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Abstract

We introduce the set of (non-spanning) tree-decorated planar maps, and show
that they are in bijection with the Cartesian product between the set of trees and
the set of maps with a simple boundary. As a consequence, we count the number
of tree decorated triangulations and quadrangulations with a given number of faces
and for a given size of the tree. Finally, we generalise the bijection to study other
types of decorated planar maps and obtain explicit counting formulas for them.

Mathematics Subject Classifications: 05A19,05C30,60D05

1 Introduction

In this paper, we study the combinatorial properties of tree-decorated maps via the use
of a simple bijection. A tree-decorated map is a (planar) map given with a distinguished
subset of the edges making up a tree. Tree-decorated maps form a one-parameter fam-
ily interpolating between planar maps, when the subtree has 1 edge, and spanning-tree
decorated maps, when the subtree has the same number of vertices as the whole map.
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Figure 1: A simulation, based on the bijection introduced on this paper, of a uniformly
chosen tree decorated quadrangulation with 90000 faces and with a tree of 500 edges. The
tree is in red and the image is close to an isometrically embedding of the map in R3.

Planar maps were introduced in [Edm60] and afterwards have been thoroughly studied
in many works from both a combinatorial (see for example [Tut62, Sch98, BDFG04])
and a probabilistic perspective (see for example [MM06, LG13, Mie13]). Spanning-tree
decorated maps were first studied in [Mul67], where they obtain a simple closed formula
to count them, which later was interpreted in [LW72, CDV86, Ber07] through bijective
methods. These bijections became key to the study of planar maps decorated by statistical
physics models [She16].

1.1 Motivation

The main motivation for the introduction of this model is to try to understand the dif-
ference, as metric spaces, between uniformly chosen planar maps and uniformly chosen
spanning-tree decorated planar maps.

The study of planar maps as metric spaces has been an active area of research in
probabilities these last years. The Cori-Vauquelin-Schaeffer bijection [Sch98] has been
used to understand the case of uniformly chosen planar quadrangulation with f faces.
Some asymptotic properties are: the distances scale like the number of edges to the power
1/4 and there is an explicit limiting metric space called Brownian map [MM06, Mie13,
LG13]. However, in the world of uniformly chosen spanning-trees decorated planar maps,
we do not know much. Only bounds on the order of the diameter as a function of the
number of edges are known [GHS17, DG18]. On the optimistic side, Lehman and Walsh’s
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bijection [LW72] shows that, as a plane tree, the spanning tree decorating the map is
chosen uniformly over all trees with a given number of edges.

The main reason why it is difficult to understand distances in the context of spanning-
tree decorated maps becomes clear when one compares it to the case of planar quad-
rangulations. The main tool used to study distances in these planar maps is the (CVS)
bijection, which relates a planar map to a pair of trees. In this bijection, one of the trees
encodes the distance to a marked point, thus by knowing this tree, one gets an immediate
upper bound on the diameter of the map. On the side of tree-decorated planar maps,
we are not that lucky. Even though Lehman and Walsh’s bijections [LW72, Ber07] relate
them to a pair of trees, it is not possible to extract any information about distances in
the original graph from just looking at either of them.

At this point, let us make a remark from the point of view of conformal field theory:
uniformly chosen planar maps are not expected to have the same scaling limit as the
spanning-tree decorated planar maps. This is because, while uniformly chosen planar
maps are models with central charge equal to 0 (c = 0), spanning-tree decorated maps
have an associated central charge of −2 (c = −2) [JS04]. Recall that tree-decorated planar
maps interpolate between these two models. Trying to understand how this interpolation
works in the limit is the main interest of the follow-up paper [FS19].

1.2 Results

Let us, now, present the main results of the paper. For detailed definitions, we refer the
reader to Section 2.

The main result of this paper is an explicit bijection between tree-decorated maps and
pairs consisting in a map with a simple boundary and a planar tree.

Theorem 1. The set of tree-decorated maps with f faces decorated by a tree with m edges
and a root-edge on the tree, is in bijection with the Cartesian product of the set of trees
with m edges and the set of maps with a simple boundary of size 2m with f interior faces.

The bijection can be summarise as follows: the tree is kept and the map with a
boundary is produced by a duplication of the edges of the tree. We call this direction
of the bijection ungluing, and its inverse gluing. Note that the gluing consists only in
identifying the boundary of the map using the equivalence relationship generated by the
tree. Additionally, let us note that as the decorating tree is kept without any changes,
in a uniformly chosen tree-decorated map, the law of the tree is uniform among all plane
trees of a given size (Corollary 13). This is a generalisation of the result for spanning-
trees decorated maps. Furthermore, this also shows that the bijection also works when
restricted to maps decorated by a special type of tree, e.g. binary trees, etc..

The main contribution of Theorem 1 is to connect the study of tree-decorated maps
to that of maps with a boundary. In the spirit of the motivation, note that maps with
boundary are also an interpolation model, as when the boundary is of size 2, we recover
planar maps, and, when the boundary has twice the number of edges, we recover planar
trees. This effect was explored, for uniformly chosen maps with a boundary in [Bet15],
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and we hope that the bijection allows us to transfer the transition from map to a tree to
that from a map to a spanning tree-decorated map.

Important consequences of Theorem 1 are counting formulas for some subsets of tree-
decorated maps. A close look at the bijection of Theorem 1 shows that the ungluing
procedure changes only the newly created face. Thus, it is possible to obtain counting
formulas for tree-decorated (and spanning-tree decorated) maps with prescribed face de-
gree distribution, e.g. q-angulations. To obtain these results, we need to count maps with
a simple boundary and use a re-rooting argument. Luckily, we can find these countings
in [Kri07] for triangulations and in [BG09] for quadrangulations.

Corollary 2. For m ⩽ f/2 + 1, the number of tree-decorated triangulations where the
tree has m edges and the map has f faces is

2f−2m (3f/2 +m− 2)!!

(f/2−m+ 1)!(f/2 + 3m)!!

3f

m+ 1

(
4m

2m,m,m

)
, (1)

where n!! stands for the double factorial of n.
Furthermore, for m ⩽ f +1, the number of tree-decorated quadrangulations, where the

tree has size m and the map has f faces is

3f−m (2f +m− 1)!

(f + 2m)!(f −m+ 1)!

4f

m+ 1

(
3m

m,m,m

)
. (2)

Note that triangulations, resp. quadrangulations, with f faces have f/2 + 2 vertices,
resp. f + 2 vertices. Thus, one can also find the number of spanning tree-decorated
triangulations and quadrangulations. These formulas appeared first in [BM11], and were
based in Lehman and Walsh’s bijection [LW72]. Thus, these results give a new bijective
proof of them.

