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Abstract

For r > 2, let X be the number of r-armed stars K1,r in the binomial random
graph Gn,p. We study the upper tail P(X > (1 + ε)EX), and establish exponential
bounds which are best possible up to constant factors in the exponent (for the
special case of stars K1,r this solves a problem of Janson and Ruciński, and confirms
a conjecture by DeMarco and Kahn). In contrast to the widely accepted standard
for the upper tail problem, we do not restrict our attention to constant ε, but also
allow for ε > n−α deviations.

Mathematics Subject Classifications: 05C80, 60C05, 60F10

1 Introduction

The study of (the distribution of) small subgraphs in the binomial random graph Gn,p is
one of the most fundamental and influential problems in the theory of random graphs.
Starting with the seminal work of Erdős and Rényi [11] from 1960, the early results
for the number XH of copies of H in Gn,p concerned the threshold of appearance (i.e.,
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when P(XH > 0)→ 1) and the range of edge-probabilities p for which XH is asymptoti-
cally normal; these basic features were eventually resolved in the 1980s by Bollobás [2]
and Ruciński [25]. Later the focus changed to finer details of the distribution of XH , and
the lower tail P(XH 6 (1 − ε)EXH) was studied intensively in the late 1980s (often for
the special case ε = 1). This led to the discovery of Janson’s inequality [13, 14, 24], which
gives exponential bounds for P(XH 6 (1− ε)EXH) that are best possible up to constant
factors in the exponent (cf. the recent work of Janson and Warnke [20]).

Since the early 1990s the ‘infamous’ upper tail P(XH > (1 + ε)EXH) has remained
an important challenge, providing a well-known testbed for concentration inequalities
(see, e.g., [16]). After polynomial bounds around 1990 by Spencer [29] and exponential
bounds in the late 1990s via the Kim–Vu polynomial concentration method [21, 30],
in 2002 Janson, Oleszkiewicz and Ruciński [17] obtained a breakthrough: via a moment
based method they obtained exponential estimates for P(XH > (1 + ε)EXH) that, for
constant ε, are best possible up to logarithmic factors in the exponent (see also [9, 19]
for extensions to random hypergraphs, and arithmetic progressions in random subsets
of integers). The upper tail problem of closing the aforementioned logarithmic gap has
remained open during the last decade, and only recently this has been settled for cliquesKr

by DeMarco and Kahn [7, 8] (see also Chatterjee [3] for r = 3), and for arithmetic
progressions by Warnke [31]. Modern large deviation theory also gives partial results [4,
23, 1, 6] for large edge-probabilities of form p = Θ(1) or p > n−δH .

In this paper we solve the upper tail problem for r-armed stars K1,r, and as a con-
ceptual novelty we will also allow ε to depend on n (i.e., do not restrict our attention to
constant ε, as usual). The casual reader might suspect that tail estimates for r-armed
stars are essentially trivial, but this is only true for r = 1 (where XK1,1 = |E(Gn,p)| since
K1,1 = K2). To put this into context, Janson, Oleszkiewicz and Ruciński [17] proved that
for r-regular graphs H, such as cliques Kr+1, the upper tail satisfies

pOH,ε(n
2pr) 6 P(XH > (1 + ε)EXH) 6 e−ΩH,ε(n

2pr),

where the subscripts in OH,ε and ΩH,ε indicate that the implicit constants may depend
on H and ε. They also highlighted K1,r (with r > 2) as key example where the form
of the exponent is more complicated, i.e, has different expressions for different ranges
of p. This surprising intricacy is further manifested by the history of the infamous upper
tail problem. Namely, Vu [30] argued in 2000 that his general results were essentially
unimprovable due to r-armed stars, for which he obtained bounds of the form

pOr,ε(n
1+1/rp) 6 P(XK1,r > (1 + ε)EXK1,r) 6 e−Ωr,ε(n1+1/rp). (1)

However, Janson, Oleszkiewicz and Ruciński [17] later discovered that the upper tail
behaviour of K1,r is more delicate (the lower bound in (1) is not always correct), and
obtained bounds of the more involved form

pOr,ε(max{n1+1/rp, n2pr}) 6 P(XK1,r > (1 + ε)EXK1,r) 6 e−Ωr,ε(max{n1+1/rp, n2pr}). (2)

In words, for stars the form of the upper tail changes around p ≈ n−1/r, which is an
intriguing phenomenon (that does not occur for cliques). To lend some intuition, the lower

the electronic journal of combinatorics 27(1) (2020), #P1.67 2



bound in (1) simply comes from the probability that Gn,p contains a large star K1,m that
itself enforces at least

(
m
r

)
> (1 + ε)EXK1,r copies of K1,r: for suitable m = Θr,ε(n

1+1/rp)

this gives a lower bound of form pm > pOr,ε(n
1+1/rp), which tacitly requires p = Oε(n

−1/r)
to ensure that m + 1 6 n. For larger edge-probabilities p, the refined lower bound
in (2) comes from the probability that Gn,p contains a complete bipartite graph Ky,z

that itself enforces at least y
(
z
r

)
> (1 + ε)EXK1,r copies of K1,r: for suitable y = Θε(np

r)

and z = n− y this gives a lower bound of form pyz > pOr,ε(n
2pr), cf. Lemma 14. In

fact, a recent conjecture by DeMarco and Kahn [8, 28] for general H asserts that in (2)
the lower bound is sharp, except that the form of the upper tail changes once more for
sufficiently small p: motivated by Poisson approximation heuristics, then the ‘correct’
exponent becomes µ := EXK1,r = Θr(n

r+1pr), see (3). Here the corresponding lower
bound of form e−Θr,ε(µ) comes from the event that Gn,p contains (1 + ε)EXK1,r disjoint
copies of K1,r, cf. Lemma 15. However, despite some partial results [26, 27, 33] for stars,
the quest for matching bounds in (1)–(2) remained open.

1.1 Main results

Our first basic result settles the upper tail problem of r-armed stars for constant ε, by
closing the existing log(1/p) gap in the exponent of (1) and (2) for all p ∈ (0, 1]. In
particular, (3) below confirms1 Conjecture 10.1 of DeMarco and Kahn [8] in the special
case H = K1,r. For subgraph counts this is the first example of a sharp upper tail estimate
where, for constant ε, the form of − logP(X > (1 + ε)µ) undergoes multiple changes, i.e.,
has more than two different expressions for different ranges of p.

Theorem 1 (Upper tail problem for constant ε). Given r > 2, let X = Xr,n,p be the
number of copies of K1,r in Gn,p. Set µ := EX. For p ∈ (0, 1] and ε > 0 satisfying 1 6
(1 + ε)µ 6 Xr,n,1 we have

− logP(X > (1 + ε)µ) = Θr,ε

(
Φ
)

with Φ := min
{
µ,max

{
µ1/r, µ/nr−1

}
log(1/p)

}
. (3)

Note that the assumption (1 + ε)µ 6 Xr,n,1 is necessary (since X > Xr,n,1 is impossible),
and that the assumption (1 + ε)µ > 1 is natural (since otherwise P(X > (1 + ε)µ) =
P(X > 1) = 1− P(X = 0) holds). As discussed above, the form of the exponent Φ in (3)
suggests that two different mechanisms explain the upper tail behaviour for constant ε.
Namely, for small p we have Φ = µ, in which case the upper tail is controlled by Poisson
behaviour. For larger p we have Φ = max

{
µ1/r, µ/nr−1

}
log(1/p), in which case the upper

tail is governed by ‘clustered’ behaviour, i.e., that Gn,p contains Θr,ε(max
{
µ1/r, µ/nr−1

}
)

appropriately clustered edges that create (1 + ε)µ copies of K1,r (via containment of a
suitable complete bipartite graph).

