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Abstract

Fix a partition µ = (µ1, . . . , µm) of an integer k and positive integer d. For each
n > k, let χλµ denote the value of the irreducible character χλ of Sn, corresponding

to a partition λ of n, at a permutation with cycle type (µ1, . . . , µm, 1
n−k). We show

that the proportion of partitions λ of n such that χλµ is divisible by d approaches 1
as n approaches infinity.

Mathematics Subject Classifications: 20C30, 05A16, 05A17

1 Introduction

Let k be a positive integer, and µ = (µ1, . . . , µm) a partition of k. For a partition λ of an
integer n > k, let χλµ denote the value of the irreducible character of Sn corresponding to
λ at an element with cycle type (µ1, . . . , µm, 1

n−k). The purpose of this article is to prove:

Main Theorem. For any positive integers k and d, and any partition µ of k,

lim
n→∞

#{λ ` n | χλµ is divisible by d}
p(n)

= 1.

Here p(n) denotes the number of partitions of n.
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In particular, for any integer d, the probability that an irreducible character of Sn has
degree divisible by d converges to 1 as n→∞.

Recall the theorem of Lassalle [4, Theorem 6], which defines a rational number Aλµ
such that

χλµ =
fλ

(n)k
Aλµ. (1)

Here (n)k = n(n − 1) · · · (n − k + 1), and fλ is the degree of the irreducible character of
Sn corresponding to λ.

In fact, Aλµ is an integer for all λ, µ. This is likely well known to experts, but for the
convenience of the reader we sketch a proof in Section 4.

From here, in order to prove the main theorem, we focus on the divisibility properties
of fλ. For each prime number q, let vq(m) denote the q-adic valuation of an integer m, in
other words, qvq(m) is the largest power of q that divides m. The main theorem will follow
from the following result:

Theorem A. For every prime number q and non-negative integer m,

lim
n→∞

#{λ ` n | vq(fλ) 6 m+ (q − 1) logq n}
p(n)

= 0.

In the rest of this article, we first prove Theorem A, next show that it implies the
main theorem, and then explain the integrality of Aλµ.

2 Proof of Theorem A

The proof of Theorem A is based on the theory of q-core towers. This construction
originated in the seminal paper [5] of Macdonald, and was developed further by Olsson
in [6]. We now recall the relevant aspects.

Let [q] denote the set {0, . . . , q − 1}. Consider the disjoint union

Tq =
∞∐
i=0

[q]i = {(a1, . . . , ai) | i ∈ N, ai ∈ [q]} ∪ {∅},

which can be regarded as a rooted q-ary tree with root ∅ as follows. The children of a
vertex (a1, . . . , ai) ∈ [q]i are the vertices (a1, . . . , ai, ai+1), where ai+1 ∈ [q]. For q = 2,
rows 0 to 3 of this tree are as below. For compactness, commas and parentheses have
been omitted.

∅

0 1

00 01 10 11

000 001 010 011 100 101 110 111
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A partition λ is said to be a q-core if no cell in its Young diagram has hook length divisible
by q. Denote the set of all q-core partitions by Cq. The q-core tower construction associates
to each partition λ of n a function T λq : Tq → Cq known as the q-core tower of λ (see [6,
pages 29–30]). In particular, T λq (∅) is the q-core of λ (the partition obtained by removing
all the q-hooks from the Young diagram of λ). This function is visualized as the rooted
q-ary tree Tq with each vertex x of Tq replaced by the partition T λq (x) ∈ Cq. For example,
the 2-core tower of λ = (4, 3, 2, 2, 2, 2) is:

(2, 1)

∅ ∅

(1) ∅ ∅ ∅

∅ ∅ ∅ ∅ (1) ∅ ∅ ∅

For a function Tq : Tq → Cq, define:

wi(Tq) =
∑
x∈[q]i

|Tq(x)|.

Then the q-core tower satisfies the following constraint:

∞∑
i=0

wi(T λq )qi = n. (2)

In particular, T λq (x) = ∅ for all i > logq n. This function λ 7→ T λq is a bijection from the
set of partitions of n onto the set of all functions T : Tq → Cq satisfying the condition

∞∑
i=0

wi(T )qi = n.

Define the weight of a q-core tower Tq as:

w(Tq) =
∞∑
i=0

wi(Tq).

For a partition λ, define w(λ) = w(T λq ).
Let n be a positive integer with q-ary expansion:

n = a0 + a1q + · · ·+ arq
r, with ai ∈ [q] for i = 1, . . . , r, and ar > 0. (∗)

Define a(n) =
∑r

i=0 ai.
Recall the following Theorem:
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Theorem 1 ([5, Equation (3.3)]). For any partition λ of n and any prime q,

vq(fλ) =
w(λ)− a(n)

q − 1
.

For example when λ = (4, 3, 2, 2, 2, 2), a partition of 15, and q = 2, from the 2-core
tower of λ computed above, w1(λ) = 3, w2(λ) = 0, w3(λ) = w4(λ) = 1 so that w(λ) = 5.
On the other hand a(15) = 4. Therefore v(fλ) = w(λ)− a(n) = 1.

Theorem 1 can be used to find constraints on partitions with small values of vq(fλ).
Suppose that vq(fλ) 6 b. By Theorem 1, this is equivalent to

w(λ) 6 a(n) + b(q − 1).

