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Abstract
In 1986 Stanley associated to a poset the order polytope. The close interplay be-

tween its combinatorial and geometric properties makes the order polytope an object
of tremendous interest. Double posets were introduced in 2011 by Malvenuto and
Reutenauer as a generalization of Stanleys labelled posets. A double poset is a finite
set equipped with two partial orders. To a double poset Chappell, Friedl and Sanyal
(2017) associated the double order polytope. They determined the combinatorial
structure for the class of compatible double posets. In this paper we generalize their
description to all double posets and we classify the 2-level double order polytopes.
Mathematics Subject Classifications: 06A07, 52B05, 52B12, 52B20

1 Introduction

A partially ordered set (P,�), also called poset, is a finite set P together with a
reflexive, transitive and antisymmetric relation �. To a poset Stanley [4] associates a
convex polytope, the order polytope O(P ), which is the set of all order-preserving
functions from P into the interval [0, 1]:

O(P ) = {f : P → [0, 1] : a ≺ b⇒ f(a) 6 f(b)} .

Since the order polytope reflects many combinatorial properties of the poset, it is worth
to study the geometric properties of O(P ). For more details about convex polytopes we
refer to [6].

A double poset P = (P,�+,�−), as introduced by Malvenuto and Reutenauer [3],
is a finite set P together with two partial order relations �+ and �−. The two underlying
posets are denoted P+ = (P,�+) and P− = (P,�−). Chappell, Friedl, and Sanyal
constructed in [2] a polytope for a double poset P, the double order polytope given by

O(P) = O(P,�+,�−) := conv
{
(2O(P+)× {1}) ∪ (−2O(P−)× {−1})

}
⊆ RP × R.
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The interplay of the two partial orders of a double poset is reflected in the geometry of its
double order polytope. The reduced double order polytope is a simpler construction
that captures most properties of O(P), and is defined as

O(P) := O(P) ∩ {(f, t) : t = 0} = O(P+)−O(P−) ⊆ RP .

Note that here and in the following we write Q−R for the Minkowski sum of polytopes Q
and −R. In [2, Thm 2.7] the authors gave a characterization of the facets of double order
polytopes for the class of compatible double posets, that is, the case where P+ and P−
have a common linear extension. We generalize their description to all double posets in
Theorem 17. We use this description to give a complete classification of 2-level polytopes
among the double order polytopes. We finish by determining the vertices of reduced
double order polytopes for general double posets in Corollary 22.

2 Double posets and double order polytopes

Let (P,�) be a poset. By adjoining a new minimum 0̂ and a new maximum 1̂ to P , we
obtain the poset P̂ . The linear form associated to an order relation a ≺ b is the map
`a,b : RP → R with

`a,b(f) := f(a)− f(b)
for f ∈ RP . Moreover, for a ∈ P we define `a,1̂(f) := f(a) and `0̂,a(f) := −f(a). With
these definitions it follows that a map f : P → R is contained in O(P ) if and only if

`a,b(f) 6 0 for all a ≺ b,

`0̂,b(f) 6 0 for all b ∈ P, and
`a,1̂(f) 6 1 for all a ∈ P.

(1)

A nonempty face of O(P ) is a subset F ⊆ O(P ) such that

F = O(P )` := {f ∈ O(P ) : `(f) > `(f ′) for all f ′ ∈ O(P )}

for some linear function ` ∈ (RP )∗. If F 6= O(P ), then F is a proper face.
As mentioned before, the order polytope geometrically describes combinatorial features

of the underlying poset. For example, the vertices of O(P ) are in bijection to filters of
P . Recall that a filter of (P,�) is a subset J ⊆ P such that a ∈ J and a ≺ b for b ∈ P
implies b ∈ J. Dually, an ideal is a subset I ⊆ P such that b ∈ I and a ≺ b for a ∈ P
implies a ∈ I.

For a combinatorial description of faces Stanley [4] introduced face partitions.