1Using Corollary 1.8 in [17] and the discussion of Remark 8.3 in [17] it is not difficult to check that the
special case H = K1,r of Conjecture 10.1 in [8] indeed reduces to (3) with ε = 1; see also equation (4.27)
in [27] and Remark 2 in [26].
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Our second result determines the correct dependence of the stars upper tail on ε, up
to constant factors in the exponent (unlike in Theorem 1 above, where the dependence
on ε may differ between upper and lower bounds). In particular, (4) below solves Prob-
lem 6.1 of Janson and Ruciński [18] in the special case H = K1,r. For subgraph counts
this is the first example where, for p bounded away from one, the asymptotic order of
− logP(X > (1 + ε)µ) is determined for non-constant ε = ε(n) of form ε > n−α (the
assumption Φ(ε) > 1 is natural, since it ensures that we are dealing with exponentially
small probabilities).

Theorem 2 (Upper tail problem for ε = ε(n) > n−α). Given r > 2, let X = Xr,n,p

be the number of copies of K1,r in Gn,p. Set µ := EX, σ2 := VarX, and ϕ(x) :=
(1 + x) log(1 + x)− x. Given ξ ∈ (0, 1) there is α = α(r) > 0 such that, for p ∈ (0, 1− ξ]
and ε > n−α satisfying Φ(ε) > 1 and 1 6 (1 + ε)µ 6 Xr,n,1, we have

− logP(X > (1 + ε)µ) = Θr,ξ

(
Φ(ε)

)
, (4)

with
Φ(ε) := min

{
ϕ(ε)µ2/σ2, max

{
(εµ)1/r, (εµ)/nr−1

}
log(e/p)

}
. (5)

Remark 3. The variance satisfies σ2 = Θr((1 − p)µ(1 + (np)r−1)); see, e.g., Lemma 3.5
in [15]. Furthermore, if µ1−1/r > log n holds, then in (5) we can replace ϕ(ε)µ2/σ2

by (εµ)2/σ2; see Lemma 12.

Conjecture 4 (Correct upper tail behaviour). Theorem 2 remains valid without the
assumption ε > n−α.

We now lend some intuition for the form of the exponent Φ(ε). The second term in (5)
comes from local ‘clustered’ behaviour, and it refines the term max{µ1/r, µ/nr−1} log(1/p)
in (3). The crucial difference is that here not all (1+ε)µ stars are enforced via a bipartite
construction, but only the ‘excess’ number Θ(εµ) of stars (relying on the intuitive fact
that, say, at least (1 − ε)µ copies of K1,r are typically present in Gn,p), cf. Lemma 16.
It turns out that the first term ϕ(ε)µ2/σ2 in (5) comes from two related global mecha-
nisms. For small p this term is of order ϕ(ε)µ, refining the ‘disjoint copies’ based term µ
in (3), cf. Lemma 17 (the well-known function ϕ is the large deviation rate function of
the Poisson distribution). For larger p, normal approximation heuristics2 suggest that
P(X > (1 + ε)µ) = P((X − µ)/σ > εµ/σ) ≈ e−Θr((εµ)2/σ2) for very small ε, and this sub-
Gaussian tail is consistent with the ϕ(ε)µ2/σ2 term in (5) since ϕ(ε) = Θ(ε2) as ε → 0
(larger values of ε do not concern us here, since then the term ϕ(ε)µ2/σ2 does not at-
tain the minimum in (5) for the relevant p). Here the corresponding lower bound of
form e−Θr(ϕ(ε)µ2/σ2) comes from the event that Gn,p contains at least (1 + ε)

(
n
2

)
p edges,

cf. Lemma 18. Finally, Conjecture 4 intuitively predicts that the form of the upper tail is
indeed determined by the more likely of the above-described different ‘local’ and ‘global’
mechanisms, and Theorem 2 confirms this prediction for ε = ε(n) > n−α.

2The same normal heuristic suggests that in (3) we should perhaps have used µ2/σ2 instead of µ, but
it turns out that then the µ2/σ2 term would only matter for Φ (i.e., determine the minimum) in a range
of p where µ2/σ2 = Θr(µ) holds.
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Our third result approaches the upper tail problem from a conceptually slightly diffe-
rent perspective, studying P(X > µ+t) for general deviations t (this contrasts Theorem 1
and 2 above, where we focus on the large deviations range t = εµ and then put restric-
tions on ε). For subgraph counts, inequality (6) below is the first example where, for
moderately large edge-probabilities p, the order of − logP(X > µ + t) is completely re-
solved for all deviations exceeding the standard deviation σ =

√
VarX. We complement

this result with inequality (7) below, which is the first example where the asymptotic
order of − logP(X > µ+ t) is resolved for nearly all deviations t where the ‘clustered’
behaviour determines the exponent (in which case t2/σ2 > M(t) log(e/p) is the natural
target assumption for µ1−1/r > log n by Remark 3 and Conjecture 4).

Theorem 5 (General upper tail bounds: general deviations and clustered regime). Given
r > 2, let X = Xr,n,p be the number of copies of K1,r in Gn,p. Set µ := EX and
σ2 := VarX, as well as

M(t) := max{t1/r, t/nr−1} and Ψ(t) := min
{
t2/σ2, M(t) log(e/p)

}
.

Given ξ ∈ (0, 1), then the following holds whenever p ∈ (0, 1− ξ] and 1 6 µ+ t 6 Xr,n,1.

(i) If p > (log n)/n and t > σ, then

− logP(X > µ+ t) = Θr,ξ

(
Ψ(t)

)
. (6)

(ii) If µ > ξ and t > 0 satisfies t2/σ2 >M(t) log(e/p) · (log n)2r, then

− logP(X > µ+ t) = Θr,ξ

(
M(t) log(e/p)

)
. (7)

By Remark 3, inequalities (6)–(7) provide further evidence for Conjecture 4, verifying it
for p > (log n)/n among other things.

1.2 Some comments

The main focus of this paper are upper bounds on the upper tail P(X > (1 + ε)µ)
of the number of r-armed stars in Gn,p. Developing [31, 33], here our high-level proof
strategy is to introduce a combinatorial event T with the following property: when T
holds, then we can find a subgraph G0 ⊆ Gn,p with approximately the same number
of stars K1,r as Gn,p and ‘not too large’ maximum degree. Heuristically speaking, the
upper tail event X > (1 + ε)µ then implies that either (i) the event T fails, or (ii) the
aforementioned well-behaved subgraph G0 ⊆ Gn,p contains least (1 + ε/2)µ many r-stars,
say. As we shall see, the probability of having such a subgraph G0 ⊆ Gn,p as in (ii)
can easily be controlled via a Chernoff-like tail bound of Warnke [31], and P(¬T ) can
be controlled via somewhat technical union bound arguments. This together eventually
gives the desired upper bounds on the upper tail P(X > (1 + ε)µ); see Section 2 for
more details.
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Finally, let us briefly compare our upper tail results for stars with very recent re-
sults from the large deviation theory literature, which are spearheaded by Chatterjee,
Dembo, Lubetzky, Varadhan, Zhao, and many others (see, e.g., [5, 22, 4, 23, 10, 1, 6]).
For general H, these aim at determining the asymptotics of − logP(XH > (1 + ε)EXH)
for constant ε, but in most cases this level of precision is achieved at the cost of an
extra assumption of form p = Θ(1) or p > n−δH . For stars H = K1,r, inequality (4)
from Theorem 2 is weaker than the usual large deviations goal in the sense that it only
determines − logP(XK1,r > (1 + ε)EXK1,r) up to constant factors, but it is stronger in the
sense that it covers a much wider range of the parameters, in particular all p = p(n) of
interest and also non-constant ε = ε(n) > n−α (so that it also applies to some moderate
deviations). Obtaining such tail estimates with increased ranges of applicability is useful
for combinatorial applications, where one is usually ‘willing to give up a little bit on the
tail’, in particular on the ‘inessential numerical constants’ in the exponent (see [30, 18]).
Furthermore, estimates of form (6)–(7) from Theorem 5 are also quite satisfactory from
a concentration inequality perspective. Overall, we hope that our results will stimulate
more research into such estimates for other graphs H.