Corollary 3. The number of spanning-tree decorated triangulations with f faces, where
the root-edge may be placed in every possible oriented edge (not necessarily in the spanning-
tree) is

12f

(f + 4)(f + 2)2

(
2f

f, f/2, f/2

)
. (3)

Furthermore, the cardinal of the set of spanning-tree decorated quadrangulation with f
faces where the root-edge may be placed in every possible oriented edge (not necessarily in
the spanning-tree) is

4f

(f + 1)2(f + 2)

(
3f

f, f, f

)
. (4)

Let us remark that the counting formula for general maps with given boundary length
and number of edges exists and is not closed so we decided not to present it here. Nev-
ertheless, we compute its generating function in Section 4.2. Furthermore, note that the
spanning-tree decorated maps with a given number of faces is infinite, so as it is stated
the bijection is not interesting in that case. Nevertheless, given that the bijection does
not change the vertices, edges and faces in the interior the same proof can be adapted to
obtain the following result.
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Theorem 4. The set of tree-decorated maps with e+m edges decorated by a tree with m
edges and a root-edge on the tree, is in bijection with the Cartesian product of trees with
m edges and maps with a simple boundary of size 2m and e interior edges.

The main bijection is not only useful to obtain counting results, but we plan to use
it in [FS19] to study distances in uniformly chosen tree-decorated maps. The bijection
becomes useful because distances in uniformly chosen maps with boundaries (simple or
not) have been intensively studied [Bet15, BM17, GM19] and are better understood than
that of tree-decorated maps.

Let us, also, mention that the bijection presented in this work is simple enough so that
decoration on the vertices can be carried between the two objects. We believe that this fact
may be an important tool to understand the behaviour of random tree-decorated maps
whose underlying distribution is not uniform, but proportional to the partition function
of a statistical physic model. These probability laws have been object of great interest
in the statistical physics community, especially after the introduction of the so-called
‘Hamburger-Cheeseburger’-bijection [She16].

Most of the other results of this article consist in using the main idea of the bijection
of Theorem 1 to produce bijections between other combinatorial objects. In this flavour,
we study forest-decorated planar maps (see Corollary 21) and tree-decorated planar maps
with a simple boundary (see Corollary 20). The latter one allows us to make the gluing
procedure in a progressive dynamical way (see Proposition 16).

On another note, we also explain what happens when one tries to use our gluing
procedure with maps whose boundary is not necessarily simple. In this case, the gluing
does not produce maps, but what we call bubble-maps (see Section 3.3), which are graphs
embedded in a tree-like structure of spheres, and which are decorated by a specific type
of circuit (see Proposition 16).

As a final remark, we would like to say that gluing maps along the boundary has
already been done, but not to study the case where the decoration is a uniform tree. Some
gluings in the literature are, for example, self avoiding walks [DK88, Bet15, GM16, CC16],
loop erased-random walks [MS16] and loops [BBG11].

1.3 Organisation of the paper

The paper is organised as follows: we start with the preliminaries, where we carefully
present the classical objects that are important for the paper together with the maps we
are interested in. In Section 3, we present all the bijections and their proofs. Finally, in
Section 4, we discuss the counting formulas we obtain from the bijections.

2 Preliminaries

2.1 Elementary definitions

In this section, we present the elementary concepts that appear in this work. As the
main result of the paper is a self-contained bijection, the counting results are only stated
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when needed. For an introduction to planar maps, we recommend, for example, to see
[GJ04, FS09] and [BM11].

A rooted planar map, or map for short, is a finite connected graph embedded in
the sphere that has a marked oriented edge. We consider that two maps are the same if
there is an homeomorphism between them that preserves the orientation (i.e. respecting
a cyclic order around every vertex). We call root edge the marked oriented edge and
root vertex its starting point.

The faces of a map are the connected components of the complement of the edges
in the embedding. The degree of a face is the number of oriented edges for which the
face lies at its left. A q-angulation is a map where each of the faces has degree q. We
set Mf to be the set of all maps with f faces. Finally, we call a planted plane tree,
or tree for short, a map with a single face and we denote the set of planted plane trees
with m edges by Tm.

We will encode trees of Tm using walks. In the literature, one can find several of
these codings, see for example Section 1 of [LG05]. Here we are interested in the contour
function. This is a bijection that associates to each rooted plane tree with m edges a
Dyck path C indexed by J0, 2mK. For a more detailed description we refer to Section 1.1
of [LG05] and Section 2 of [Ber07].

A rooted plane tree t has an intrinsic way of visiting all of its oriented-edges. This
visit can be represented by a walker that starts from the root vertex and turns around
the tree. The walker follows the direction of the root edge touching the tree with his left
hand1 as long as it walks. The walker, then, continues until he returns to the root edge.
Note that this walk visits every oriented edge only once. Now, we define the contour
function of t Ct : J0, 2mK→ N as the function for which Ct(n) is the distance to the root
vertex (height) of the vertex visited at time n by the walker (time 0 for the root vertex).

The inverse of this bijection t→ Ct is explicit. We say that a function C : J0, 2mK→ N
is a contour function if C(0) = C(2m) = 0 and its increments are ±1, i.e., C is a
Dyck path. We can construct a plane tree from a contour function by saying that two
points n1, n2 ∈ J0, 2mK are equivalent if for n1 ⩽ n2

C(n1) = C(n2) = inf
n∈Jn1,n2K

C(n). (5)

The vertices of the tree are the equivalence classes of the relation and the edges can be
recovered as follows: two vertices have an edge between them if there exists one element
in each of their equivalent classes that are exactly at distance 1 in J0, 2mK. Note that each
edge is associated with exactly two steps of the walk, one going up and one going down.

We define a non-self crossing circuit as a sequence of directed edges (ei)
l−1
i=0, for

some l ∈ N, embedded in the plane, such that the head of ei is the tail of ei+1 mod l for
all i ∈ J0, l − 1K, and that it does not cross itself. The last part means that for every
vertex in the circuit, we do not find the pattern ei, ej+1, ei+1, ej in cyclical order, where
i, j ∈ J0, l − 1K and the sum in the indexes is modulo l.

1Note that, in the literature, the walker usually walks following its right hand. In this work, the left
hand convention simplify some statements.
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v0 v1 v2
c2
c4c6

c0 c1
c3

c5

v3

v4

Figure 2: Tree with part of the contour in green, the corners are numbered as ci and are

shown in gray. All the corners belonging to the same circle belong to the same equivalence class

associated with a vertex, for example v2 = [c2]c = [c4]c = [c6]c.

The face that is at the left of the root edge will be called the root face. In what
follows, maps with a boundary are maps where the root face plays a special role. The
set of oriented edges that have the root face to its left are called the boundary. The
number of oriented edges in the boundary will be called its size. The boundary will be
seen either as a set of oriented-edges or as a cyclic path around the root face, modulo
cyclic rotation of the indices. All faces different from the root face are called internal
faces.

We denote by Bf,m the set of maps with boundary of sizem with f internal faces. Note
that each oriented edges in the boundary of a map has a canonical label in J0,m− 1K :=
{0, 1, . . . ,m−1} coming from the number of steps that a walker, who starts from the root
edge and who follows the boundary of the root face, takes to arrive to a given edge (label
0 for the root edge).

When the boundary of the map is simple, i.e., the boundary is not vertex-intersecting,
the labels of the edges induce a labeling of the vertices of the boundary (the label of the
root-vertex is 0). The set of maps with a simple boundary in Bf,m is denoted by SBf,m.

Let us also introduce another type of boundary. A boundary is called bridgeless if
the walk described above never goes twice along the same edge. Let us give an alternative
definition. An edge is called a bridge if its suppression disconnects the map. Thus, a
boundary is said to be bridgeless if it does not contain any bridges.

