G

′
2 ∈ ∆2, ∆1 ∗∆2

is sortable.
Conversely, let ∆1∗∆2 be sortable. For any two faces F,G ∈ ∆1, since F,G ∈ ∆1∗∆2,

we have F ′, G′ ∈ ∆1 ∗ ∆2, where (F ′, G′) = sort(F,G). Note that F ′, G′ ⊆ V (∆1) and
V (∆1) ∩ V (∆2) = ∅. This implies that F ′, G′ ∈ ∆1. By similar argument ∆2 is also
sortable.

Let G be the disjoint union of two graphs G1 and G2. Then

∆(G) = ∆(G1) ∗∆(G2).

Thus, we may apply Proposition 4 and obtain

Corollary 5. Let G be a finite simple graph with vertices in N and G1, . . . , Gm be the
connected components of G. Then ∆(G) is sortable, if and only if each ∆(Gr) is sortable.

Remark 6. If we replace sortability by t-sortability in Corollary 5, the ‘only if ’ part holds
by Remark 3(i). But the ‘if ’ part does not hold in general. For example, consider a graph
G with two connected components G1 and G2, where G1 is a star graph on 4 vertices and
G2 is a path graph on 4 vertices. Then by CoCoA computations one can see that the
defining ideal of the fiber ring of I3(G) = 〈xF : F ∈ ∆(G), |F | = 3〉 is not quadratic. So
by Theorem 12, I3(G) is not a sortable ideal. Hence ∆(G) is not 3-sortable. But it is easy
to see that ∆(G1) and ∆(G2) are 3-sortable.

The following lemma states some equivalent conditions for a graph to be proper in-
terval. We use this result in Theorem 8 to characterize the graphs whose independence
complexes are sortable.

Lemma 7. For a graph G on the vertex set [n], the following conditions are equivalent:

(i) For all i < j, {i, j} ∈ E(G) implies that the induced subgraph of G on {i, i+1, . . . , j}
is a clique.

(ii) For all 1 6 i 6 n, NGi [i] is both a clique and an interval, where Gi is the induced
subgraph of G on {i, i + 1, . . . , n}.

the electronic journal of combinatorics 27(1) (2020), #P1.65 4



(iii) For all 1 6 i 6 n, NGi
[i] is both a clique and an interval, where Gi is the induced

subgraph of G on {1, 2, . . . , i}.

(iv) For all 1 6 i 6 n, NG[i] is an interval.

(v) G is a proper interval graph.

Proof. (i)⇒ (ii) Suppose that 1 6 i 6 n and j is the largest integer such that j ∈ NGi [i].
Then {i, j} ∈ E(G) or i = j. So, by (i) the induced subgraph of G on {i, i + 1, . . . , j} is
a clique. This proves the result.

(ii) ⇒ (iii) Suppose that 1 6 i 6 n and j is the least integer such that j ∈ NGi
[i].

Then i ∈ NGj [j]. Thus (ii) implies that the induced subgraph of G on {j, j + 1, . . . , i} is
a clique. This shows that NGi

[i] is a clique and an interval as desired.
(iii) ⇒ (iv) Suppose that 1 6 i 6 n and j, k ∈ NG[i] with j < k. It is enough to prove

that for each integer ` between j and k, one has ` ∈ NG[i]. If i 6 j < k, then the result
follows from i ∈ NGk

[k] and the assumption that NGk
[k] is both clique and interval. If

j < k 6 i, then the result follows from j ∈ NGi
[i] and the assumption that NGi

[i] is an
interval. Now, assume that j 6 i 6 k. then i ∈ NGk

[k] and j ∈ NGi
[i]. Since NGk

[k] is a
clique and an interval and NGi

[i] is an interval, the result is obtained.
(iv) ⇒ (i) Suppose that i < j and {i, j} ∈ E(G). Since NG[i] is an interval and

j ∈ NG[i], {i, . . . , j} ⊆ NG[i]. Now for each i < ` 6 j, since i ∈ NG[`] and NG[`] is
an interval, {i, i + 1, . . . , `} ⊆ NG[`]. This shows that the induced subgraph of G on
{i, i + 1, . . . , j} is a clique.

(i) ⇔ (v) See [11, Theorem 1 and Proposition 1].

Property (iii) of Lemma 7, implies that any proper interval graph has a perfect elimi-
nation ordering and hence is a chordal graph.

Theorem 8. Let G be a graph. Then ∆(G) is sortable if and only if G is a proper interval
graph.