1.3 Organization

In Section 2 we prove the upper bounds on the upper tail from Theorem 1, 2, and 5,
and discuss a simple extension. The corresponding (fairly routine) lower bounds are then
established in Appendix A.

2 Upper bounds on the upper tail

In this section we establish the upper bounds on the upper tail P(X > (1 + ε)µ) from
Theorem 1, 2, and 5. Our core argument has two strands. In the first combinatorial part
we iteratively decrease the maximum degree of the random graph Gn,p = GJ ⊇ · · · ⊇ G0

by edge-deletion (the idea is to remove large stars K1,Dj with Dj � r from Gj) until
the final graph G0 has sufficiently low maximum degree, say at most D. This degree
bound allows us to estimate the number of stars K1,r in G0 via a well-behaved auxiliary
random variable XD. Taking into account the number of stars Kr which are removed when
passing from Gn,p = GJ to G0, this allows us to approximate the number X = Xr,n,p of
copies of K1,r in Gn,p using XD and several further auxiliary random variables NDj (which
intuitively bound the number of K1,Dj in Gn,p). In the second probabilistic part we then
estimate the upper tails of these auxiliary variables using a concentration inequality of
Warnke [31] and ad-hoc union bound arguments (exploiting the careful definitions of the
variables XD and NDj given in Section 2.1). Putting things together, the core argument
then proceeds roughly as follows: by the combinatorial part X > (1+ε)µ can only happen
if at least one of the auxiliary variables XD or NDj is large, and by the probabilistic part
the probability of this event is at most the desired upper tail probability (for suitable
choices of the degree constraint D and other parameters).

In Section 2.1 we first implement this argument in the simpler setup of Theorem 1,
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and in Section 2.2 we then extend the argument to the more precise tail estimates of
Theorem 2 and 5. Finally, in Section 2.3 we also briefly discuss a straightforward extension
(to a certain sum of iid random variables).

2.1 Core argument for Theorem 1

We start by introducing the main random variables and events for Theorem 1 (as we
shall see, their careful definitions will facilitate the interplay between the combinato-
rial and probabilistic parts of our argument). For x > 0, let Xx denote the maximum
number of copies of K1,r in any subgraph H ⊆ Gn,p with maximum degree at most bxc.
For y > 0, let Ny denote the maximum size of any collection of edge-disjoint K1,dye in Gn,p.
For β,D, t > 0 let T = T (β,D, t) denote the event that, intuitively, prevents creation of
an excess number of r-stars by a few large stars, more precisely the event that

NDj <
βM

Dj

for all j ∈ N = {0, 1, . . . }, (8)

where we tacitly used the following convenient parametrization:

M = M(t) := max
{
t1/r, t/nr−1

}
,

Dj = Dj(D) := 2jD.
(9)

(In this subsection we shall only use t = εµ; working with general t is convenient for the
later extensions.)

We now further motivate the definition of the event T , by relating the upper bound (8)
with the ‘best’ bipartite constructions that enforce the excess t copies of K1,r, giving
the ‘clustered’ lower bounds on the upper tail (see Lemma 16). In the case t � nr,
the best lower bound creates t many r-stars via a large star K1,m with m = Θr(t

1/r).
Considering j ∈ N with m/2 < Dj 6 m, after noting M = t1/r it then follows from (8)
that there are no vertices of degree m (for β small enough), i.e., the event T prevents
containment of the graph K1,m. In the complementary case t� nr, the best lower bound
creates t many r-stars via a complete bipartite graph Ky,z with suitable y = Θr(t/n

r)
and z = Θr(n). Considering j ∈ N such that z/2 < Dj 6 z, after noting M = t/nr−1 it
then follows from (8) that there are at most O(βM/z) < y edge-disjoint stars K1,z (for β
small enough), i.e., the event T prevents containment of the graph Ky,z. Overall, these
two considerations demonstrate that the form of (8) is natural for large j.

The following combinatorial lemma is at the heart of our argument, and it intuitively
states that X ≈ XD whenever the event T = T (β,D, t) holds. Its proof is inspired
by ideas developed in [31, 33], but contains several new ideas. For example, instead
of iteratively sparsifying an auxiliary hypergraph (which encodes the edge-sets of all
stars K1,r in Gn,p) we here iteratively sparsify the random graph Gn,p itself. Further-
more, in order to obtain the correct tail behaviour, in inequality (8) we need to work
with M = max{t1/r, t/nr−1} instead of the simpler choice M = t1/r suggested by [31]
(we achieve this by adding an extra degree bound to the argument, bounding the initial
maximum degree by M = min{M,n} instead of just M).
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Lemma 6. Given β ∈ (0, 1/32] and D, t > 0, the event T (β,D, t) implies XD 6 X 6
XD + t/2.

The lower bound X > XD of Lemma 6 is trivial. For the upper bound the idea is to
iteratively decrease the maximum degree of Gn,p, yielding Gn,p = GJ ⊇ · · · ⊇ G0. By
bounding the number of K1,r which are removed when passing from Gj+1 to Gj, this
eventually allows us to estimate the total number of K1,r.

Proof of Lemma 6. Define M := min{M,n}. Recalling the discussion following (9), note
that M = t1/r whenever M = t1/r, and M = n otherwise. Let J be the smallest inte-
ger J > 0 with DJ > M . We set GJ = Gn,p, and inductively construct GJ ⊇ · · · ⊇ G0

as follows. Given Gj+1 with 0 6 j 6 J − 1, let Cj+1 be a maximal set of edge-disjoint
collection of stars K1,dDje. We remove all edges from Gj+1 which are incident to a centre
vertex of some star in Cj+1, and denote the resulting graph by Gj.

Writing ∆j = ∆(Gj) for the maximum degree of Gj, we claim that ∆j 6 bDjc for
all 0 6 j 6 J . For GJ = Gn,p we use a case distinction. If M > n, then trivially
∆J 6 n = bMc 6 bDJc. Otherwise DJ > M = M , in which case (8) entails NDJ <
β < 1, so Gn,p = GJ contains no K1,dDJe, and ∆J 6 dDJe − 1 6 bDJc follows. Further
considering Gj+1 with 0 6 j 6 J−1, we note that ∆j 6 dDje−1 6 bDjc by construction,
because otherwise we could add another K1,dDje to Cj+1 (contradicting maximality).

With GJ ⊇ · · · ⊇ G0 in hand, we now count the total number of copies of K1,r

in Gn,p = GJ . Note that, given an edge e = {v1, v2} of Gj+1 with 0 6 j < J , we can
construct any K1,r in Gj+1 containing e by first selecting a centre vertex vc ∈ {v1, v2} and
then r − 1 additional neighbours of vc. Hence in Gj+1 any edge is contained in at most
2
(

∆j+1

r−1

)
6 2rDr−1

j /(r − 1)! 6 4Dr−1
j copies of K1,r. Recalling the definition of NDj , note

that when, passing from Gj+1 to Gj, we remove at most NDj∆j+1 6 2NDjDj edges. So,

since G0 contains at most XD0 = XD copies of K1,r, using (8) and max06j<J Dj 6 M it
follows that

X 6 XD +
∑

06j<J

(
2NDjDj · 4Dr−1

j

)
6 XD + 8βM ·

∑
j∈N:Dj6M

Dr−1
j . (10)

Recalling Dj = 2jD and r > 2, using M = min{M,n}, M = max{t1/r, t/nr−1} and β 6
1/32 we infer

X −XD 6 8βM · 2M r−1
6 16β ·min{M r,Mnr−1} 6 t/2, (11)

which completes the proof.