A map m1 is said to be a submap of m2 (with the notation m1 ⊂M m2) if m1 can
be obtained from m2 by suppressing edges and vertices. This definition implies that m1

respects the cyclic order of m2 in the vertices and edges remaining. A decorated map is
a map with a special submap, i.e. a pair (m, sm(m)) with m ∈ Mf for some f ∈ N and
sm(m) ⊂M m.

2.2 Objects of interest and notation

We present, now, the main objects of study of the paper. In particular, we rigorously
define tree-decorated maps.

Take a map m ∈ Mf and define Tm(m) to be the set of (unrooted) trees t ⊂M m
with m edges. A tree-decorated map is a pair (m, t) with m ∈ Mf and t ∈ Tm(m).
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We denote by MT,m
f the set of all of these pairs. Furthermore, we denote M̊T,m

f the set
of all tree-decorated maps where the root of the map is in the tree. Note that one
can do similar definitions when the map m is a q-angulation. The set of tree-decorated
triangulations and quadrangulations is counted in Corollary 2 and that of spanning-tree
decorated triangulations and quadrangulations is counted in Corollary 3.

Let us now consider a map with a simple boundary mb ∈ SBf,m1 and define Tb
m2

(m) to
be the set of trees t ⊂M mb with m2 edges containing a unique vertex on the boundary,
the root vertex. A tree-decorated map with a simple boundary is a pair (mb, t)
with mb ∈ SBf,m1 and t ∈ Tb

m2
(mb). We define the set of all these pairs as BT,m2

f,m1
. The set

of all tree-decorated triangulations with a simple boundary is counted by (16) and that
of quadrangulations is counted by (17).

3 Main Bijections

3.1 The basic bijection

3.1.1 From tree decorated maps to maps with simple boundary and trees

In the following paragraphs, we construct the first part of the bijection: the ungluing
procedure. This procedure is represented by a function ϕ that takes a tree-decorated map
in M̊T,m

f and gives a tree in Tm together with a map with a simple boundary in SBf,2m.
Basically, in this procedure, the resulting tree is equal to the decorating tree and the map
with a boundary is obtained by a duplication of the oriented edges of the tree in such a
way that the newly appeared oriented edges form a face, see Figure 3.

(m, t) ϕ
−→ mb t′

+

Figure 3: A simple sketch of the ungluing procedure.

Consider a tree decorated map (m, t) ∈ M̊T,m
f , and denote (mb, t′) as the (soon-to-be-

constructed) image of (m, t) under ϕ. The tree t′ is taken equal to the tree t, in particular
that the root edge of t′ is the same as that of t, i.e., the one of the tree decorated map.

To construct the map with a simple boundary mb, we start defining the notion of a
corner of t at a vertex x as a pair of two consecutive oriented edges (for the clockwise
order), where the first one finishes at x and the second one starts at x. Define K as the
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set of corners of t. An oriented edge that starts or ends in x is said to go to a corner
(e1, e2) of x if it is between e1 and e2 for the clockwise order.

We can now define mb. The set of vertices of mb is the union between the subset of
vertices of m that are not in the tree t, i.e. V (m)\V (t), and K. To define the edges of
mb we will use those of m. Each oriented edge e⃗ of m whose vertices do not lie in t is
also an edge of mb. Each oriented edge e⃗ of m that has at least one vertex in t becomes
an oriented edge, that instead of being connected to the vertex in the tree, is connected
to the corner in which the edge is incident. Finally, we add the oriented edges (c1, c2)
between two elements of K if c1 and c2 seen as corners in t are connected by an oriented
edge in t.

To finish the definition of mb we are only missing the root edge and the embedding.
The root edge of mb is the edge created from the root edge of m by the procedure described
above. The embedding is characterised by the cyclic orientation of the edges which is the
same as that of m. In other words, in a corner the cyclic orientation is kept the same as
in m, and this can be done because all edges in mb that belong to a corner can be identify
with a unique edge in m.

ϕ
−→

Figure 4: Local image of ϕ

Let us, now, show the following result.

Lemma 5. The constructed map mb belongs to SBf,2m.

Proof. First, the boundary has clearly size 2m, since the edges of t have been duplicated.
Furthermore, the boundary of the map mb is simple, otherwise the tree would contain a
cycle.

To finish, we just need to show that mb is a (planar) map, thus that it can be embedded
in the sphere, S2. This comes directly from the fact that there is an orientation preserving
isomorphism that goes from S2\t to S2 ∩ {(x, y, z) : x > 0}, and that can be extended to
the boundary in a way that it sends prime ends of t in S2\t to points in S2 ∩ {x = 0}
keeping the cyclical order between them 2. Thus, one can embed mb in S2 using any of

2In this case it follows from the fact that S2\t is simply connected (so one can use Riemman’s theorem),
together with results of the behaviour of conformal functions close to the boundary. See Chapter 2 of
[Pom13] for definitions of prime ends and the main results in the boundary behaviour of conformal maps.
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these functions. To finish, it is enough to see that any of this isomorphisms produce an
embedding of mb with boundary contained in S2 ∩ {x = 0}.

3.1.2 From maps with simple boundary and trees to tree decorated maps

It is time to define the gluing function ψ that takes as argument a map with a boundary
in SBf,2m and a tree in Tm and returns as result a tree-decorated map decorated in a tree
of size m and is the inverse of the ungluing function ϕ. Informally, ψ should identify two
oriented edges incident to the external face of the map using the relation given by the
oriented edges in the tree.

Let (mb, t′) be an element of SBf,2m × Tm and construct (m, t) ∈ M̊T,m
f , the value of

ψ((mb, t′)) as follows. Recall that the vertices of the external face of mb are indexed from
0 to 2m − 1, and call C the contour function of t′. Recall that C induces an equivalent
relation on vertices via equation (5), and define V ′ as the set of equivalence classes.

Let us now construct m. The vertex set is made by the union of V ′ with all vertices of
mb that do not belong to the exterior face. The edge set of m is constructed from those of
mb in the following way. Let (x, y) be an oriented edge of mb, then the edge (G(x), G(y))
is in mb, where

G(x) :=

{
[l] if x ∈ V ′,

x else,
(6)

where l is the label of x in the boundary, and [l] is the equivalence class of l under the
equivalence relation defined by C.

Before defining the embedding, let us give some properties of the resulting graph.

• If (x, y) is an oriented edge that belongs to the boundary of mb, its reverse (y, x) is
associated exactly to one other edge (y′, x′) such that (x′, y′) belongs to the boundary
of mb. In other words, C induces a perfect matching of the edges in the boundary

• As the boundary of mb is simple, the image of the edges in the boundary of mb has
the same tree structure as t′. We define t as this image.

To finish the construction of m, we need to set the cyclical order of the edges around
each vertex in the map. If v is a vertex of m that does not belong to V ′, we set the order
or the edges surrounding it as the order of mb. In the case where v ∈ V ′, we consider the
order as the gluing of orders, following the corner identification around v (see Figure (5)).
Note that this also makes that the cycle order of t is the same that the one of t′.

To finish, let us actually prove that there exists an embedding that satisfies the given
properties.