Definition 1. A (closed) face partition of a face F ⊆ O(P ) is a partition of P̂ into
nonempty and pairwise disjoint blocks B1, . . . , Bk ⊆ P̂ such that

F = {f ∈ O(P ) : f is constant on Bi for i = 1, . . . , k}

and for any i 6= j there is a f ∈ F such that f(Bi) 6= f(Bj). The reduced face partition
of F is B(F ) := {Bi : |Bi| > 1}.
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In [2, Prop 2.1] the following description for the normal cone of an nonempty face
F ⊆ O(P ) with a reduced face partition B(F ) = {B1, . . . , Bk} is given:

NP (F ) = cone{`a,b : [a, b] ⊆ Bi for some i = 1, . . . , k}. (2)

We will need the following consquences that were noted in [2].

Corollary 2. Let F ⊆ O(P ) be a nonempty face with reduced face partition {B1, . . . , Bk}.
Then for every ` ∈ relintNP (F ) and p ∈ P the following hold:
(i) if p ∈ min(Bi) for some i, then `p > 0;
(ii) if p ∈ max(Bi) for some i, then `p < 0;
(iii) if p 6∈

⋃
iBi, then `p = 0.

If P is a polytope and dim(P ) = d, then we call the (d− 1)-dimensional faces facets.
Maximizing the linear functions `(f, t) = t and `(f, t) = −t over O(P) ⊂ RP × R one
obtains the facets 2O(P+) × {1} and −2O(P−) × {−1}. We call the remaining facets
vertical. They are in bijection with the facets of O(P). A facet of the reduced double
order polytope is a face of the form F = F+ − F− such that there is a linear function
` ∈ (RP )∗, where F+ = O(P+)

` and F− = O(P−)−`.

Definition 3. A linear function ` ∈ (RP )∗ is called rigid for O(P ) if it satisfies

relintNP+(F+) ∩ relint−NP−(F−) = R>0 · ` (3)

for a pair of faces (F+, F−). Note that F = F+ − F− is necessarily a facet of O(P).

Definition 4. An alternating chain C of a double poset P = (P,�+,�−) is a finite
sequence of distinct elements

0̂ = p0 ≺σ p1 ≺−σ p2 ≺σ · · · ≺±σ pk = 1̂, (4)

where σ ∈ {±}. If k is odd, then we additionally require that pk−1 6≺σ p1. For an
alternating chain C, we define a linear function `C by

`C(f) := σ (−f(p1) + f(p2)− · · ·+ (−1)k−1f(pk−1)).

If k = 1, then `C ≡ 0. If k > 1, then C is a proper alternating chain. Let sign(C) = τ ∈
{±} be the sign of an alternating chain C if pk−1 ≺τ pk is the last relation in C.

Definition 5. An alternating cycle C of P is a sequence of elements of P of length 2k
of the form

p0 ≺σ p1 ≺−σ p2 ≺σ · · · ≺−σ p2k = p0,

where σ ∈ {±} and pi 6= pj for 0 6 i < j < 2k. Similarly the linear function associated
to C is defined by

`C(f) := σ(f(p0)− f(p1) + f(p2)− · · ·+ (−1)2k−1f(p2k−1)).

Note that any cyclic shift yields an alternating cycle with the same linear function `C .
Hence, we identify an alternating cycle with all its cyclic shifts.
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Remark 6. Our definition of alternating chains differs slightly from the one given in [2] in
that we require pk−1 6≺σ p1 for a chain of odd length. Without that condition, alternating
cylces would yield alternating chains with the same linear function.

The following technical fact will be of importance later.

Lemma 7. If C is a proper alternating chain and `C the linear function associated to C,
then maxf∈O(P) `C(f) = 1. More precisely the following hold:

(i) if sign(C) = +, then maxf∈O(P+) `C(f)=1 and minf∈O(P−) `C(f) = 0;

(ii) if sign(C) = −, then maxf∈O(P+) `C(f) = 0 and minf∈O(P−) `C(f) = −1.

Proof. Since the proof works analogously, we only consider the case of an alternating
chain with sign(C) = + and odd length:

0̂ = p0 ≺+ p1 ≺− p2 ≺+ · · · ≺− p2k ≺+ p2k+1 = 1̂.

The linear function `C associated to C can be written in terms of the linear form of the
order relation �+:

`C = `p0,p1 + `p2,p3 + · · ·+ `p2k,p2k+1
.