Applying Lemma 6 with t = εµ, in the probabilistic part of the argument it remains
to estimate P(XD > µ + εµ/2) and P(¬T (β,D, εµ)). We shall exploit the maximum
degree constraint of XD via the following upper tail inequality of Warnke [31], which
extends classical Chernoff bounds to random variables with well-behaved dependencies
(and allows us to go beyond the method of typical bounded differences [32]).
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Theorem 7 (Corollary of [31, Theorem 9]). Let (ξi)i∈S be a finite family of independent
random variables with ξi ∈ {0, 1}. Given a family I of subsets of S, consider random vari-
ables Yα :=

∏
i∈α ξi with α ∈ I, and suppose

∑
α∈I EYα 6 µ. Define ZC := max

∑
α∈J Yα,

where the maximum is taken over all J ⊆ I with maxβ∈J |{α ∈ J : α ∩ β 6= ∅}| 6 C.
Set ϕ(x) := (1 + x) log(1 + x)− x. Then, for all C, t > 0,

P(ZC > µ+ t) 6 exp

(
−ϕ(t/µ)µ

C

)
6 exp

(
− t2

2C(µ+ t)

)
. (12)

The main observation is that, in every subgraph H ⊆ Gn,p with maximum degree at
most D, any star K1,r shares edges with O(Dr−1) other stars. For XD this allows
us to routinely apply Theorem 7 with Lipschitz-like parameter C = O(Dr−1), making
inequality (13) plausible. For Theorem 1 the crux is that our choice of D will en-
sure µ/Dr−1 = Θr(Φ), so (13) suggests that XD 6 µ + εµ/2 fails with probability at
most e−Ωr,ε(Φ).

Corollary 8. For all n > 1, p ∈ (0, 1] and D, t > 0 we have

P(XD > µ+ t/2) 6 exp

(
−ϕ(t/µ)µ

16Dr−1

)
6 exp

(
−min{t, t2/µ}

48Dr−1

)
. (13)

Proof. Let K1,r(G) contain all edge-subsets of G that are isomorphic to K1,r. Wri-
ting Yα := 1{α⊆E(Gn,p)}, there is a subgraph H ⊆ Gn,p with maximum degree at most bDc
such that XD =

∑
α∈J Yα for J := K1,r(H). Given β ∈ J , we construct all edge-

intersecting stars α ∈ J as in the proof of Lemma 6, and infer

max
β∈J
|{α ∈ J : α ∩ β 6= ∅}| 6 r · 2

(
bDc
r − 1

)
6

2rDr−1

(r − 1)!
6 4Dr−1 =: C. (14)

It follows that XD 6 ZC , where ZC is defined as in Theorem 7 with I = K1,r(Kn). It is
well-known (and easy to check by calculus) that for x > 0 we have

ϕ(x/2) > ϕ(x)/4 and x2 > ϕ(x) > min{x, x2}/3. (15)

Putting things together, using Theorem 7 and (15) it follows that

P(XD > µ+t/2) 6 P(ZC > µ+t/2) 6 exp

(
−ϕ(t/µ)µ

4C

)
6 exp

(
−min{t, t2/µ}

12C

)
, (16)

which completes the proof of (13) by choice of C (see (14) above).

We shall estimate P(¬T (β,D, εµ)) via a union bound argument and the following upper
tail estimate for NDj . The technical assumption (17) intuitively ensures that vertices
with degree at least D are unlikely. For Theorem 1 the crux is that our choice of D will
also ensure np/(eDj) 6 pΩ(1), so applications of inequality (18) with x = βM/Dj suggest
that T and thus (8) fails with probability at most n · n−3pΩ(M) 6 n−2e−Ωε(Φ).
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Lemma 9. For all n > 1, p ∈ (0, 1], and D > 0 satisfying(
e3np/D

)D
6 n−8 (17)

the following holds. For all x > 0 we have

P(NDj > x) 6
1

n3

(
np

edDje

)xDj/2
1{Dj6n}. (18)

Proof. As
(
m
z

)
6 (me/z)z for all integers m, z > 1, by exploiting the disjointness condition

of NDj we infer

P(NDj > x) 6 ndxe
(

n

dDje

)dxe
pdxedDje 6

(
n

(
enp

dDje

)dDje)dxe
. (19)

As the function x 7→ (e3np/x)x is decreasing for x > e2np, and (17) implies dDje > D >
e3np, we deduce

(
enp

dDje

)dDje
=

(
e3np

dDje

) dDje
2
(

np

edDje

) dDje
2

6

(
e3np

D

)D
2
(

np

edDje

) dDje
2

6 n−4

(
np

edDje

) dDje
2

.

Plugging this into (19) readily establishes inequality (18), since trivially NDj = 0 when
Dj > n.

For the proof of the upper bound of Theorem 1 it remains to pick suitable D, i.e.,
which satisfies the technical assumption (17) and yields the ‘correct’ exponent in (13) and
suitable applications of (18).

Proof of the upper bound in (3) of Theorem 1. For concreteness, define β := 1/32 and
γ := 1/(16r), as well as

A := max
{
e4, 8/γ

}
, s := log(e/pγ), and D := A ·max

{
1,

min{µ1/r, n}
s1/(r−1)

}
.

For later reference, we record that there is a constant d = d(r) > 0 such that, for
n > n0(r),

dnr+1pr 6 µ 6 nr+1pr. (20)

By Lemma 6, the upper tail of the number X = Xr,n,p of K1,r-copies satisfies

P(X > (1 + ε)µ) 6 P(XD > µ+ εµ/2) + P(¬T (β,D, εµ)). (21)
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Gearing up to bound P(¬T (β,D, εµ)) via Lemma 9, using e = pγes and inequality (20)
together with the bound s1/(r−1) 6 s = 1 + log p−γ 6 p−γ (as 1 + x 6 ex) it follows that

np

eD
=
np1−γe−s

D
6 1{p6n−1/(1−γ)}

e−s

A
+ 1{p>n−1/(1−γ)}

e−s

Amin{d1/rn1/rp2γ, p2γ−1}

6
e−s

A
6 e−s,

(22)

where here and below we shall always tacitly assume n > n0(r, d) whenever necessary.
Since the above calculation also gives D > Anp1−γ, together with D > A it follows that(

e3np/D
)D

6 (pγ/e)D 6 1{p6n−1}n
−Aγ + 1{p>n−1}e

−Anp1−γ 6 n−8.

Applying a union bound argument, using estimates (18), Dj = 2jD > D, and (22) it
follows that

P(¬T (β,D, εµ)) 6
∑
j∈N

P(NDj > βM/Dj) 6 n · 1

n3

( np
eD

)βM/2

6
1

n2
· e−βMs/2. (23)

Recalling (21) and the definition of M = M(εµ), by applying Corollary 8 with t := εµ
it follows that there is a constant c = c(β,A, γ, r) > 0 and suitable parameters ζ,Π > 0
such that

P(X > (1 + ε)µ) 6 exp

(
−min{ε, ε2}µ

48Dr−1

)
+

1

n2
exp

(
−βMs

2

)
6 (1 + n−2) · exp

(
−cmin{ε, ε2, ε1/r}︸ ︷︷ ︸

=:ζ

min
{
µ, max

{
µ1/r, µ/nr−1

}
s
}︸ ︷︷ ︸

=:Π

)
.

(24)

We find the above upper tail estimate very satisfactory, but in the literature it has become
standard to suppress multiplicative factors such as 1+n−2 in (24), which is straightforward
when cζΠ > 1 holds (rescaling the exponent cζΠ by a factor of 1/2, say). In the remaining
case 1 > cζΠ Markov’s inequality gives

P(X > (1 + ε)µ) 6
1

1 + ε
= 1− ε

1 + ε
6 exp

(
− ε

1 + ε

)
6 exp

(
− c

2
min{ε, 1}ζΠ

)
.