Proof. Let ∆(G) be sortable and by contrary assume that G is not proper interval. Then
by Lemma 7, for any labeling on V (G) there exists i ∈ V (G) such that NG[i] is not an
interval. This means that there exists j, k ∈ NG[i] and an integer ` with j < ` < k
such that ` /∈ NG[i]. If i < `, then sort({i, `}, {k}) = ({i, k}, {`}) and {i, k} /∈ ∆(G),
a contradiction. If i > `, then sort({i, `}, {j}) = ({j, i}, {`}) and {j, i} /∈ ∆(G), which
contradicts to sortability of ∆(G).

Conversely, suppose that G is a proper interval graph. Then by Lemma 7, we may
consider a labeling on V (G) = [n] such that for all i < j, {i, j} ∈ E(G) implies that the
induced subgraph of G on {i, i + 1, . . . , j} is a clique. Let F1, F2 ∈ ∆(G) and assume
that xF1xF2 = xi1xi2 · · ·xir+s , where i1 6 i2 6 · · · 6 ir+s. Then sort(F1, F2) = (F ′1, F

′
2),

where F ′1 = {i1, i3, . . . , ir′} and F ′2 = {i2, i4, . . . , is′} for some r′ and s′. By contradiction
if F ′1 /∈ ∆(G), then {i2k−1, i2`−1} ∈ E(G) for some k and ` with k < `. Since i2k−1 6 i2k 6
i2`−1, by our assumption, {i2k−1, i2k}, {i2k, i2`−1} ∈ E(G). Note that at least two distinct
vertices among i2k−1, i2k, i2`−1 belong to either F1 or F2. This implies that either F1 or F2

contains an edge, a contradiction. Thus F ′1 ∈ ∆(G). By similar argument F ′2 ∈ ∆(G).
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Corollary 9. Let G be a tree. If ∆(G) is sortable, then G is claw-free.

Proof. Let ∆(G) be sortable and suppose that G contains a claw which is an induced
subgraph H with three edges {i, j}, {i, l} and {i,m}, for distinct vertices i, j, l and m
of G. We show that ∆(H) is not sortable. Let F = {i} and K = {j, l,m}. Then
sort(F,K) = (F ′, K ′), where |F ′| = |K ′| = 2 and one of F ′ and K ′ contains i. Thus we
have either F ′ /∈ ∆(H) or K ′ /∈ ∆(H). So ∆(H) is not sortable. This contradicts to
Remark 3(i), noting that ∆(H) = ∆(G)V (H).

By Corollaries 5 and 9 one can get the following result.

Corollary 10. Let G be a forest. Then ∆(G) is sortable, if and only if each tree of the
forest is a path graph.

The independence complex of an n-cycle for n > 4 is not sortable by Theorem 8 and
Lemma 7. But we still have

Proposition 11. ∆(Cn) with the standard labeling on Cn is t-sortable for all t.

Proof. For n = 3, the assertion is trivial. Let n > 4, and let A and B be two t-independent
sets of Cn and sort(A,B) = (A′, B′). Note that ∆(Cn) = {F ∈ ∆(Pn) : {1, n} * F}.
So we have A,B ∈ ∆(Pn). Note that any path graph is a proper interval graph. Thus
Theorem 8 implies that A′, B′ ∈ ∆(Pn). Let xAxB = xi1xi2 · · ·xi2t−1xi2t with i1 6 i2 6
· · · 6 i2t. If i1 > 1 or i2t < n, then {1, n} * A′ and {1, n} * B′. Therefore A′, B′ ∈ ∆(Cn)
and we are done. Now, let i1 = 1 and i2t = n. Note that 1 < i2 and i2t−1 < n,
otherwise A or B would not be an independent set. By definition A′ = {1, i3, . . . , i2t−1}
and B′ = {i2, . . . , i2t−2, n}. Thus n /∈ A′ and 1 /∈ B′. Hence {1, n} * A′ and {1, n} * B′.
Therefore A′, B′ ∈ ∆(Cn) as desired.

3 Algebraic properties of t-independence ideals of proper inter-
val graphs

For a graph G on the vertex set [n], the t-independence ideal of G, denoted by It(G), is
defined to be the ideal generated by all monomials u = xi1xi2 · · ·xit for which {i1, i2, . . . , it}
is a (t− 1)-face of ∆(G). The t-independence ideal of G is in fact the t-clique ideal of Gc.
The class of t-clique ideals was introduced by Moradi [13] and had been further studied
in [10] and [14]. In this section we consider the t-independence ideal of proper interval
graphs and show that they have some nice algebraic properties.