For f ∈ O(P+) it follows from (1) that `p2i,p2i+1
(f) 6 0 for 0 6 i 6 k−1 and `p2k,1̂(f) 6 1.

Hence `C(f) 6 1. Let h be the smallest even number such that ph ≺+ p2k and let J ⊆
be the principal filter generated by ph. Since p2k 6≺+ p1 we have h > 2 and p1 /∈ J.
Due to the fact that p2i ∈ J implies p2i+1 ∈ J it follows that `C(1J) = 1, and hence
maxf∈O(P+) `C(f) = 1.
We can write −`C(f) in terms of the linear form of the order relation �− as

−`C = `p1,p2 + `p3,p4 + · · ·+ `p2k−1,p2k .

For f ∈ O(P−) it holds that `p2i−1,p2i(f) 6 0 and hence `C(f) > 0. Because `C(1∅) = 0,
`C attains this value. Hence maxf∈O(P) `C(f) = 1.

Lemma 8. Let C be an alternating cycle and `C the linear function associated to C.
Then maxf∈O(P) `C(f) = 0.

Proof. Let C be the alternating cycle

p0 ≺+ p1 ≺− p2 ≺+ . . . ≺− p2k = p0.

Then we can write the linear function associated to C in terms of the linear form of the
order relation �+:

`C = `p0,p1 + `p2,p3 + · · ·+ `p2k−2,p2k−1
.

For f ∈ O(P+) it follows from (1) that `p2i,p2i+1
(f) 6 0 and hence `C 6 0. Since `C(1∅) = 0

we conclude maxf∈O(P+) `C(f) = 0.
Furthermore we can write −`C in terms of the linear form of the order relation �−:

−`C = `p1,p2 + `p3,p4 + · · ·+ `p2k−1,p2k .

Analogously it follows minf∈O(P−) `C(f) = 0 and thus maxf∈O(P) `C(f) = 0.
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The following Proposition was stated by Chappell, Friedl and Sanyal in [2].

Proposition 9. Let P = (P,�+,�−) be a double poset. If ` is a rigid linear function for
O(P), then ` = µ`C for some alternating chain or alternating cycle C and µ > 0.

Definition 10. A double poset P = (P,�+,�−) is called compatible if P+ = (P,�+)
and P− = (P,�−) have a common linear extension. Otherwise, P is incompatible.

In case P is a compatible double poset, it was shown in [2, Thm 2.7] that the linear
functions `C associated to proper alternating chains C are in bijection to rigid linear
functions of O(P). Recall that a linear extension of (P,�) is a injective and order-
preserving map l : P → [n] where n = |P |.
Proposition 11. A double poset P = (P,�+,�−) is compatible if and only if it has no
alternating cycles.

Proof. If P is compatible, then P+ and P− have a common linear extension l : P → [n],
where n = |P |. Suppose there is an alternating cycle

p0 ≺σ p1 ≺−σ p2 ≺σ · · · ≺−σ p2k = p0.

Then l has to satisfy

l(p0) < l(p1) < l(p2) < · · · < l(p2k−1) < l(p2k).

Since p0 = p2k this contradicts l(p0) < l(p2k).
Let P be a double poset without alternating cycles and |P | = n. Let M = max(P+)∩

max(P−). We claim that M 6= ∅. Otherwise, for every p ∈ max(P+), there is a q ∈
P \ max(P+) with p ≺− q. And for any such q there is a q′ ∈ P \ max(P−) with
q ≺+ q′. Repeating yields an alternating chain or cycle. Since |P | < ∞ and there are
no alternating cycles in P, it has to be a finite sequence, and hence there is a p ∈ P for
which p ∈ max(P+) and p ∈ max(P−). We can construct a map l : P → {1, . . . , n} that
is strictly order preserving for ≺+ and ≺− by induction on n. For n = 1, let P = {p}
and l(p) = 1. For n > 1, pick a p ∈M and define l(p) = n. By induction, there is a map
l : P \ {p} → {1, . . . , n− 1} that is strictly order preserving for ≺+ and ≺−. Any map
that is constructed in this way, gives us a common linear extension for P+ and P− and
hence P is compatible.