Finally, noting s = log(e/pγ) > log(1/pγ) = γ log(1/p) then establishes the upper bound
in (3).

2.2 Extension of the argument to Theorem 2 and 5

We now extend the arguments from Section 2.1 to the upper bounds of Theorem 2 and 5.
To obtain sub-Gausssian decay ϕ(ε)µ2/σ2 in the exponent of tail-inequality (13) for XD, in
view of the well-known variance estimate σ2 = Θr,ξ((1+(np)r−1)µ) from Remark 3 we here
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would like to pick D = Θr,ξ(1 + np) for some range of t = εµ. However this choice causes
a major problem:3 in the key estimate (22) we can no longer win an extra log-factor (via
np/(eD) 6 e−s) when we bound the NDj variables using (18) from Lemma 9. Our strategy
for overcoming this obstacle is to refine the event T = T (β,D, t), by enforcing different
upper bounds on NDj when Dj = 2jD is small (so that in the probabilistic arguments
we automatically win an extra logarithmic factor, without destroying the combinatorial
counting arguments from Lemma 6).

Turning to the details, for γ, β,D, t > 0 let T + = T +(γ, β,D, t) denote the ‘refined’
event that

NDj <
βMs

Dj

for all j ∈ N with Dj < min{M,n}/s1/(r−1), and (25)

NDj <
βM

Dj

for all j ∈ N with Dj > min{M,n}/s1/(r−1), (26)

where, in addition to the parameters M = max{t1/r, t/nr−1} and Dj = 2jD from (9), we
tacitly used

s = s(γ) := log(e/pγ). (27)

Lemma 10. Given β ∈ (0, 1/64] and γ,D, t > 0, the event T +(γ, β,D, t) implies XD 6
X 6 XD + t/2.

Proof. The proof of Lemma 6 carries over, except for the final inequalities (10)–(11) that
bound X from above. Recalling that M = min{M,n}, by mimicking the argument leading
to (10) we here obtain

X −XD 6
∑

06j<J

(
2NDjDj · 4Dr−1

j

)
6 8βM ·

(
s

∑
j∈N:Dj<M/s1/(r−1)

Dr−1
j +

∑
j∈N:M/s1/(r−1)6Dj6M

Dr−1
j

)
.

Recalling Dj = 2jD and r > 2, using β 6 1/64 it then follows similarly to (10)–(11) that

X −XD 6 8βM · 4M r−1
6 32β ·min{M r,Mnr−1} 6 t/2,

which completes the proof.

We are now ready to prove the following slightly more general upper tail estimate for
the number X = Xr,n,p of K1,r-copies in Gn,p, which (as we shall see) implies the upper
bounds in Theorems 2 and 5.

3For D = Θr,ξ(1 +np) another problem is that the technical assumption (17) of Lemma 9 then breaks
when np is close to one, which partially explains why in the upcoming Theorem 11 we shall exclude fairly
small t when np ∈ (n−γ , γ log n).
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Theorem 11 (Upper tail bounds: technical result). Given r > 2, let X = Xr,n,p. Set
µ := EX, Λ := µ(1 + (np)r−1), and ϕ(x) := (1 + x) log(1 + x)− x. Given γ > 0, suppose
that either

np 6∈ (n−γ, γ log n) or t2/µ > 1{t6min{µ,nr}}γmin
{
t1/r(log n)r, Ms(log n)r−1

}
holds, where the parameters M and s are defined in (9) and (27). Then we have

P(X > µ+ t) 6 (1 + n−1) · exp

(
−Ωr,γ

(
min

{
ϕ(t/µ)µ2/Λ, M log(e/p)

}))
. (28)

Proof. Let β := 1/64. We distinguish the following three cases: (i) np > γ log n,
(ii) np 6 n−γ, and (iii) t2/µ > 1{t6min{µ,nr}}γmin{t1/r(log n)r,Ms(log n)r−1}. Note that
in all three cases we may assume γ 6 1/(16r), since decreasing γ yields a less restrictive
assumption. Furthermore, in case (iii) we may also assume that n−γ 6 np 6 log n holds
(otherwise case (i) or (ii) apply). For concreteness, define

A := max
{
e4, 8 · (3/γ)1/(r−1), 8/γ

}
and D := A ·max

{
1 + np,

(
ϕ(t/µ)µ

Ms

)1/(r−1)
}
.

(We remark that in cases (i)–(ii) the simpler choice D = A(1 +np) suffices.) We defer the
somewhat technical proofs of the following claims regarding Lemma 9: (a) assumption (17)
holds, and (b) inequality (18) implies

P
(
¬T +(β, γ,D, t)

)
6

1

n
max

{
e−βMs/2, e−Ψ

}
with Ψ := ϕ(t/µ)µ2/Λ, (29)

where here and below we shall again tacitly assume n > n0(r). Analogously to in-
equalities (21) and (24), by first applying Lemma 10 and Corollary 8, and then using
(1 + np)r−1 = Θr(Λ/µ), it follows that

P(X > µ+ t) 6 exp

(
−ϕ(t/µ)µ

16Dr−1

)
+ 1

n
exp
(
−β

2
min

{
Ψ, Ms

})
6 (1 + n−1) · exp

(
−Ωr,γ

(
min

{
Ψ, Ms

}))
.

Since s = log(e/pγ) > γ log(e/p), this establishes inequality (28).
It remains to verify claims (a) and (b) above, and start with claim (a), i.e., that the

assumption (17) of Lemma 9 holds. Note that D > A(1 + np) > e4np. Furthermore, in
case (i) we have D > Aγ log n, and in case (ii) we have np 6 n−γ and D > A. So, in both
cases, using A > 8/γ we infer(

e3np/D
)D

6 min
{
e−D, (np)D

}
6 n−Aγ 6 n−8. (30)

Proceeding analogously, in the cumbersome case (iii) it suffices to show D > 8 log n.
Using γ 6 1/(16r), p > n−1−γ and (20), it is routine to see that s 6 log n and µ > n1/2.
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Assuming t > µ, by first using (15) and then distinguishing the cases t > nr (where M =
t/nr−1) and t 6 nr (where M = t1/r), it follows that

Dr−1 >
Ar−1ϕ(t/µ)µ

Ms
>
Ar−1t

3Ms
>
Ar−1 min

{
nr−1, µ1−1/r

}
3 log n

> (A log n)r−1. (31)

Assuming t 6 µ, we note that assumption p 6 (log n)/n implies µ 6 nr (hence t 6 nr

and thus M = t1/r, as noted above). Hence, by first using (15) and then the assumed
lower bound on t from case (iii), we infer

Dr−1 >
Ar−1ϕ(t/µ)µ

Ms
>
Ar−1t2

3µMs

>
γAr−1 min{t1/r(log n)r,Ms(log n)r−1}

3Ms
= γ/3 · (A log n)r−1.

Each time D > 8 log n follows readily by definition of A, establishing claim (a), as dis-
cussed above.

Finally, we verify claim (b), i.e., that inequality (18) implies estimate (29). We start by
observing that if T +(β, γ,D, t) fails then a fortiori ND0 > 1. Hence, using (18) with x = 1
and D0 = D > e3np, we deduce

P(¬T +(β, γ,D, t)) 6 P(ND0 > 1) 6
1

n3
· e−D. (32)

Analogously to (23), using inequality (18) and Dj = 2jD > e3np it also follows that

P(¬T +(β, γ,D, εµ)) 6
∑
j∈N:

Dj6M/s1/(r−1)

P
(
NDj >

βMs

Dj

)
+

∑
j∈N:

Dj>M/s1/(r−1)

P
(
NDj >

βM

Dj

)

6
1

n2
· e−βMs +

1

n2
·

(
np

e
⌈
M/s1/(r−1)

⌉)βM/2

.