The following result, which we quote from [3], will be of crucial importance in what
follows. Let I be a sortable monomial ideal, A = K[u : u ∈ G(I)] and T = K[yu : u ∈ G(I)]
be the polynomial ring over the field K in the variables yu with u ∈ G(I). We let L be
the kernel of the K-algebra homomorphism from T to A with yu 7→ u for u ∈ G(I).

Notice that if (u, v) is an unsorted pair and (u′, v′) = sort(u, v), then yuyv− yu′yv′ ∈ L
and yuyv − yu′yv′ 6= 0, unless (u′, v′) = (v, u). Relations of this form are called sorting
relations.
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Theorem 12. There exists a monomial order <′ on T , called sorting order, such that for
each non-zero sorting relation yuyv− yu′yv′ the monomial yuyv for the unsorted pair (u, v)
is the leading term. Moreover, the set of sorting relations forms a Gröbner basis of L.

Corollary 13. Let ∆ be a t-sortable simplicial complex. Then the toric ring K[xF : F ∈
∆, |F | = t] is Koszul and a normal Cohen–Macaulay domain. In particular, when G is
a proper interval graph or an n-cycle, then K[u : u ∈ G(It(G))] is Koszul and a normal
Cohen–Macaulay domain.

Proof. Since the ideal I = 〈xF : F ∈ ∆, |F | = t〉 is sortable, by Theorem 12, the defining
ideal L of A = K[u : u ∈ G(I)] has a quadratic Gröbner basis with respect to the sorting
order. It follows that A is Koszul, see for example [6, Theorem 2.28]. Since the initial
ideal of L is squarefree, by the theorem of Sturmfels [16] (see also [6, Corollary 4.26]), A
is normal. Now we apply the result of Hochster [2, Theorem 6.3.5] which says that any
normal toric ring is Cohen–Macaulay. The second statement is obtained by applying the
first part on ∆ = ∆(G), Theorem 8, Remark 3(ii) and Proposition 11.

We now consider the Rees ring of the t-independence ideals of proper interval graphs.
To this end we recall the concept introduced in [7], which is called the `-exchange property.

Let I ⊂ S = K[x1, . . . , xn] be a monomial ideal generated in a single degree. Then
A = K[u : u ∈ G(I)] is isomorphic to the fiber R(I)/mR(I) of the Rees ring R(I) =⊕

k>0 I
ktk, where m = 〈x1, . . . , xn〉 is the graded maximal ideal of S. Then R(I) ∼= R/J ,

where R = S[yu : u ∈ G(I)] and J is the kernel of the K-algebra homomorphism R→ R(I)
with xi 7→ xi for i = 1, . . . , n and yu 7→ ut for any u ∈ G(I).

Let A, T and L be defined as before Theorem 12. We fix a monomial order <′ on T .
A monomial w ∈ T is called a standard monomial of L with respect to <′, if w 6∈ in<′(L).

For example, if I is sortable and we let <′ be the sorting order on T , then w =
yu1 · · · yuN

is a standard monomial of L with respect to <′ if and only if (ui, uj) is sorted
for all i < j.

Definition 14. Let I be a monomial ideal. Then I is said to satisfy the `-exchange
property with respect to the monomial order < on T , if the following condition is satisfied:
let yu1 · · · yuN

and yv1 · · · yvN be any two standard monomials of L with respect to < such
that

(i) degxr
(u1 · · ·uN) = degxr

(v1 · · · vN) for r = 1, . . . , q − 1 with q 6 n− 1,

(ii) degxq
(u1 · · ·uN) < degxq

(v1 · · · vN).

Then there exists an integer k, and an integer q < j 6 n with xj ∈ supp(uk) such that
xquk/xj ∈ I.

Proposition 3.1. Let G be a proper interval graph on the vertex set [n]. Then for all t > 2,
the ideal It(G) satisfies the `–exchange property with respect to the sorting order.
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Proof. Let yu1 · · · yuN
and yv1 · · · yvN be standard monomials satisfying (i) and (ii) of

Definition 14. Then (ui, uj) and (vi, vj) are sorted for any i < j. If uj = xij,1 · · · xij,t and
vj = xi′j,1

· · ·xi′j,t
for any 1 6 j 6 N , then by [3, Relation (6.3)],

i1,1 6 i2,1 6 · · · 6 iN,1 6 i1,2 6 i2,2 6 · · · 6 iN,2 6 · · · 6 i1,t 6 i2,t 6 · · · 6 iN,t

and

i′1,1 6 i′2,1 6 · · · 6 i′N,1 6 i′1,2 6 i′2,2 6 · · · 6 i′N,2 6 · · · 6 i′1,t 6 i′2,t 6 · · · 6 i′N,t.