The next example, taken from [2], illustrates that for incompatible double posets not
every alternating chain or cycle corresponds to a facet of the double order polytope.

Example 12. Let (P,�) be a poset and �op the opposite order of �. Then P = (P,�+

,�−) with �+=� and �−=�op is an incompatible double poset. Since O(P+) = 1 −
O(P−), where 1 : RP → R is the function 1(p) = 1 for all p ∈ P , we conclude, that
the double order polytope is a prism over O(P+). Hence the vertical facets of O(P) are
prisms over the facets of O(P+). Thus the number of facets of O(P) equals the number
of facets of O(P+), and these are in bijection to the minima, maxima, and cover relations
of P+. For any p ∈ P we have the alternating chains 0̂ ≺+ p ≺− 1̂ and 0̂ ≺− p ≺+ 1̂.
Furthermore any cover relation p ≺σ q gives rise to the alternating cycle p ≺σ q ≺−σ p.
Hence, there are more alternating chains and cycles than facets.
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In the next section, we determine the facets of the reduced double order polytope for
general posets.

3 Facets and 2-levelness

Let P = (P,�+,�−) be a double poset.

Definition 13. Let τ, σ ∈ {±}. An alternating chain or cycle C is crossed by a ∈ P if
there are i 6= j such that

pi �τ a ≺τ pi+1 and pj �σ a ≺σ pj+1.

The motivation of this definition is the following proposition. It was shown in [2,
Thm 2.7] that if P is a compatible double poset, then its alternating chains are in bijection
to the facets of O(P). To prove it, a property of alternating chains of compatible double
posets is used:
If pi ≺σ pi+1 ≺−σ · · · ≺−τ pj ≺τ pj+1 is part of an alternating chain C with σ, τ ∈ {±} and
i < j, then there is no a ∈ P such that pi ≺σ a ≺σ pi+1 and pj ≺τ a ≺τ pj+1. Uncrossed
alternating chains and cycles of incompatible double posets fulfil this as well.

Proposition 14. If C is an uncrossed alternating chain or cycle, then `C is rigid.

Proof. We only consider C to be an alternating chain of the form

0̂ = p0 ≺+ p1 ≺− p2 ≺+ · · · ≺− p2k ≺+ p2k+1 = 1̂,

since the proof works analogously for the other forms of alternating chains and cycles.
Then the linear function is

`C(f) = −f(p1) + f(p2)− · · ·+ f(p2k).

Let F+ = O(P+)
`C and F− = O(P−)−`C be the corresponding faces. If J is a filter of

P+, then p2i ∈ J implies p2i+1 ∈ J for 1 6 i 6 k, since p2i ≺+ p2i+1. It follows from
sign(C) = + with Lemma 7(i) that maxJ∈P+ `C(1J) = 1. Thus 1J ∈ F+ if and only if
J does not separate p2j and p2j+1 for 1 6 j 6 k, because otherwise `C(1J) < 1. From
Definition 1 it follows that p2j and p2j+1 for 1 6 j 6 k are not contained in different parts
of the face partition B+.
If J is a filter of P−, then p2i−1 ∈ J implies p2i ∈ J for 1 6 i 6 k, since p2i−1 ≺− p2i. It
follows again with Lemma 7(i) that minJ∈P− `C(1J) = 0. Thus a filter J ⊆ P− is contained
in F− if and only if J does not separate p2j−1 and p2j for 1 6 j 6 k, otherwise `C(1J) > 0.
Again from Definition 1 it follows that p2j−1 and p2j for 1 6 j 6 k are not contained in
different parts of the face partition B−.
Since C is an uncrossed alternating chain, there is no a ∈ P and i 6= j such that p2i �+

a ≺+ p2i+1 and p2j �+ a ≺+ p2j+1 and hence there is f ∈ F+ such that f(p2i) 6= f(p2j).
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Figure 1: An alternating cycle crossed by a.

As well, there is g ∈ F− such that g(p2i−1) 6= g(p2j−1) for any 1 6 i 6 j 6 k. Thus, the
reduced face partitions B± are

B+ = {[p0, p1]P+ , [p2, p3]P+ , . . . , [p2k, p2k+1]P+} and
B− = {[p1, p2]P− , [p3, p4]P− , . . . , [p2k−1, p2k]P−}.