(33)

We now use a fairly technical case distinction to verify that the two estimates (32)–(33)
together imply (29). Assuming M > np1−2γ, analogously to the proof of (22) we have
nps/M 6 p2γs 6 pγ = e1−s, so that(

np

e
⌈
M/s1/(r−1)

⌉)βM/2

6

(
nps

eM

)βM/2

6 e−βMs/2 when M > np1−2γ. (34)

Next we assume p 6 n−1/(1−γ), which implies np/e 6 pγ/e = e−s, so that(
np

e
⌈
M/s1/(r−1)

⌉)βM/2

6
(np
e

)βM/2

6 e−βMs/2 when p 6 n−1/(1−γ). (35)
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In the remaining case M < np1−2γ and p > n−1/(1−γ) hold. Since M < n implies M = M ,
we infer t 6 M r = (M)r 6 nrpr−2rγ. So, recalling that Ψ 6 t2/Λ 6 t2/[(np)r−1µ] by (15)
and that µ > dnr+1pr by (20), using D > np, p > n−1/(1−γ) and γ 6 1/(16r) we deduce
that

Ψ

D
6

t2

(np)rµ
6
nrpr−4rγ

µ
6

1

dnp4rγ
6

1

dn1−4rγ/(1−γ)
6

1

dn1/2
6 1,

establishing D > Ψ. It follows that

e−D 6 e−Ψ when M < np1−2γ and p > n−1/(1−γ), (36)

which together with inequalities (32)–(35) implies the claimed estimate (29).

We now deduce the upper bounds of Theorem 2 and 5 from the upper tail inequal-
ity (28).

Proof of the upper bound in (4) of Theorem 2. Let γ := 1/(9r). For t := εµ > n−αµ
and n > n0(r) it is routine to check that t2−1/r/µ > 1{np>n−γ}γ(log n)r holds for α =
α(r) > 0 sufficiently small. Hence Theorem 11 applies with t = εµ, where Λ = Θr,ξ(σ

2)
by Remark 3. Using Φ(ε) > 1 it follows that

P(X > (1 + ε)µ) 6 (1 + n−1) · e−Ωr,ξ(Φ(ε)) 6 e−Ωr,ξ(Φ(ε)), (37)

establishing the upper bound in (4).

For Theorem 5 we shall simplify the form of the exponent in (28) via the following auxiliary
result, writing an � bn instead of an = Θ(bn) for typographic reasons (the assumption
p > n−9 in (ii) is ad-hoc).

Lemma 12. Given ξ ∈ (0, 1), the following holds whenever p ∈ (0, 1− ξ].
(i) If t 6 µ, then

t2/σ2 � ϕ(t/µ)µ2/σ2 �r,ξ ϕ(t/µ)µ2/Λ. (38)

(ii) If t > µ and t1−1/r > (log n)1{p<1/n}, then p > n−9 implies

t2/σ2 > ϕ(t/µ)µ2/σ2 �r,ξ ϕ(t/µ)µ2/Λ = Ωr,ξ

(
M log(e/p)

)
. (39)

(iii) If t2/σ2 > min{M, 1} and µ+ t > 1, then t = Ωr,ξ(1).

Proof. Inequality (38) and the first two estimates of equation (39) follow immediately
from (15) and Λ = Θr,ξ(σ

2), see Remark 3. We now turn to the final inequality of
equation (39). By combining (15) and Λ/µ = 1 + (np)r−1 with M = max{t1/r, t/nr−1}
and t1−1/r > (log n)1{p<1/n}+µ1−1/r

1{p>1/n}, using p > n−9 and µ1−1/r = Ωr(n
1/r(np)r−1),

see (20), it follows similarly to (31) that

ϕ(t/µ)µ2/Λ

M
>

tµ

3ΛM
>

min{t1−1/r, nr−1}
6 max{1, (np)r−1}

>
1

6
min

{
log n,

µ1−1/r

(np)r−1
, nr−1,

1

pr−1

}
= Ωr

(
log(e/p)

)
,
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where we exploited that calculus gives pr−1 log(e/p) = Or(1); this completes the proof of
claims (i)–(ii).

For claim (iii) we may of course assume t 6 1/2 (otherwise there is nothing to show).
Hence t2/σ2 > min{M, 1} > min{t1/r, 1} = t1/r implies t2−1/r > σ2 = Ωr,ξ(µ) by Re-
mark 3, which in turn gives t = Ωr,ξ(1), because t + µ > 1 and t 6 1/2 together im-
ply µ > 1− t > 1/2, completing the proof.

Proof of the upper bound in (6) of Theorem 5. Applying Theorem 11 (with γ = 1), using
(i)–(ii) of Lemma 12 it follows that inequality (28) holds with Ωr,ξ(Ψ(t)) in the exponent,
where Ψ(t) > min{1, t1/r} = Ωr,ξ(1) by (iii) of Lemma 12. Absorbing the 1 + n−1 factor
similar to (37) then establishes the upper bound in (6).

Proof of the upper bound in (7) of Theorem 5. Since σ2 = Ωr,ξ(µ) by Remark 3, note that
the assumption

t2/σ2 >M log(e/p) · (log n)2r (40)

implies t2/µ >M log(e/p)·(log n)r−1, so that Theorem 11 (with γ = 1) applies. Using (40),
by (iii) of Lemma 12 we also infer that M > t1/r = Ωr,ξ(1). Absorbing the 1 + n−1 factor
as before, it remains to show that the exponent of inequality (28) is Ωr,ξ(M log(e/p)).
For t 6 µ this follows from (38) of Lemma 12 and (40). For t > µ this follows from (39) of
Lemma 12, since (40) and p < n−1 imply t2/(log n)2r+1 > σ2M = Ωr,ξ(µ) = Ωr,ξ(1) and
thus t1−1/r > (log n)1{p<1/n}, as required.

2.3 Straightforward extension to a certain sum of iid random variables

We close this section by recording that minor (and in fact simpler) variants of our proofs
also apply to the following sum of independent random variables:

X :=
∑
i∈[n]

(
Yi
r

)
with independent Yi ∼ Bin(n, p). (41)

Indeed, in view of the structural similarities to the number of r-armed stars in Gn,p

(which satisfies Xn,r,p =
∑

v∈[n]

(
dv
r

)
, writing dv for the degree of v), here we set Xx :=∑

i∈[n]:Yi6bxc
(
Yi
r

)
, and define Nx as the number of i ∈ [n] with Yi > dxe. Now the proofs of

Lemma 6 and 10 carry over with minor changes: exploiting that there are no dependencies
between the Yi, using a simple dyadic decomposition we here obtain

X 6 XD +
∑

06j<J

[
NDj ·

(
bDj+1c
r

)]
6 XD + 2

∑
06j<J

NDjD
r
j 6 · · · 6 XD + t/2.

For the proof of Corollary 8 it suffices to show that XD 6 ZC holds in the present
setting. Since Yi is a sum of n independent indicators ξi,j, we may write each

(
Yi
r

)
as a

sum of
(
n
r

)
dependent indicators (which each are products of some r distinct independent

variables ξi,j). Using the constraint Yi 6 bDc the analogous left hand side of (14) is thus

bounded by r ·
(bDc
r−1

)
6 2Dr−1, which in turn implies XD 6 ZC , as desired. Since the

proof of Lemma 9 also remains valid (as inequality (19) carries over), we thus arrive at
the following result.
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Theorem 13 (Upper tail bounds: an extension). The upper bounds on the upper tail
P(X > (1 + ε)µ) from Theorems 1, 2, 5, and 11 remain valid for the random variable X
defined in (41).