Lemma 6. (m, t) belongs to M̊T,m
f

Proof. As t is a subset of m, is a tree and has m edges, we just need to prove that there
exists an embedding that satisfies the order we imposed. This is showed as Lemma 5,
because of the existence of a orientation preserving isomorphism that goes from S2 ∩
{(x, y, z) : x > 0} to S2\t, and that takes any cyclically ordered prime ends of t in S2\t
to elements of S2 ∩ {x = 0} keeping the same cyclical order.
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vikvi1

ci1 ci2

cik

ci1 ci2

cik

Figure 5: Gluing of corners and edge order around a vertex. For vertices vi1 , vi2 , . . . , vik with

corners in the same class, we associate their order of edges and we glue these orders following

the corner sequence of the contour function.

3.1.3 The gluing is actually a bijection

Let us now prove that the gluing and ungluing are inverse of each other.

Proposition 7. For f,m ∈ N, ψ ◦ ϕ = Id in M̊T,m
f and ϕ ◦ ψ = Id in SBf,2m × Tm.

Proof. Consider m ∈ M̊T,m
f , and let us show that ψ(ϕ(m)) = m. First note that the

composition of both functions preserves the number of vertices of m. This is because, every
vertex that does not belong to the decoration does not change by the transformations and
the vertices on the decoration are separated by ϕ in corners and then gathered by ψ in
exactly the same vertices of m.

Let us now note that the edges are kept the same. This is because every edge without
endpoints in the decoration remains after the transformations and edges with endpoints
in the decoration again are unglued from the decoration by ϕ and glued after by ψ.

Finally, we see that the orientation of the edges is kept. The reason for this is that for
vertices that are not in the tree the orientation is kept the same, and for edges that hit
in the tree, the orientation is carried by the tree that is the same in both cases.

Remark 8. Proposition 7 can also be proven using that the isomorphisms taken in Lemma
5 and 6 may be chosen to be the inverse of each other.

Let us remark that the bijection ϕ makes the following correspondences.

Tree-decorated map (Map with a simple boundary, tree)
Faces of degree q ←→ Internal faces of degree q,
Vertices not in the tree of degree d ←→ Internal vertices of degree d,
Edges not in the tree ←→ Internal edges,
Edges in the tree ←→ Boundary edges,
Corners of the tree ←→ Boundary vertices.

From the previous correspondences we conclude the following results.

Lemma 9. For any q ∈ N, the ungluing function is a bijection between the set of tree-
decorated q-angulations with f faces decorated by a tree of sizem and the Cartesian product
between the set of q-angulation with simple boundary of size 2m and the set of planar trees
with m edges.
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Lemma 10. The ungluing function is a bijection between the set of tree-decorated maps
with e+m total edges decorated by a tree of size m and the Cartesian product between the
set of maps with simple boundary of size 2m with e internal edges and the set of planar
trees with m edges.

Remark 11. Let us also note that as vertex and faces are kept the same, except for the
newly created external face, any face or vertex decoration commutes with the bijection.

Remark 12. The bijection can be restricted to different tree families. Since if T ⊂ Tm,
the gluing procedure produces a map decorated in a tree that belongs to T . Conversely,
if (m, t) is a decorated map and t ∈ T , then the ungluing procedure gives a map with a
boundary and t′ ∈ T .

Furthermore, as the ungluing keeps the tree without any changes we obtain the fol-
lowing probabilistic result.

Corollary 13. The tree of a uniformly chosen tree-decorated map with f faces decorated
by a tree of size m is uniformly chosen in Tm.

3.2 Extensions

In the following section, we discuss some extensions of the gluing procedure which allows
us to make bijections between other combinatorial objects.

3.2.1 Tree-decorated map with a simple boundary

In this subsection, we discuss the gluing procedure between a tree and a map with a
simple boundary that is bigger than the contour of the tree, and how this allows to create
a dynamic gluing of the boundary.

For f,m1,m2 ∈ N∗, we extend the gluing function ψ to SBf,m1+2m2 × Tm2 → BT,m2

f,m1
,

meaning that we glue a rooted tree with contour smaller than the boundary of a simple
boundary map, the exterior face in this case shrinks but does not disappear. The resulting
decorated map has a decoration that is a tree that shares only one vertex with the exterior
face. We define the root edge of the resulting decorated map as the image of the edge
labeled 2m in the simple boundary map. This can be made formal, adapting the proof of
theorem 1, to conclude the following proposition.

Proposition 14. Let f,m1,m2 ∈ N. The set of tree-decorated map with a simple bound-
ary, BT,m2

f,m1
, is in bijection with the Cartesian product between trees and maps with a simple

boundary, Tm2 × SBf,m1+2m2.

Let us present a fact about gluing that we believe may become useful in the future, es-
pecially when working with local limits. This fact is going to be presented in probabilistic
terms, as it may be its main use.

Take x ∈ J0,m − 1K and a contour function C of a tree of size m, i.e., a Dyck path.
Then, for every level l ∈ N smaller than the value of C(x) there is a unique connected
maximal subset Jm(x, l),m(x, l)K ∋ x where C(·)− l is a Dyck path and

l = C(m(x, l)) = C(m(x, l)). (7)
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Note that the set of contour functions where this set is exactly [m,m] can just be recon-
structed by the Cartesian product between a positive path going from 0 to l− 1 in m− 1
steps and a positive path going from l − 1 to 0 in m− 1 steps.

Looking from a tree point of view, this decomposition allows us to progressively recover
all the vertices of the tree whose common ancestors with x is at distance at least l from
the root. This allows us to define a progressive procedure of gluing trees, where at time
t ∈ J0, l − 1K we glue the sub-tree whose vertices live in Jm(x, l − t),m(x, l − t)K with a
given map having a simple boundary of size 2m.

From a probabilistic perspective these remarks imply the following result.

Proposition 15. Let mb be a map with a boundary of size 2m and n vertices, chosen
uniformly at random in SBf,m and t be a tree of size m, also chosen uniformly at random
in Tm. Additionally, take x,m,m ∈ N with x ∈ J0,m− 1K. Call mt the map generated by
gluing the sub-tree generated by the vertices Jm(x, l − t),m(x, l − t)K with mb, where l is
the distance from t to x. Conditionally on the event

{Jm(x, l − t),m(x, l − t)K = Jm,mK},

the law of mt is uniform over the (m−m)/2-tree decorated maps with a simple boundary
of size m − (m − m) and whose root is at cyclic distance min{m,m − m} of the tree.
Now, call tt the tree decorating mt. We have that under the above conditioning, the map
mt minus tt, the tree tt and the tree tm\tt are all independent.

In more probabilistic words, the maps mt works as a renewal submap for the gluing
process of the tree.

3.3 Gluing with a non-simple boundary

To finish this section, we introduce a gluing procedure for the case when the boundary
of the map glued is not simple. The combinatorial objects that appear do not seem
canonical, so we discuss with more emphasis the complication that make them arise.

We mostly focus on the case, where the boundary is bridgeless. In that case, we can
make sense of a generalization of the gluing procedure. After that, we will explain why
the gluing procedure “does not make sense” when the boundary has bridges.

Let us start discussing the gluing between a map with a bridgeless boundary and a
rooted tree. Note that, in this case, the resulting glued “map” has a decoration that is
not necessarily a tree, but a submap (see Figure 6). This generates two problems.