Let ` be a linear function with `(φ) =
∑

p∈P `pφ(p) such that F+ = O(P+)
` and F− =

O(P−)−`. Since for 1 6 i 6 k the element p2i is a minimal and p2i−1 is a maximal element
of B+, it follows from Corollary 2 that `p > 0 if p = p2i−1 and `p < 0 if p = p2i for
1 6 i 6 k. Since C is an uncrossed alternating chain, it follows that if a ∈ (pi, pi+1)P+ for
some i, then a /∈ [pj, pj+1]P− for all j and vice versa. Otherwise there would be pj, pj+1

such that pi ≺+ a ≺+ pi+1 and pj �− a �− pj+1. That is why a /∈
⋃
iBi for one

of the face partitions B+ or B− and hence it follows from Corollary 2(iii) that `a = 0.
Since we assumed F+ = O(P+)

` and F− = O(P−)−`, it follows that ` ∈ NP+(F+) and
−` ∈ NP−(F−). As Equation 2 states we can write

NP+(F+) = cone
{
`p0,p1 , `p2,p3 , . . . , `p2k,p2k+1

}
and

NP−(F−) = cone
{
`p1,p2 , `p3,p4 , . . . , `p2k−1,p2k

}
.

So ` ∈ relintNP+(F+) ∩ relint − NP−(F−) satisfies `pi + `pi+1
= 0 for all 1 6 i 6 2k and

therefore ` = µ`C for some µ > 0.

The following decomposition of crossed alternating chains and cycles will be important.

Proposition 15. Let P be a double poset.

(i) If C is an alternating cycle crossed by a, then there are two alternating cycles C1

and C2 such that `C = `C1 + `C2.

(ii) If C is an alternating chain crossed by a, then there is a proper alternating chain
C1 and an alternating cycle C2 such that `C = `C1 + `C2 and sign(C) = sign(C1).
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Proof. (i) Let C be a crossed alternating cycle and i < j:

p0 ≺+ · · · ≺−τ pi ≺τ pi+1 ≺−τ · · · ≺−σ pj ≺σ pj+1 ≺−σ · · · ≺− p2k = p0.

(1) If τ = σ, then
p0 ≺+ · · · ≺−τ pi ≺τ pj+1 ≺−τ · · · ≺− p2k = p0 and
pi+1 ≺−τ pi+2 ≺τ · · · ≺−τ pj ≺τ pi+1 are the two alternating cycles C1 and C2.

(2) If τ = −σ, then C1 is given by
p0 ≺+ · · · ≺−τ pi ≺τ a ≺−τ pj+1 ≺−τ · · · ≺+ p2k = p0 in case pi 6= a; or
p0 ≺+ · · · ≺τ pi−1 ≺−τ pj+1 ≺τ · · · ≺− p2k = p0 in case pi = a, and C2 is given by
pi ≺τ pi+1 ≺−τ pi+2 ≺τ · · · ≺τ pj ≺−τ pi.

(ii) We only consider the case where C is a crossed alternating chain starting with + and
i < j:

0̂ = p0 ≺+ · · · ≺−τ pi ≺τ pi+1 ≺−τ · · · ≺−σ pj ≺σ pj+1 ≺−σ · · · ≺± pk = 1̂.

(3) If τ = σ, then
0̂ = p0 ≺+ · · · ≺−τ pi ≺τ pj+1 ≺−τ · · · ≺± pk = 1̂ is the alternating chain C1 and
pi+1 ≺−τ pi+2 ≺τ · · · ≺−τ pj ≺τ pi+1 is the alternating cycle C2.

(4) If τ = −σ, then
0̂ = p0 ≺α · · · ≺−τ pi ≺τ a ≺−τ pj+1 ≺τ · · · ≺±α pk = 1̂ is the alternating chain C1 in
case pi 6= a;
0̂ = p0 ≺α · · · ≺τ pi−1 ≺−τ pj+1 ≺τ · · · ≺±α pk = 1̂ is the alternating chain C1 in case
pi = a, and
a ≺τ pi+1 ≺−τ · · · ≺τ pj ≺−τ a is the alternating cycle C2 in both cases.