Perhaps surprisingly, we are not aware of any standard method or inequality (for sums
of iid variables) which can routinely recover the upper tail bounds from Theorem 13, and
we leave it as an intriguing open problem to find or develop one. Here one technical
difficulty seems to be that each summand

(
Yi
r

)
has an upper tail that decays slower than

exponentially (for r > 2), which presumably is closely linked to the somewhat non-
standard log(1/p) term in the exponent.
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(Poznań, 1987), pp. 73–87, Wiley, Chichester (1990).
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random graphs. Israel J. Math. 142 (2004), 61–92.
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A Appendix: Lower bounds on the upper tail

In this appendix we establish fairly routine lower bounds on the upper tail P(X > (1 +
ε)µ) from Theorem 1, 2, and 5 (omitting some straightforward details). Following [31]
we obtain our lower bounds via the following three events: that many copies of K1,r

‘cluster’ on few edges (see Lemma 14 and 16), that most copies of K1,r arise disjointly
(see Lemma 15 and 17), and that Gn,p contains more edges than expected (see Lemma 18).

A.1 Basic argument for Theorem 1

For Theorem 1 we shall use two different lower bounds, and the first one is based on
the idea that relatively few edges (which cluster in an appropriate way) can create fairly
many stars K1,r. This is formalized by the following result, which implies P(Xr,n,p > x) >
P(F ⊆ Gn,p) = p|E(F )| since F ⊆ Gn,p enforces Xr,n,p > x.

Lemma 14 (Clustering). For every r > 1 there is D = D(r) > 0 so that for all n > 1
and 0 < x 6 Xr,n,1 there is F ⊆ Kn with |E(F )| 6 Dmax{x1/r, x/nr−1, 1} edges such
that F contains at least x copies of K1,r.

Inspired by the proofs of Theorem 1.3 and 1.5 in [17], the idea is to use a complete
bipartite graph F = Ky,z with z = Θr(min{x1/r, n}) and y = Θr(x/z

r), which contains
yz = Θr(x/z

r−1) = Or(max{x1/r, x/nr−1}) edges and at least y
(
z
r

)
= Θr(yz

r) = Ωr(x)
copies of K1,r (certain border cases require minor care).

Proof of Lemma 14. Let x0 := 2(4r)r, n0 := (r + 1)x0, and D := n2
0. If (i) x0 6 x 6

nr+1/D and n > n0, then we let F := Ky,z, with z := dmin{x1/r, n}/4e and y := drrx/zre.
Note that F ⊆ Kn exists, since it is easy to check that 1 < y < n/2 and 1 < z < n/2, say
(we leave the details to the reader). Furthermore, F contains at least y

(
z
r

)
> y(z/r)r > x

many K1,r, and |E(F )| = yz 6 2rrx/zr−1 6 Dmax{x1/r, x/nr−1} edges.
If either (ii) 1 6 n < n0 or (iii) x > nr+1/D and n > n0, then we let F := Kn, which

trivially contains Xr,n,1 > x copies of K1,r, and |E(F )| < n2 < max{n2
0, Dx/n

r−1} =
Dmax{1, x/nr−1} edges.

Finally, if (iv) x < x0 and n > n0, then we let F := Kn0 , which contains at
least n0/(r + 1) = x0 > x vertex disjoint copies of K1,r and |E(F )| < n2

0 = D edges,
completing the proof.
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The second lower bound is inspired by the fact that X = Xn,r,p is approximately
Poisson for small p, in which case most K1,r arise disjointly. Indeed, the following standard
result bounds P(X = m) from below by the probability that there are exactly m vertex-
disjoint copies of K1,r (see [8, 26, 31] for similar arguments), which for m = (1 + ε)µ will
imply P(X > m) > e−Θr,ε(m); the precise form of (42) will be useful later on.

Lemma 15 (Disjoint approximation). Given r > 2 there are n0, b > 0 (depending only
on r) such that, for all n > n0, 0 < p 6 n−1−1/(r+1) and integers m ∈ N satisfying
0 6 m 6 99 max{µ, n1/(r+1)}, we have

P(X = m) > e−b ·
(
Xr,n,1

m

)
prm(1− pr)Xn,r,1−m. (42)

Proof. Let K contain all copies of K1,r in Kn. Define Sm as the collection of all m-element
subsets of K in which all stars K1,r are vertex disjoint. Given C ⊆ Sm, define IC as the
event that all stars K1,r of C are present, and define DC as the event that none of the
stars K1,r in K \ C are present. Note that

P(X = m) >
∑
C∈Sm

P(IC and DC) =
∑
C∈Sm

P(IC)P(DC | IC) > |Sm|prm · min
C∈Sm

P(DC | IC).

Distinguishing the number of edges in which each star α ∈ K \ C overlaps with some
star K1,r from the vertex-disjoint collection C ∈ Sm, using Harris inequality [12] and np =
o(1) we routinely obtain

P(DC | IC) > (1− pr)Xn,r,1−m
∏

16j<r

(1− pr−j)Or(mnr−j) > (1− pr)Xn,r,1−me−Or(mnp),

where mnp = O(max{nr+2pr+1, n1+1/(r+1)p}) = O(1). Furthermore, with (z − y)y/y! 6(
z
y

)
6 zy/y!, 1 − x > e−2x and Xn,r,1 = n

(
n−1
r

)
in mind, basic counting (and a short

calculation) gives

|Sm| >

(
(n−m)

(
n− (r + 1)m

r

))m/
m! >

(
Xn,r,1

m

)
e−Or(m

2/n).

This completes the proof of (42) since m2 = O(max{n2(r+1)p2r, n2/(r+2)}) = O(n2/(r+2)) =
o(n).

Combining the above two results, we now prove the lower bound of Theorem 1.

Proof of the lower bound in (3) of Theorem 1. We will tacitly assume n > n0(r, ε) when-
ever necessary. Applying Lemma 14 with x := (1 + ε)µ, there is F ⊆ Kn with |E(F )| 6
Or,ε(max{µ1/r, µ/nr−1}) edges that contains at least (1 + ε)µ copies of K1,r. If Φ =
max{µ1/r, µ/nr−1} log(1/p), then it follows that

P(X > (1 + ε)µ) > P(F ⊆ Gn,p) = p|E(F )| > e−Or,ε(Φ). (43)
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Otherwise Φ = µ, which by a short calculation implies µ 6 (log n)3, say (since assum-
ing for contradiction that µ > (log n)3 would imply p = Ωr(n

−1−1/r) > n−2 and thus
max{µ1/r, µ/nr−1} log(1/p) = Or(max{µ1/r, µ/nr−1} log n) < µ). Applying Lemma 15
with m := d(1 + ε)µe < n1/(r+1), using

(
z
y

)
> (z/y)y, µ = Xn,r,1p

r, 1 − x > e−2x

and m > (1 + ε)µ > 1 it follows that

P(X > (1 + ε)µ) > P(X = m) > e−Or(1) ·
( µ
m

)m
e−2µ > e−Θr,ε(m) > e−Or,ε(Φ), (44)

establishing the lower bound in (3).

A.2 Refined arguments for Theorem 2 and 5

For Theorem 2 and 5 we shall refine the previous two lower bounds, and also introduce a
new third lower bound. Each time some care is needed to obtain the ‘correct’ dependence
on t = εµ in the exponent, and we start by refining the ‘clustering’ based lower bound
from Lemma 14 and (43).