The first one comes from the fact that the gluing is not injective. This is not a
central problem as it can be fixed: instead of considering the decoration as a submap, one
considers it as a non-self crossing circuit, defined in Section 2.1. The circuit is just the
image of the contour walk of the tree under the gluing. The fact that the boundary was
bridgeless, implies that the circuit only passes once by each oriented-edge.

The second problem that arises in the gluing is the main one: there are, in fact, two
types of cycles that may appear in the circuit. To describe them, let us first note that
cycles can only appear in vertices that come from a pinch point of the boundary. Thus,
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there are two possibilities for the image under the gluing of these vertices. Either, the
gluing identifies the corners of a pinch point with different vertices of the tree. These
generate cycles that preserve the topology.

On the other hand, if the gluing identifies two corners of a pinch point with the same
vertex in the tree, then a “wicked” point appears. That is to say, this vertex pinches
down the sphere, and the graph can no longer be embedded in the sphere but only in a
topological space with bubbles.

+
f1 f2 f3

←→

f1

f2
f3

Figure 6: Left: Bridgeless map with a non-simple boundary (interior faces are filled) and a tree.

Right: Bubbles (3D plot) formed by the gluing of a map with non-simple boundary and a tree.

We chose to leave the scar generated by the tree after the gluing (black), even though the

decoration is the green circuit (oriented edges following the direction of the root edge from the

root edge).

Let us explain, in a better way, what happens with the wicked points. For that it is
useful to assume that the map with a boundary is already embedded in the sphere. Let
x be a pinch point that generates a wicked point in the resulting object. We know that
if we remove x, the map with a boundary is left with two or more connected components
of interior faces, say C1 and C2. Note that two faces, f1 belonging to C1 and f2 belonging
to C2 can only be connected through a continuous path in the sphere that either passes
through x or passes through the exterior face of the map. After the gluing has been done,
the exterior face disappears. Thus, any continuous path that goes from the image of f1 to
that of f2 has to pass by x, as the tree does not code the difference between these edges.
Thus, the resulting glued “map”, is not a map since it cannot be embedded in the sphere:
removing the point x results in a disconnection of the faces, which never happens in S2.

Additionally note that “bubbles” are connected in an arborescent way, as they do
not form cycles. This is because, each bubble is associated with a starting point and a
subtree of the original tree, where two subtrees can only intersect in at most one vertex
(See Figure 6).

3.3.1 Bubble maps definition

In the next paragraphs, we will define more rigorously the notion of bubble maps. To
do this, we need to define the “supporting topological spaces”, which in contrast to the
case of planar maps are surfaces that are not homeomorphic to S2. This is because the
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construction explained previously produces bubbles that can be imagined as on Figure 7.

Figure 7: Bubble structure.

The “supporting topological spaces” that appear in the gluing are going to be called
oriented bubble topological space (OBTS). They are are sets S having the fol-
lowing characteristics:

• S is the union of a finite number b of surfaces, called thereafter “bubbles” B1, B2, . . . ,
Bb taken in a fixed order (meaning that the label i of Bi will play a role, see Figure 10
for an idea). The sequence of bubbles (B1, · · · , Bb) satisfies:

– Each Bj is oriented and homemorphic to S2.

– For every j ̸= j′ the intersection Bj ∩Bj′ is either empty or a single point3.

• The bubble adjacency graph AG (to be defined) is a tree (see Figure 8).

0

1

3

4 2

{1, 3}

{0, 1, 4}

{2, 4}

Figure 8: OBTS together with its adjacency graph in blue.

To finish the definition of an OBTS we need to define the adjacency graph. To do
that we introduce the notion of a junction. We say that a set A in Pow(J1, bK) (the
powerset of the set J1, bK) is a junction if⋂

j∈A

Bj ̸= ∅

3We do not exclude the fact thant two bubbles may intersect at the same point.
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{0, 1, 2}

{2, 3}

(a) An OBTS.

0

2

3

1

0

2

3

1

{0, 1}

{0, 2}

{2, 3}

(b) An OBTS.

0

2

3

1

0

2

3 1

{2, 3}

{0, 2}

{0, 1}
{1, 3}

(c) Not an OBTS. AG
contains a cycle.

0

2

3

1

0

2

3 1

{2, 3}

{0, 2}

(d) Not an OBTS. AG
is not connected.

Figure 9: At the top sketch of different topologies. At the bottom the AG graph: white
points are junctions while black vertices come from each bubble.

and if A is maximal for the inclusion order. Each junction point records the labels
of the bubbles that intersect at the same point. We call IP the set of all junction
points. At this point it is important to notice that junctions and intersection points
between bubbles are in correspondence. Now we define the graph AG by specifying
its vertex and edge sets:

– The set of vertices is IP ∪ J1, bK

– The edge set E is the set of pairs {x, y} where x ∈ IP, y ∈ J1, bK and y ∈ x.

For an idea of OBTS’s see Figure 9.
Now we consider a OBTS

S = B1 ∪B2 ∪ · · · ∪Bb. (8)

as a “labeled” topological space (see Figure 10 for an intuition), meaning that it is more
than a “formal union” of bubbles since each bubble comes with an orientation and rank
in a list (to be totally formal, we should have written S as a function of the b-tupple
(B1, . . . , Bb) ).

0

2

3

1

0

2
3

1

6=

Figure 10: OBTS together with its adjacency graph in blue.
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We say that two OBTS S = ∪bi=1Bi and S
′ = ∪b′i=1B

′
i are equivalent if there exists an

homeomorphism from S to S ′ which preserves the labelings of bubbles and the orientation
of bubbles in correspondence. We call such an homeomorphism good homeomorphism.
Notice that S equivalent to S ′ implies that b = b′ and that the AG trees are the same as
labeled graphs.

We call a pre-bubble map a pair (D,S) where S is an OBTS and D is the drawing
of a connected graph on S, such that for each junction point of S there is a vertex point
of D and that the restriction of D to each bubble is a proper cellular drawing (as usual
for maps).

Finally, we call bubble map the equivalence classes of pre-bubble maps for the fol-
lowing equivalence relation: (D,S) ∼ (D′, S ′) if there exists ϕ a good homeomorphism
ϕ : S → S ′, s.t. ϕ(D) = D′.

Returning to decorated bubble maps, let us note that the image of the path given by
the walker around the tree, generates a non-self crossing circuit that passes exactly twice
by each edge, more precisely, once per each oriented edge. From this circuit, it is possible
to recover the original tree structure. Let us describe an algorithm that allows to recover
the contour function C of the tree by using the circuit. Start at n = 0 and C(0) = 0 from
the root-vertex and following the root-edge, and iterate for each new edge of the circuit:

• If the edge has been visited, set C(n+ 1) = C(n)− 1.

• If this is the first time the edge has been visited and it visits a new vertex, set
C(n+ 1) = C(n) + 1.

• If this is the first time the edge has been visited and it visits an already visited
vertex, set C(n + 1) = C(n) + 1 and create a new non-self crossing circuit, where
the visited vertex is duplicated. All edges visited before time n (not including the
one in this step), goes with the vertex going to the right, and all the others go
with the vertex going to the left. At distance ε > 0 from this point, the graph is
embedded homeomorphically as before. This can be done because the circuit is not
self-crossing.

• Set n = n+ 1.