Corollary 16. Let P = (P,�+,�−) be a double poset and C an alternating cycle or
chain. If there is an a ∈ P such that C is crossed by a, then `C is not rigid.

Proof. Assume that F = O(P)`C is a facet. It follows from Proposition 15, that there are
proper alternating chains or cycles C1 and C2 such that `C = `C1 + `C2 and one of the
following holds:

(i) C, C1 and C2 are alternating cycles;

(ii) C and C1 are alternating chains that satisfy sign(C) = sign(C1), C2 is an alternating
cycle.

Let G = O(P)`C1 and H = O(P)`C2 be the faces defined by `C1 and `C2 . Let f ∈ relint F .
In case of (i), since `C(f) = 0 from Lemma 8, this implies `C1(f) = `C2(f) = 0.
In case of (ii), since `C(f) = 1 from Lemma 7, this implies `C1(f) = 1 and `C2(f) = 0.
Thus f ∈ G ∩ H. Since f was in relint F , it follows that F ⊆ G ∩ H. The alternating
chains or cycle C1 and C2 have a length k > 1 and hence `Ci

6= 0 for i = 1, 2. Thus G, H
are proper faces and since we have assumed that F is a facet, it follows that G and H are
facets. Since C1 and C2 differ by at least one element it follows, that `C1 6= µ`C2 for all
µ ∈ R>0 and hence G 6= H. Thus F cannot be a facet and hence `C is not rigid.
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Figure 2: An alternating cycle crossed
by a such that τ = σ, and two alter-
nating cycles C1 (red) and C2 (green).
Those satisfy `C = `C1 + `C2 .

Figure 3: An alternating cycle crossed
by a such that τ = −σ, and two alter-
nating cycles C1 (red) and C2 (green).
Those satisfy `C = `C1 + `C2 .

The following theorem completes the characterization of the facets of double order
polytopes and follows from Proposition 14 and Corollary 16.

Theorem 17. Let P = (P,�+,�−) be a double poset. A linear function ` is rigid if and
only if ` ∈ R>0`C for some uncrossed alternating chain or cycle C. In particular, the
facets of O(P) are in bijection to alternating chains and cycles that are not crossed by
any a ∈ P .

We now turn to the question which incompatible double order polytopes are 2-level.

Definition 18. A full-dimensional polytope Q ⊆ Rn is 2-level, if for every facet-defining
hyperplane H there is some t ∈ Rn such that H ∪ (t+H) contains all vertices of Q.

2-level polytopes and compressed polytopes [5] constitute a very interesting class of
polytopes in combinatorics and optimization. In particular Stanley’s order polytopes
are 2-level and in [2], Chappell, Friedl and Sanyal classified the 2-level polytopes among
compatible double order polytopes. To include the incompatible double order polytopes
we need to determine the facet-defining inequalities of O(P).

Corollary 19. Let P = (P,�+,�−) be a double poset. Then O(P) is the set of points
(f, t) ∈ RP × R such that

(i) LC(f, t) := `C(f)− sign(C) t 6 1 for all uncrossed alternating chains C of P ;

(ii) LC(f, t) := `C(f) 6 0 for all uncrossed alternating cycles of P .

Proof. Theorem 17 says that the facet-defining inequalities of O(P) are in bijection to the
uncrossed alternating chains and cycles of P. If C is an alternating cycle and signC =

the electronic journal of combinatorics 27(1) (2020), #P1.9 9



+, then it follows by Lemma 7 that the maximal value of `C over 2O(P+) is 2 and
0 over −2O(P−). Since the values are exchangend for signC = −, the facet-defining
inequalities are of the form (i). If C is an alternating cycle, then it follows by Lemma 8
that maximal value of `C over 2O(P+) as well as over −2O(P−) is 0 and hence the facet-
defining inequalities are of the form (i).

Proposition 20. Let P = (P,�+,�−) be a double poset and σ ∈ {±}. If there are
a, b ∈ P such that 0̂ ≺−σ a ≺σ b ≺−σ 1̂ is an uncrossed alternating chain C and it does
not hold neither a ≺−σ b nor b ≺−σ a, then O(P) is not 2-level.