The expansion (∗) implies that r 6 logq n < r + 1, so that a(n) 6 (q − 1)(r + 1) 6
(q − 1)(logq n+ 1). So if vq(fλ) 6 b, then

w(λ) 6 (q − 1)(logq n+ 1 + b).

Thus an upper bound for the number pb(n) of partitions λ of n such that vq(fλ) 6 b can
be obtained by counting the number of q-core towers with weight (q − 1)(logq n + 1 + b)
or less. The total number of vertices in the first r + 1 rows of Tq, i.e., in

∐r
i=0[q]

i, is:

1 + q + · · ·+ qr =
qr+1 − 1

q − 1
< qn,

since qr 6 n. Let cq(n) denote the number of q-core partitions of n. Set Nb = (q −
1)(logq n + b + 1). Let c̃q(n) denote max{cq(i) | 1 6 i 6 n}. There are

(
w+N−1

w

)
ways to

distribute the weight w into N vertices of Tq. Thus

pb(n) 6 c̃q(Nb)
Nb

(
qn+Nb

Nb

)
6 c̃q(Nb)

Nb(qn+Nb)
Nb

It is known that, for every integer q, there exists a polynomial fq(n) such that c̃q(n) 6
fq(n) for all n > 0. Indeed, for q = 2, it is well-known that c2(n) 6 1, and for q = 3,
using a formula of Granville and Ono [2, Section 3, p. 340], c3(n) 6 3n + 1. For q > 4,
the existence of fq(n) follows from Anderson [1, Corollary 7].

We get:
pb(n) 6 fq(Nb)

Nb(qn+Nb)
Nb ,

whence
logq pb(n) 6 Nb[logq fq(Nb) + logq(qn+Nb)].

Taking b = m+ (q−1) logq n gives Nb = (q−1)(q logq n+m+ 1). Thus logq pb(n) = o(nε)
for every ε > 0. On the other hand, the Hardy-Ramanujan asymptotic [3] for p(n) implies

that logq p(n) grows faster than n
1
2
−ε for any ε > 0. Thus Theorem A follows.
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3 Proof of the Main Theorem

The identity (1) implies that

vq(χ
λ
µ) > vq(fλ)− vq((n)k).

Using Legendre’s formula on the valuation of a factorial, that vq(n!) = n−a(n)
q−1 , we have:

vq((n)k) = vq

(
n!

(n− k)!

)
=
k + a(n− k)− a(n)

q − 1
6 k + (q − 1) logq n.

Hence if vq(fλ) > m + (q − 1) logq n, then vq(χ
λ
µ) > (m − k). Thus taking m = k + b in

Theorem A tells us that

lim
n→∞

#{λ ` n | vp(χλµ) 6 b}
p(n)

= 0.

From this the main theorem follows.

4 Integrality of Aλ
µ

For each partition µ = (µ1, . . . , µm), with m positive parts, the constant Aλµ from (1) is
given in [4, Theorem 6] as

Aλµ =
∑
ε

∑
(i1,...,im)

A
(ε)
i1,...,im

(µ)
∏
k

cλik(µk). (3)

The ε in the first sum runs over “upper triangular matrices” ε = (εij) for 1 6 i < j 6 n
with εij ∈ {0, 2}. The second sum runs over r-tuples of nonnegative integers. The
quantities cλi (q), defined for nonnegative integers i, q and partitions λ, are certain rational
numbers. Their “boundary values” are cλ0(q) = −1/q, and c∅i (q) = 0 for i > 0. However,
cλi (q) are integers for i > 0, which may be seen recursively by Lemma 1 on page 396 of [4].

The quantities A
(ε)
i1,...,im

(µ) are defined in Theorem 6 on page 399 by an intricate formula.
For a given ε and i1, . . . , im, we argue below that each of the terms

A
(ε)
i1,...,im

(µ) ·
∏
k

cλik(µk),

from (3) are integers. From this it follows that Aλµ is an integer.

Lemma 2. If there exists a k with

1. ε`k = 0 for all ` < k,

2. εk` = 0 for all k < `, and
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3. ik = 0,

then
A

(ε)
i1,...,im

(µ1, . . . , µm) = 0.

Proof. In the definition of A
(ε)
i1,...,im

(µ1, . . . , µm) in Theorem 6 of Lassalle, it is expressed
as a sum over certain a, b of products, including a product over certain Stirling numbers.
The Stirling number corresponding to k as above is

s(µk + 1, 0) = 0,

since by the given convention the a’s and b’s are 0.

Let Z = {k : ik = 0}. The product
∏

k c
λ
ik

(µk) is an integer multiple of
∏

k∈Z µ
−1
k , and

A
(ε)
i1,...,im

(µ) is an integer multiple of∏
i<j

θij =
∏

i<j and εij 6=0

µiµj.

Therefore A
(ε)
i1,...,im

(µ) ·
∏

k c
λ
ik

(µk) is an integer, unless for some k ∈ Z we have εik = 0
for all i < k and εkj = 0 for all k < j. But then the product anyway vanishes by Lemma 2.

Since Aλµ is the sum over the tuples (i1, . . . , im) and the (ε) of the A
(ε)
i1,...,im

(µ)·
∏

k c
λ
ik

(µk),
it too must be an integer.
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