Let us, now, define the image set of the gluing of a tree with a bridgeless map with a
boundary. For f,m ∈ N, we say that (m, c) ∈ M̊C,m

f if: m is a bubble-map with f faces, c
is a non-crossing circuit with length 2m, going trough each edge twice, passing by every
pinched point of the bubble-map and containing the root edge. Let us also define M̊C,m

E=e

as M̊C,m
f , where in the place of f faces, we consider e+m edges.

Let us summarize the discussion.

Proposition 16. When one glues a tree t′ ∈ Tm with a map with a bridgeless boundary
mb ∈ Bf,2m, one obtains a map if and only if there is no vertex where the boundary of mb

is not simple and that is identified by t′.
More importantly, the gluing is a bijection between Tm × Bf,2m and M̊C,m

f .
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Proof. Given the above discussion, we only need to show that we can perform the ungluing.
Let us note that the tree can be recovered from the algorithm described above. To recover
the map with a boundary, one just needs to duplicate the edges crossed as described in
Figure 4. Now, we only have to explain what needs to be done close to the pinch points.
In those points, one just needs to locally modify the underlying space so that pinch points
give rise to circular sectors and all these circular sectors belong to the internal face. The
circular sectors are determined by the circuit.

Remark 17. Again, the bijection does not modify the degree of interior faces, so Propo-
sition 16 is valid when we restrict our attention to bubble q-angulations.

It can be adapted to families of maps with a given number of edges.

Proposition 18. The set M̊C,m
E=e is in bijection with the Cartesian product of Tm with the

set of maps with bridgeless boundary with e internal edges and boundary of size 2m.

Let us finish this section by describing the effect of a boundary with bridges, which
prevents the extension of ψ. In this case, we do not only have problems with identification
of vertices, but also with the identification of edges. In particular, there may be two
bridges in the boundary having oriented edges identified in the tree. This makes that the
circuit we create passes at least twice by the image of that oriented edge, and thus, it
makes it impossible to reverse the gluing.

+

←→
Figure 11: Left: Bridge map with a non-simple boundary (red tree) and a tree to glue.

Right: The gluing of the objects on the left. As in fig. 6 the green part represents the circuit

(each edge in the red tree appears twice as we follow the root edge on the boundary of the

root-face). We put blue lines for identifications made by the gluing. The edges of the black tree

that do not contain the root-edge generate only one edge e1, after the gluing, what makes the

green circuit visit four times e1.

4 Countings

In this section, we discuss how the bijections presented are translated in to counting
formulas. Before stating the results, we need to introduce a re-rooting procedure, which
allows us to obtain formulas for decorated maps whose root is not necessarily in the
decoration.
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For convenience, in this section, for any set of maps S, we denote by S(q) the subset
of S containing the maps whose faces (inner faces in the case of maps with boundary)
have all degree q.

4.1 Re-rooting procedure

In this section, we explain what we call the re-rooting procedure. The motivation behind
this comes from the fact that the decorated objects considered here so far have the root-
edge in the decoration, while, for example in the literature, spanning-tree decorated maps
have theirs root-edge in every possible oriented edge of the map. This procedure is quite
general, instead we chose to explain the key idea on a particular family of objects.

Fix r ⩾ 1. A forest is a tuple of trees. We call f an r-forest, if f = (ti, e⃗i)
r
i=1, where

(ti, e⃗i) is a rooted tree for all i ∈ {1, 2, . . . , r}. We define Fm1,m2,...,mr as the set of all
r-forests such that for every i ∈ {1, 2, . . . , r}, ti has mi edges.

Define an r-boundaries map (m, e⃗1, e⃗2, . . . , e⃗r) as a rooted map (m, e⃗1) and (e⃗i)
r
i=1 r

non intersecting edges of m. The map has multiple special (ordered) faces f1, f2, . . . , fr,
called the boundary faces, where fi is the face to the left of e⃗i; it is also required that the
faces fi are simple and pairwise vertex-disjoint. We say that e⃗i is the root-edge of the i-th
boundary. We denote by MSBf,m1,...,mr the set of all maps with r-boundaries (ordered), f
internal faces and with boundaries of size m1, . . . ,mr.

We also define a multiply rooted r-forest-decorated map as a decorated map
(m, (ti, e⃗i)

r
i=1), where (m, e⃗1) is a rooted map and (ti, e⃗i)

r
i=1 is a forest with non vertex-

intersecting rooted trees with ti ⊂M m. Notice that from this definition the root-edge of
t1 coincides with the root-edge of m. We define M̊F,m1,m2,...,mr

f as the set of multiply rooted
r-forest-decorated maps where the size of ti is mi for all i ∈ {1, 2, . . . , r}.

The “re-rooting procedure” is needed in order to count multiply rooted r-forest-
decorated map, when instead of considering r root edges one considers just one that
could be placed in every possible oriented edge of the map. For this, let us finally define
a r-forest-decorated map as the decorated map ((m, e⃗), {ti}i∈I), where (m, e⃗) is a
rooted map, |I| = r and {ti}i∈I is a set of non vertex-intersecting unrooted trees with
ti ⊂M m. Notice that we define the decorating forest {ti}i∈I as a set. Consider an infinite
vector v⃗ = (v1, v2, v3, . . . ) with finitely many non-zero coordinates. We define the set MF,v⃗

f

of r-forest-decorated maps, for which there are among {ti}i∈I , for all j ∈ N∗, vj trees with
j edges.

The main result of this section is the following formula

|M̊F,m1,..,mr

f (q)|2m(f, q) = |MF,⃗c
f (q)|

(
r∏

i=1

2mi

)∏
k

ck!, (9)

where m(f, q) is the number of edges of a q-angulation with f faces, and where c⃗ is the
infinite vector which encodes the multiplicity of the values mi, i.e.

ck := |{i ∈ J1, rK : mi = k}|, k ⩾ 1. (10)
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Let us now prove Equation (9). It just follows from counting a slightly bigger set. Let
us call

M̃F,m1,..,mr

f (q)

:=
{
(m, e⃗, (ti, e⃗i)

r
i=1) : (m, (ti, e⃗i)

r
i=1) ∈ M̊F,m1,..,mr

f (q) and e⃗ is an oriented edge of m
}
.

In other words, an element of M̃F,m1,..,mr

f (q) is made of an element of M̊F,m1,..,mr

f (q) together
with an additional marked oriented edge e⃗ that can be oriented in any possible oriented
edge (including the e⃗i’s). We can compute the cardinality of M̃F,m1,..,mr

f (q) in two ways.
The first one is to use the definition, which gives the product between the amount of
possible values of e⃗ and the cardinality of M̊F,m1,..,mr

f (q), this gives the left-hand side of (9).

The other one is to define a bijection between M̃F,m1,..,mr

f (q) and MF,⃗c
f (q) with an ordering

of its trees respecting that the i-th tree has size mi and then assigning one root edge
to each tree. Therefore the cardinality of M̃F,m1,..,mr

f (q) is obtained by the multiplication
shown in the right-hand side of (9), where

∏
k ck! comes from the ordering needed only

for the trees of each size.

Remark 19. It is important to remark that we can do this procedure as soon as we work
with two types of rootings of the same family of maps. The justification is subtle since if
one unroots a given map, certain symmetries may appear, breaking down the argument.
Instead, when distinguishing more than one edge symmetries do not appear and this type
of identities follow, since any automorphism of a map that fixes one oriented edge, fixes
all of them.