Proof. Since O(P,�+,�−) is 2-level if and only if O(P,�−,�+) is 2-level we only consider
σ = +.
Due to the fact that C is uncrossed, the linear function `C is rigid. Then

LC(f, t) = f(a)− f(b) + t

is a facet-defining inequality of O(P). Since b 6≺− a, there is a filter J1 of P− such that
b ∈ J1 and a /∈ J1. Since a 6≺− b, there is a filter J2 of P− such that a ∈ J2 and b /∈ J2. As
well, there is a filter J3 = ∅ of P−. The vertices corresponding to these three filters let
LC(f, t) take three different values:

LC(−2J1,−1) = 0− (−2) + (−1) = 1

LC(−2J2,−1) = −2− 0 + (−1) = −3
LC(−2J3,−1) = 0− 0 + (−1) = −1

Hence O(P) is not 2-level. For σ = −, the proof works analogously.

Theorem 21. Let P = (P,�+,�−) be a double poset and σ ∈ {±}. Then O(P) is 2-level
if and only if for all a, b ∈ P such that a ≺σ b is part of an uncrossed alternating chain
or cycle it holds that a ≺−σ b or b ≺−σ a.

Proof. Again, we consider only σ = +. For σ = −, the proof works analogously.
If b ≺− a, then a ≺+ b can only be part of the alternating cycle

C = a ≺+ b ≺− a.

All other alternating chains or cycles would be crossed by a. The corresponding linear
function of the double order polytope

LC(f, t) = f(a)− f(b)

defines a facet of O(P). If J+ is a filter of P+, then a ∈ J+ implies b ∈ J+ and that is why
LC(21J+ , 1) = 0 or LC(21J+ , 1) = −2. If J− is a filter of P−, then b ∈ J− implies a ∈ J−
and that is why LC(−21J+ ,−1) = 0 or LC(−21J+ ,−1) = −2.
If a ≺− b, then a ≺+ b can be part of an alternating chain or cycle C ′ such that C ′ 6= C.
In this case all other c ≺τ d in C ′ have to satisfy c ≺−τ d, where τ ∈ {±}. Otherwise, if
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d ≺−τ c, then C ′ would be crossed by c. Hence C ′ is an alternating chain. Let C ′ be the
alternating chain

0̂ = p0 ≺τ p1 ≺−τ · · · ≺± pk = 1̂.

If J is a filter of P+ or P−, then it follows from pi ∈ J that pi+1 ∈ J, since pi ≺+ pi+1 and
pi ≺− pi+1 for i = 0, . . . , k − 1. Let sign(C ′) = +.

If J+ ⊆ P+, then `C′(21J+) can only take the values 2 or 0 and if J− ⊆ P−, then
`C′(−21J−) takes the values 0 and -2. The values are exchanged for sign(C ′) = −. Hence

LC′(f, t) = `C′(f)− sign(C ′)t,

where (f, t) is a vertex of O(P), attains only the values -1 and 1. Thus O(P) is 2-level.

Assume that O(P) is 2-level. If there are a, b ∈ P such that a ≺σ b is part of an
uncrossed alternating chain or cycle and neither a ≺−σ b nor b ≺−σ a, then it follows by
Proposition 20 that O(P) is not 2-level.

4 Edges of general double order polytopes

In this last section we determine the vertical edges of double order polytopes. The edges
of an order polytope O(P) were determined by Stanley [4]: Edges correspond to pairs
of filters J ⊂ J′ such that J′ \ J is a connected poset. The vertical edges of O(P) are
in bijection to the vertices of O(P) and the following theorem shows that they also
correspond to certain pairs of filters (J+, J−) where J+ ⊆ P+ and J− ⊆ P−.