Lemma 16 (Refined clustering bound). Given r > 1 and ξ ∈ (0, 1) there are n0, c > 0
(depending only on r, ξ) such that, for all n > n0, p ∈ (0, 1− ξ] and t > σ satisfying 1 6
µ+ t 6 Xr,n,1, we have

P(X > µ+ t) > exp
(
−cmax

{
t1/r, t/nr−1

}
log(1/p)

)
. (45)

In case of p = o(1) the basic proof idea is to obtain µ+t copies of K1,r as follows: (i) we first
use the clustering construction from Lemma 14 to plant 2t copies of K1,r, and (ii) then use
Harris’ inequality and a one-sided Chebychev’s inequality to show that typically > µ− t
of the remaining X̃n,r,1 := Xn,r,1− 2t other copies of K1,r are present (the crux is that the
expected number of such copies is X̃n,r,1p

r = µ−o(t), so having > µ− t of them intuitively

seems likely). For the resulting lower bound step (i) with probability pOr(max{t1/r,t/nr−1})

thus ought to give the main contribution, making (45) plausible. For technical reasons,
in the actual argument we have to plant min{(β+1)t, dµ+ te} copies of K1,r for carefully
chosen β > 0. By mimicking the proof of Theorem 21 in [31] we then easily arrive at (45)
above; we leave the details to the reader.

We next refine the ‘disjoint approximation’ based lower bound used in Lemma 15
and (44) for small p. The idea is that inequality (42) intuitively relates X = Xn,r,p to a
binomial random variable with mean µ = Xn,r,1 · pr, which makes the following Chernoff-
type bound for the upper tail plausible.

Lemma 17 (Disjoint approximation: Chernoff-type lower bound). Given r > 2 there
are n0, c, d > 0 (depending only on r) such that, for all n > n0, 0 < p 6 n−1−1/(r+1)

and t > 0 satisfying 1 6 µ+ t 6 9 max{µ, n1/(r+1)}, we have

P(X > µ+ t) > d exp
(
−cϕ(t/µ)µ

)
. (46)
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Noting the binomial-like form of inequality (42), it is routine to check that Lemma 15
indeed implies (46) above (e.g., by summing (42) as in the proof of Theorem 22 in [31]);
we leave the details to the reader.

Our third lower bound for moderately large p it is based on the idea that a deviation
in the number of edges should typically entail a deviation in the number of K1,r copies (in
concrete words: if Gn,p has substantially more than

(
n
2

)
p edges, then we expect to have

more K1,r copies than on average).

Lemma 18 (Deviation in number of edges: sub-Gaussian type lower bound). Given r > 2
and ξ ∈ (0, 1) there are n0, β, c > 0 (depending only on r, ξ) such that, setting Λ :=
µ(1 + (np)r−1), for all n > n0, ξn−1 6 p 6 1− ξ and σ 6 t 6 βµ we have

P(X > µ+ t) > exp
(
−ct2/Λ

)
. (47)

Remark 19. By Remark 3, in inequality (47) we have Λ = Θr,ξ(σ
2), where σ2 = VarX.

Setting ε := t/µ, the basic proof idea is to (i) condition on having |E(Gn,p)| > (1 + ε)
(
n
2

)
p

edges, and (ii) then show that this conditioning converts X > µ + t = (1 + ε)µ into a
typical event (the crux is that this conditioning drives up the expected value of X =
Xn,r,p; to see this it might help to think of the uniform random graph Gn,m with m =
(1 + ε)

(
n
2

)
p edges). For the resulting lower bound the conditioning thus ought to give

the main contribution, which by folklore results satisfies P(|E(Gn,p)| > (1 + ε)
(
n
2

)
p) =

exp
(
−Θξ(ε

2
(
n
2

)
p))
)
. This makes inequality (47) plausible, since ε2

(
n
2

)
p = ε2 ·Θr,ξ(µ

2/Λ) =
Θr,ξ(t

2/Λ) for the considered range of p. A simple modification of the proof of Theorem 24
in [31] makes this idea rigorous and establishes (47) above; we leave the details to the
reader (we mention in passing that a tilting argument also works here).

Stitching the above three results together, we now prove the lower bounds of Theo-
rem 2 and 5.

Proof of the lower bound in (7) of Theorem 5. By (iii) of Lemma 12 we infer that M >
t1/r = Ωr,ξ(1), which in turn implies t2/σ2 > M log(e/p) · (log n)2r > 1 and thus t > σ.
Hence an application of Lemma 16 (see inequality (45)) establishes the lower bound
in (7).

Proof of the lower bound in (6) of Theorem 5. We shall only assume p > n−1 instead
of p > n−1 log n. Applying Lemmas 16 and 18, and using Remark 19, it follows that
there is β = β(r, ξ) > 0 such that

P(X > µ+ t) > max
{
e−Θr,ξ(M log(e/p)), 1{t6βµ}e

−Θr,ξ(t2/σ2)
}
. (48)

By a virtually identical calculation as in the proof of (39) from Lemma 12, for t > βµ
it follows that t2/σ2 > Ωr,ξ(M log(e/p)) holds. After adjusting the implicit constants,
it follows that we can remove the indicator in inequality (48), which in view of Ψ(t) =
min{t2/σ2,M log(e/p)} establishes the lower bound in (6).
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Proof of the lower bound in (4) of Theorem 2. Set t := εµ and M := max{t1/r, t/nr−1},
as usual. Using (15) we have (εµ)2/σ2 > ϕ(ε)µ2/σ2 > Φ(ε) > 1 by assumption, so t > σ
follows. In the following we shall distinguish the three cases (i) n−1 6 p 6 1 − ξ,
(ii) n−1−1/(r+1) 6 p < n−1, and (iii) 0 < p < n−1−1/(1+r).

In cases (i)–(ii) note that, say, µ1−1/r = Ωr(n
1/3r) > log n holds. Using (i)–(ii) of

Lemma 12, it thus suffices to prove the lower bound of (4) with exponent Φ(ε) replaced
by Ψ(t) defined in Theorem 5. In case (i) this bound follows from the above proof (valid
for n−1 6 p 6 1 − ξ) of the lower bound in (6), and in case (ii) we shall now argue
that this bound follows from inequality (45) of Lemma 16, by establishing that t2/σ2 =
Ωr,ξ(M log(e/p)) holds. Indeed, since p < n−1 and Remark 3 imply σ2 = Θr(µ), after
recalling µ1−1/r = Ωr(n

1/3r) and t = εµ > n−αµ it then follows for α = α(r) > 0
sufficiently small (say, α < 1/6r) that

t2/σ2

M log(e/p)
=

min
{
t2−1/r, tnr−1

}
σ2 log(e/p)

>
min

{
µ1−1/rn−2α, nr−1−α}

Θr,ξ(log n)
> 1, (49)

completing the proof in cases (i)–(ii).
In the remaining case (iii) Lemmas 16 and 17 imply that, for some constant d = d(r) ∈

(0, 1], we have

P(X > µ+ t) > d ·max
{
e−Θr,ξ(M log(e/p)), 1{µ+t69 max{µ,n1/(r+1)}}e

−Θr,ξ(ϕ(t/µ)µ)
}
. (50)

We claim that for µ+t > 9 max
{
µ, n1/(r+1)

}
we have ϕ(t/µ)µ = Ωr (M log(e/p)). Indeed,

noting that ϕ(x) > x(log x)/2 for x > e2 ≈ 7.4 (which is easy to check by calculus), it
follows that

ϕ(t/µ)µ

M log(e/p)
>

min{t(r−1)/r, nr−1} log(t/µ)

2 log(e/p)
= Ωr

(
n(r−1)/(r2+r) · log(t/µ)

log(e/p)

)
.

Moreover, log(t/µ)/ log(e/p) = Ωr(1) when µ 6 p, and log(t/µ)/ log(e/p) = Ωr((log n)−1)
when µ > p. In each case the claimed inequality holds, which allows omitting the indicator
in (50). Since µ = Θr(µ

2/σ2) by Remark 3, now P(X > (1 + ε)µ) > d · e−Θr,ξ(Φ(ε)) follows,
which in view of Φ(ε) > 1 completes the proof.
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