4.2 Counting relation between maps with a boundary and maps with a simple
boundary

The main interest of this section is to compute the generating functions of the maps with a
simple boundary, as they appear in the bijection presented in Section 3.1. To do it, we are
going to adapt the technique introduced in [BG09] that were used to link the generating
function of quadrangulations with a boundary to that of quadrangulations with a simple
boundary.

Let us start by noting that the set of maps with a simple boundary and f faces is
infinite. Instead, one needs to specify the number of edges and the size of the boundary.

We define the following generating functions

B(x, y) =
∞∑
e=0

∞∑
p=0

be,px
eyp,

S(x, y) =
∞∑
e=0

∞∑
p=0

se,px
eyp,

where be,p, resp. se,p, is the number of general maps with e total edges and among which
p edges are on the boundary, where the boundary is simple for the case of se,p.
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Similarly to [BG09], we obtain the following identity relying S and B.

S(x, yB(x, y)) = B(x, y). (11)

Let us sketch the justification: a rooted map with a general boundary mb can be decom-
posed for some p ∈ N into (smb, (mb

i)
p
i=1) where:

• the map smb is the maximal simple boundary connected component of the root-edge
which has boundary size p, for some p ∈ N∗.

• the map mb
i is a rooted map with general boundary equal to the map hanging from

the i-th vertex in the boundary of smb (numbered following the root edge) and
rooted in the first edge in mb

i found when following the boundary of mb. Beware
this map can be reduced to a point, in such a case it is unrooted.

It turns out that this decomposition defines a bijection. Because of this, for each edge
in the boundary of a general map with simple boundary we count a weight yB(x, y) to
recover all maps with a boundary. The weight yB(x, y) is associated to the weight of the
edge in the boundary and the map hanging from the tail of this edge consider as oriented
following the contour of the simple boundary in the sense of the root-edge.

The only difference with [BG09], is that the external boundary may have any pos-
sible length. For the case of quadrangulations the external boundary has to be of even
length; this forces in [BG09] the second coordinate in the left-hand side of eq. (11) to be
yW (x, y)2, with W the generating function with coefficients we,p counting the number of
quadrangulations with e edges and boundary of size 2p. When applying this technique,
depending on the family of maps under study, it is important to take into account this
type of restriction to obtain non-degenerate cases.

Now we use this change of variable to discover S. To start, it is well known (see, for
example, [FS09, VII.8.2]) that B(x, y) satisfies

B(x, y) = 1 + y2xB(x, y)2 + xy

1− y
(B(x, 1)− yB(x, y)) , (12)

where B(x, 1) is the counting formula for general maps, with the following explicit form

B(x, 1) =
∞∑
e=0

2 · 3e

(e+ 1)(e+ 2)

(
2e

e

)
xe = − 1

54x2
(
1− 18x− (1− 12x)3/2

)
. (13)

Now, turning into general maps with simple boundary, make the change of variable z =
yB(x, y) in eq. (12) to obtain

S(x, z) = 1 + xz2 +
xz

S(x, z)− z
(B(x, 1)− z) . (14)

This gives a quadratic equation for S, obtaining the desired function S as the only possible
solution of this equation with positive coefficients

S(x, z) = 1

2

(
1 + z + xz2 −

√
(−xz2 + z + 1)2 − 2z(1 + 36x− (1− 12x)3/2)

27x

)
.
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Its first coefficients are shown in the expansion S(x, z) = 1 + xz + 2x2z + xz2 + 9x3z +
x2z2 + 54x4z + 5x3z2 + 378x5z + 32x4z + x3z3 + · · · .

This generating function codes the number of general maps with a simple boundary.
The coefficients may be recovered from it by doing a sequence of derivations. Nevertheless,
they do not have a closed form to our knowledge.

4.3 Counting results

Before presenting the results, let us start by recalling that the number of (rooted) trees
with n edges are counted by Catalan numbers {Cn}n∈N (see, for example, Section 1 in
[Ber07])

|Tn| = Cn :=
1

n+ 1

(
2n

n

)
. (15)

4.3.1 Tree and forest decorated maps

Let us now obtain the formulas that directly come from the bijection for tree-decorated
maps. The counting formulas obtained for maps with multiple simple boundaries come
from [Kri07] for the case of triangulations and from [BF18] in the case of quadrangulations.

Corollary 20. Set m = (m1 +2m2)/2. The number of tree-decorated triangulations with
boundary of size m1 ⩾ 1 and a tree of size m2 is

|BT,m2

f,m1
(3)| = 2f−2m (3f/2 +m− 2)!!

(f/2−m+ 1)!(f/2 + 3m)!!

2m

m2 + 1

(
4m

2m

)(
2m2

m2

)
, (16)

where n!! stands for double factorial (or semifactorial). The number of tree-decorated
quadrangulations with boundary of size m1 ⩾ 1 and a tree of size m2 is

|BT,m2

f,m1
(4)| = 3f−m (2f +m− 1)!

(f + 2m)!(f −m+ 1)!

2m

m2 + 1

(
3m

m

)(
2m2

m2

)
. (17)

Proof. This is obtained from Proposition 14 and Lemma 9 adapted to tree-decorated maps
with a simple boundary. The formula for the number of trees with m2 edges are Theorem
1 of [Kri07] and Section 2.2 of [BG09] respectively.

We can now discuss the results for forests.

Corollary 21. The cardinal of r-forest decorated triangulations, with trees of prescribed
sizes m1,m2, . . . , mr and m :=

∑
mi and m+ r ⩾ f/2 + 2 is given by

|MF,⃗c
f (3)| = 2f−2m 3f∏

i∈N ck!

(3f/2 +m− 2)!!

(f/2−m+ 2− r)!(f/2 + 3m)!!

r∏
i=1

1

mi + 1

(
4mi

2mi,mi,mi

)
(18)
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where c⃗ is defined as in eq. (10). and r-forest decorated quadrangulations, with trees of
size m1, m2, . . . ,mr, and m+ r ⩾ f + 2 is given by:

|MF,⃗c
f (4)| = 3f−m 4f∏

i∈N ck!

(2f +m− 1)!

(f + 2m)!(f −m+ 2− r)!

r∏
i=1

1

mi + 1

(
3mi

mi,mi,mi

)
. (19)

where c⃗ is defined as in eq. (10).

Proof. This is obtained from Proposition 14, Lemma 9 adapted to forest-decorated maps
with a simple boundary, the formula for the number of trees with mi edges and Theorem
1 of [Kri07] and Theorem 1.2 of [BF18] respectively, giving that

|M̊F,m1,..,mr

f (3)| = 2f−2m(3f/2 +m− 2)!!

(f/2−m+ 2− r)!(f/2 + 3m)!!

r∏
i=1

2mi

mi + 1

(
4mi

2mi,mi,mi

)
(20)

and

|M̊F,m1,..,mr

f (4)| = 3f−m (2f +m− 1)!

(f + 2m)!(f −m+ 2− r)!

r∏
i=1

2mi

mi + 1

(
3mi

mi,mi,mi

)
. (21)

We conclude using the re-rooting procedure condensed in (9).

Remark 22. Let us note that Corollary 2 can be obtained from Corollary 21 using r = 1.