Theorem 22. Let P = (P,�+,�−) be a double poset and let J+ ⊆ P+ and J− ⊆ P− be
filters. Let I+ := P+ \ J+ and I− := P− \ J− be the corresponding ideals. Then (21J+ , 1)
and (−21J− ,−1) are the endpoints of a vertical edge of O(P) if and only if 1J+ − 1J− is
a vertex of O(P) if and only if the following hold:

(i) for all a ∈ J+ ∩ J− there is an alternating chain

0̂ ≺−σ a1 ≺σ a2 ≺−σ · · · ≺± ak = a ≺∓ 1̂,

where a1 ∈ Jσ \ J−σ and a2, . . . , ak ∈ J+ ∩ J−.

(ii) for all b ∈ I+ ∩ I− there is an alternating chain

0̂ ≺± b = b1 ≺∓ b2 ≺± · · · ≺σ bk ≺−σ 1̂,

where b1, b2, . . . , bk−1 ∈ I+ ∩ I− and bk ∈ Iσ \ I−σ.

This generalizes the result of Chappell, Friedl and Sanyal in Corollary 2.17 [2], since (i)
implies that min J+ ∩min J− = ∅ and (ii) implies that maxP+ \ J+ ∩maxP− \ J− = ∅.
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Proof. From the definition of the reduced double order polytope

O(P) ∩ {(φ, t) : t = 0} = (O(P+)−O(P−))× {0}

and the fact that 1J+ − 1J− is the midpoint between (21J+ , 1) and (−21J− ,−1) the first
equivalence follows.

To show necessity, assume that (i) is violated for some element a ∈ J+ ∩ J−. Let C be
the union of all alternating chains

0̂ ≺−σ a1 ≺σ a2 ≺−σ · · · ≺± ak = a ≺∓ 1̂, (5)

such that a1, . . . , ak ∈ J+ ∩ J−.
We claim that J+ \ C is a filter in P+. Otherwise there is an element a0 ∈ J+ \ C and

an element a1 ∈ C such that a0 ≺+ a1. Since a1 ∈ C, there is an alternating chain of
the form (5). We can assume that σ = −. Otherwise, a0 ≺+ a2 and we simply delete
a1 from the alternating chain. By construction a0 ∈ J+ \ J− and the alternating chain
a0 ≺+ a1 ≺− · · · ≺± ak = a contradicts our assumption.

The same argument yields that J− \C is a filter in P−. Thus 1J+−1J− = 1J+\C−1J−\C
and therefore 1J+ −1J− cannot be a vertex of O(P). The same argument shows necessity
of (ii). Indeed, let us write P op for the poset P with the opposite order relation. Filters
of P op are ideals in P and conversely and O(P op) = 1 − O(P ). In particular O(P op

+ ) −
O(P op

− ) = O(P−) −O(P+) = −O(P). Since 1J+ − 1J− is a vertex of O(P) if and only if
1J− − 1J+ = 1I+ − 1I− is a vertex of −O(P), condition (ii) is identical to condition (i) for
the opposites of P+ and P−.

For sufficiency, let a ∈ min J+. If a ∈ J+ \ J−, then set `+a(f) := f(a). If a ∈ J+ ∩ J−,
then let

0̂ ≺−σ a1 ≺σ a2 ≺−σ · · · ≺− ak = a ≺+ 1̂ (6)

be a chain C as in (i). Note sign(C) = + since a ∈ min J+. Lemma 7(i) yields that
`+a(1J′+

) 6 1 = `+a(1J+) for every filter J′+ ⊆ P+. Moreover, if `+a(1J′+
) = 1, then

a ∈ J′+. Again by Lemma 7(i), we have `+a(−1J′−
) 6 0 = `+a(−1J−) for all filter J′− ⊆ P−.

Analogously, we use (ii) and define `+b for all b ∈ maxP+ \ J+. We set

`+(f) :=
∑

a∈min J+

`+a(f) +
∑

b∈maxP+\J+

`+b(f) .

Then `+ is maximized over O(P) at points 1J+ − 1J′−
for some J′− ⊆ P−. Importantly,

1J+ − 1J− is one of the maximizers.
The same construction applied to J− yields a function `−(f) which is maximized over

O(P) at points 1J′+
−1J− for some J′+ ⊆ P+. Again, 1J+−1J− is one of the maximizers. It

follows that the linear function `+ + `− is uniquely maximized 1J+ − 1J− over O(P).
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