Since degxr
(u1 · · ·uN) = degxr

(v1 · · · vN) for r = 1, . . . , q − 1 with q 6 n − 1, it follows
from the above sequences of inequalities that for any ij,k 6 q − 1, ij,k = i′j,k. Hence
degxr

(uj) = degxr
(vj) for all j and 1 6 r 6 q − 1. Condition (ii) of Definition 14 implies

that there exists m such that degxq
(um) < degxq

(vm).
Let um = xk1xk2 . . . xkt , vm = xl1xl2 . . . xlt such that k1 < · · · < kt and l1 < · · · < lt

and q = li for some 1 6 i < t. Then k1 = l1, . . . , ki−1 = li−1 and ki > li = q. Set j = ki.
We show that xqum/xj ∈ It(G). By contradiction suppose that (supp(um) \ {xj}) ∪ {xq}
is not an independent set of G. Then {q, kr} ∈ E(G) for some 1 6 r 6 t, r 6= i.
Since k1 = l1, . . . , ki−1 = li−1 and {xq, xl1 , . . . , xli−1

} ⊆ supp(vm), we have r > i. Hence
kr ∈ NGq [q], where Gq = G[q, q + 1, . . . , n]. Observe that q < ki < kr and NGq [q] is an
interval and a clique of G. This implies that ki ∈ NGq [q] and {ki, kr} ∈ E(G). Since
{xki , xkr} ⊆ supp(um), it follows that supp(um) does not correspond to an independent
set of G, a contradiction.

According to [7, Theorem 5.1] (see also [3, Theorem 6.24]), the Rees ring of a monomial
ideal satisfying the `-exchange property has a particularly nice presentation. To describe
this result, let <lex be the lexicographic order on S with respect to x1 > · · · > xn. A new
monomial order <′lex on R is defined as follows: for two monomials u1, u2 ∈ S and two
monomials v1, v2 ∈ T , we set u1v1 <

′
lex u2v2 if and only if (i) u1 <lex u2 or (ii) u1 = u2 and

v1 <
′ v2.

Theorem 15. Let I be a monomial ideal generated in one degree, satisfying the `-exchange
property. Then the reduced Gröbner basis of the toric ideal J with respect to <′lex consists
of all binomials belonging to the reduced Gröbner basis of L with respect to <′ together
with the binomials

xiyu − xjyv,

where xi > xj with xiu = xjv and j is the smallest integer for which xiu/xj belongs to I.

Let I ⊂ S = K[x1, . . . , xn] a graded ideal and P be a prime ideal with I ⊆ P .
Recall that I satisfies the strong persistence property with respect to P if for all k and all
f ∈ ((ISP )k : PSP ) \ (ISP )k there exists g ∈ ISP such that fg 6∈ (ISP )k+1. The ideal I is
said to satisfy the strong persistence property if it satisfies the strong persistence property
with respect to P for any prime ideal P containing I. Note that strong persistence implies
persistence, which means that Ass(Ik) ⊆ Ass(Ik+1) for all k.
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It is shown in [8, Theorem 1.3] that I satisfies strong persistence if and only if Ik+1 :
I = Ik for all k. Under the assumption that K is infinite I satisfies strong persistence if
R(I) is normal or Cohen-Macaulay, see [8, Corollary 1.6].

As a result of Proposition 3.1 and Theorem 15 we obtain

Corollary 16. Let G be a proper interval graph. Then for all t > 2, the independence ideal
It(G) satisfies the strong persistence property and all of its powers have linear resolutions.

Proof. It follows from Proposition 3.1 and Theorem 15 that all powers of It(G) have linear
resolution, see [5, Corollary 10.1.7]. By the results of Sturmfels and Hochster, mentioned
already in the proof of Corollary 13, we see that R(It(G)) is a normal Cohen-Macaulay
ring. By [8, Corollary 1.6], this implies strong persistence.

The following theorem which is a generalization of Theorem 2.4 in [10], proves conjec-
ture 2.3 in [10] for proper interval graphs.

Theorem 17. Let G be a proper interval graph on the vertex set [n] and I = It(G) for
some t > 2. Then for any positive integer m, Im has linear quotients.