Similar counting formulas can be obtained for triangulations of girth bigger than 2
(loopless triangulations) and 3 (triangulations without multiple edges); and simple quad-
rangulations (see [BF18]). In Corollary 21, one could also consider a generalization for
“tree-decorated maps with boundaries” an analog of the tree-decorated maps with a
boundary for multiples boundaries. We hope that the interested reader will have no
problem in finding the formula.

As discussed in Section 4.2, the number of general maps with a simple boundary does
not have a closed formula to our knowledge, still it is possible to obtain the number of
general maps decorated by a tree once extracted the coefficients se,p with p even. More
formally, the number of general maps decorated by a tree of size m and with e edges is
given by Cmse+m,2m, which is justified by Theorem 4.

The cardinal of bubble maps can be obtained from Proposition 18.

Corollary 23. The cardinal of non-crossing circuit decorated bubble-maps (m, c) with
e+m edges decorated by a circuit of size 2m and with root in an oriented edge of the map
m is

|MC,m
E=e+m| = 3e

(2e+ 2m− 1)!

e!(e+ 2m+ 1)!

2(e+m)

m+ 1

(
4m

2m,m,m

)
. (22)

Proof. This is obtained from Proposition 18, the formula for the number of trees with m
edges, the results of [FG15, Section 2.2] together with [BG09, Section 2.2] and a type of
re-rooting procedure, similar to the one in Section 4.1.

We leave to the reader the computation of the formula of maps decorated by a special
type of trees, as for example trees with prescribed degree distribution, see for example
[Sta99].
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4.3.2 Spanning tree-decorated maps

In this subsection, we discuss the consequence of our result for spanning tree-decorated
maps. In this case, the counting formula of spanning tree-decorated maps for general
face degrees was given by Mullin [Mul67], where the root does not necessarily belongs to
the tree. It states that spanning tree-decorated maps with e edges are in correspondence
with a pair of trees with e and e + 1 edges, i.e. is counted by CeCe+1. Later Bernardi
[LW72, CDV86, Ber07] gave a bijective proof of this result.

We denote by M̊ST
f , resp. MST

f , the set of spanning tree-decorated maps on f faces with
one root-edge in the tree, resp. in any possible oriented edge of the map. Note that in the
case of triangulations we obtain that for f faces the number of vertices is 2+ f/2 and the
number of edges is 3/2f , therefore, the number of spanning-tree decorated triangulations
is

|MST
f (3)| = |MT,f/2+1

f (3)| = 12f

(f + 4)(f + 2)2

(
2f

f, f/2, f/2

)
. (23)

In the case of quadrangulations, the condition of having f faces implies that it has f +
2 vertices and 2f edges. Therefore, we obtain the counting formula for spanning-tree
decorated quadrangulations.

|M̊ST
f (4)| = |M̊T,f+1

f (4)| = 2

(f + 1)(f + 2)

(
3f

f, f, f

)
(24)

|MST
f (4)| = |MT,f+1

f (4)| = 4f

(f + 1)2(f + 2)

(
3f

f, f, f

)
. (25)

Here we recover the results ontained from the Lehman and Walsh’s Bijection [LW72].
In fact, the dual of M̊ST

f (3) are the spanning tree-decorated 3-regular maps with f vertices,

and that of M̊ST
f (4) are the spanning tree-decorated 4-regular maps with f vertices. These

can be counted as appears in Section 6.2 of [BM11], where they explicit the formula for
more general families of maps, given that (dual) trees with prescribed degree distribution
are easily counted.

4.3.3 Spanning r-forest decorated maps

Corollary 24. The cardinality of spanning r-forest-decorated triangulations, with trees of
size m1, m2, . . . ,mr and m :=

∑
mi, is given by

|MSF,⃗c
f (3)| = 4r−2 3f∏

k∈N ck!

(2f + 2− r)!!
(2f + 6− 3r)!!

r∏
i=1

1

mi + 1

(
4mi

2mi,mi,mi

)
, (26)

where c⃗ is defined as in eq. (10).
The cardinality of spanning r-forest-decorated quadrangulations, with trees of size

m1, m2, . . . ,mr, is given by:

|MSF,⃗c
f (4)| = 3r−2 4f∏

k∈N ck!

(3f − r + 1)!

(3f − 2r + 4)!

r∏
i=1

1

mi + 1

(
3mi

mi,mi,mi

)
, (27)
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where c⃗ is defined as in eq. (10).

Proof. A triangulation with f faces has 2+f/2 vertices, which has to be equal to m+r =∑r
i=1mi + r, the number of vertices covered by the forest. As before, a quadrangulation

with f faces has f + 2 vertices, which has to be equal to m + r. The result follows from
Corollary 21.

Remark 25. From this formula it is also possible to deduce Corollary 3.

Remark 26. Notice that we kept the expressions for these spanning-tree decorated quad-
rangulations, with root in the tree and in any possible oriented edge of the map. We want
to point out that the right-hand side of (24) looks like a possible generalization of the
Catalan numbers. More rigorously, for n,m ∈ N, m ⩾ 1 define:

Cm,n = m!

(
m∏
i=1

1

n+ i

)(
(m+ 1)n

n, n, . . . , n︸ ︷︷ ︸
m+1 times

)
=

(
m+ n

n

)−1(
(m+ 1)n

n, n, . . . , n︸ ︷︷ ︸
m+1 times

)
.

Whenm = 1, we recover the Catalan numbers and, for this definition, C2,f counts |M̊ST
f (4)|.

To our knowledge, this extension has not been defined so far and it does not appear in
the OEIS 4.

From the definition it is not clear to see that Cm,n is, in fact, an integer. Luckily for
us, Vincent Jugé found an elegant, analytical proof of this fact that we present in the
following proposition.

Proposition 27. For all n, m ∈ N and m ⩾ 1, Cm,n is an integer.

Proof. Define νp(k) as the largest power of p prime that divides k ∈ N. Recall that by
Legendre’s formula

νp(k!) =
∞∑
i=1

⌊
k

pi

⌋
.

Thanks to this, we can calculate the maximal power of p prime that divides Cm,n

νp((m+ 1)n!)− νp((n!)m+1)− νp((n+m)!) + νp(n!) + νp(m!)

=
∞∑
i=1

⌊
(m+ 1)n

pi

⌋
− (m+ 1)

⌊
n

pi

⌋
︸ ︷︷ ︸

=:(1)⩾0

−
⌊
m+ n

pi

⌋
+

⌊
n

pi

⌋
+

⌊
m

pi

⌋
︸ ︷︷ ︸

=:(2)⩾−1

Note that to conclude we just need to show that each term in the summation is bigger
than or equal to zero. To do this notice that we just need to show that it cannot happen
simultaneously (1) = 0 and (2) = −1.

4March,4, 2019 update: it has been added for m = 2, 3.
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Assume that this is the case and write

n = kpi + ln,

m = k′pi + lm,

with 0 ⩽ ln, lm < pi and lm < m. Note that the fact that (1) = 0 implies that

ln(m+ 1) < pi. (28)

Futhermore, the fact that (2) = −1 implies that ln ̸= 0 and

ln + lm ⩾ pi.

Together with (28) this implies that mln < lm ⩽ m which implies that ln = 0 so we have
a contradiction.
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