Proof. Note that
I = 〈xi1 · · ·xit : {i1, . . . , it} ∈ St(G)〉,

where St(G) is the set of all t-independent subsets of G. Firstly we establish

A = {xi1,1xi1,2 · · ·xi1,mxi2,1xi2,2 · · ·xi2,m · · ·xit,1xit,2 · · ·xit,m :

i1,1 6 · · · 6 i1,m 6 i2,1 6 · · · 6 i2,m 6 · · · 6 it,1 6 · · · 6 it,m, and

{i1,`, i2,`, . . . , it,`} ∈ St(G) for all 1 6 ` 6 m },

is a minimal set of monomial generators for Im. To this aim, note that any minimal mono-
mial generator u of Im is the product of m monomials corresponding to some members
of St(G) and so is of degree tm. Thus it can be written as

u = xi1,1xi1,2 · · ·xi1,mxi2,1xi2,2 · · ·xi2,m · · ·xit,1xit,2 · · ·xit,m ,

where i1,1 6 · · · 6 i1,m 6 i2,1 6 · · · 6 i2,m 6 · · · 6 it,1 6 · · · 6 it,m. Assume, in contrary,
that there exists an index 1 6 ` 6 m such that {i1,`, i2,`, . . . , it,`} /∈ St(G). Then there
exist 1 6 j < j′ 6 t such that either ij,` = ij′,` or {ij,`, ij′,`} ∈ E(G). Consider the
multiset C = {ij,`, ij,`+1, . . . , ij,m, . . . , ij′,1, ij′,2, . . . , ij′,`}. Since G is proper interval, any
two vertices in C are either equal or adjacent in G. Let u1, . . . , um ∈ G(I) such that
u =

∏m
i=1 ui. Since xC |

∏m
i=1 ui and deg(xC) > m + 1, there exists some 1 6 i 6 m and

p, q ∈ C such that xpxq|ui. Note that ui is squarefree and hence p and q are distinct.
Since supp(ui) corresponds to an independent set of G, we should have {p, q} /∈ E(G).
This is a contradiction.

Conversely, it is obvious that any member of A is the product of m monomials corre-
sponding to members of St(G) and so belongs to Im.
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Now consider the lex order induced by x1 > x2 > · · · > xn on the minimal monomial
generators of Im. Let u, u′ ∈ A with u′ >lex u. Let

u = xi1,1xi1,2 · · ·xi1,mxi2,1xi2,2 · · ·xi2,m · · ·xit,1xit,2 · · ·xit,m ;

and
u′ = xi′1,1

xi′1,2
· · ·xi′1,m

xi′2,1
xi′2,2
· · ·xi′2,m

· · ·xi′t,1
xi′t,2
· · ·xi′t,m

;

such that i1,1 6 i1,2 6 · · · 6 i1,m 6 i2,1 6 · · · 6 i2,m 6 · · · 6 it,1 6 · · · 6 it,m and
i′1,1 6 i′1,2 6 · · · 6 i′1,m 6 i′2,1 6 · · · 6 i′2,m 6 · · · 6 i′t,1 6 · · · 6 i′t,m and {i1,`, i2,`, . . . , it,`} ∈
St(G) and {i′1,`, i′2,`, . . . , i′t,`} ∈ St(G) for all 1 6 ` 6 m. Let is,k be the smallest index
such that is,k 6= i′s,k for some 1 6 s 6 t and 1 6 k 6 m. Then for any 1 6 s′ < s
and any 1 6 k′ 6 m, one has is′,k′ = i′s′,k′ and for any 1 6 k′ < k, is,k′ = i′s,k′ and

i′s,k < is,k. So, if we set u′′ =
xi′

s,k

xis,k
u, we have u′′ >lex u, u′′ : u = xi′s,k

and xi′s,k
|u′ : u.

Hence it remains to prove that u′′ ∈ A. Since u ∈ A, it is sufficient to show that
S = {i1,k, i2,k, . . . , is−1,k, i′s,k, is+1,k, . . . , it,k} ∈ St(G). Suppose in contrary that S is not
an independent set of vertices of G. Since u, u′ ∈ A, there is an integer s+ 1 6 j 6 t such
that {i′s,k, ij,k} ∈ E(G). Since i′s,k < is,k < ij,k and G is proper interval, {is,k, ij,k} ∈ E(G)
which contradicts to u ∈ A. So, we have S ∈ St(G) which implies that u′′ ∈ A as
desired.
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