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Abstract

Fix a partition g = (u1,. .., tim) of an integer k£ and positive integer d. For each
n =k, let X,)) denote the value of the irreducible character x* of S, corresponding
to a partition A of n, at a permutation with cycle type (1, ..., ttm, 1"%). We show
that the proportion of partitions A of n such that X,’) is divisible by d approaches 1
as n approaches infinity.

Mathematics Subject Classifications: 20C30, 05A16, 05A17

1 Introduction

Let k be a positive integer, and = (p1, . . ., ftm) a partition of k. For a partition A of an
integer n > k, let Xﬁ denote the value of the irreducible character of 5, corresponding to
A at an element with cycle type (i1, . . ., ftm, 1"%). The purpose of this article is to prove:

Main Theorem. For any positive integers k and d, and any partition u of k,
. #{AFn|x) is divisible by d}
lim =1

n—>00 p(n)

Here p(n) denotes the number of partitions of n.
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In particular, for any integer d, the probability that an irreducible character of S,, has
degree divisible by d converges to 1 as n — oo.
Recall the theorem of Lassalle [4, Theorem 6], which defines a rational number Az
such that
A I

Xp = m p (1)

Here (n)y =n(n—1)---(n—k+ 1), and f) is the degree of the irreducible character of
S, corresponding to A.

In fact, A;} is an integer for all A\, u. This is likely well known to experts, but for the
convenience of the reader we sketch a proof in Section 4.

From here, in order to prove the main theorem, we focus on the divisibility properties
of f. For each prime number g, let v,(m) denote the ¢g-adic valuation of an integer m, in
other words, ¢*2(™ is the largest power of ¢ that divides m. The main theorem will follow
from the following result:

Theorem A. For every prime number ¢ and non-negative integer m,

. H#{ANEn|v(fr) <m+(qg— 1)logqn}

In the rest of this article, we first prove Theorem A, next show that it implies the
main theorem, and then explain the integrality of Aﬁ.

2 Proof of Theorem A

The proof of Theorem A is based on the theory of g-core towers. This construction
originated in the seminal paper [5] of Macdonald, and was developed further by Olsson
in [6]. We now recall the relevant aspects.

Let [q] denote the set {0,...,q — 1}. Consider the disjoint union

T, = H {(ar.-...a) | i €N, a; € [g)} U {0},

which can be regarded as a rooted g-ary tree with root () as follows. The children of a
vertex (ai,...,a;) € [q]" are the vertices (ay,...,a; a;y1), where a;.1 € [q]. For ¢ = 2,
rows 0 to 3 of this tree are as below. For compactness, commas and parentheses have
been omitted.
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A partition A is said to be a g-core if no cell in its Young diagram has hook length divisible
by g. Denote the set of all g-core partitions by C,. The g-core tower construction associates
to each partition A of n a function 7} : T, — C, known as the g-core tower of A (see [6,
pages 29-30]). In particular, 7*() is the g-core of A (the partition obtained by removing
all the g-hooks from the Young diagram of ). This function is visualized as the rooted
g-ary tree T, with each vertex x of T}, replaced by the partition 7;)‘(x) € C,. For example,
the 2-core tower of A = (4,3,2,2,2,2) is:

RN
/N / N\

0 0 0

VAANVAWA

0 00 0

For a function 7, : T, — C,;, define:

Then the g-core tower satisfies the following constraint:
> wilT))g =n. (2)
i=0

In particular, 7;’\(33) = () for all i > log, n. This function A ’72 is a bijection from the
set of partitions of n onto the set of all functions 7 : T, — C, satisfying the condition

S wi(Thd' =n.
=0
Define the weight of a g-core tower 7, as:
w(Ty) =Y wi(Ty).
i=0

For a partition A, define w(\) = w(72).
Let n be a positive integer with g-ary expansion:
n=ay+aq+---+aq", witha; € g fori=1,...,r, and a, > 0. (%)
Define a(n) = Y ._, a;.
Recall the following Theorem:
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Theorem 1 ([5, Equation (3.3)]). For any partition A of n and any prime q,

w)) = a(n)

ve(fr) = q—1

For example when A\ = (4,3,2,2,2,2), a partition of 15, and ¢ = 2, from the 2-core
tower of A computed above, w;(A) = 3, wa(A) = 0, wsz(A\) = wy(A) = 1 so that w(\) = 5.
On the other hand a(15) = 4. Therefore v(fy) = w(A) —a(n) = 1.

Theorem 1 can be used to find constraints on partitions with small values of v,(fy).
Suppose that v,(f)) < b. By Theorem 1, this is equivalent to

w(A) < a(n)+b(g—1).

The expansion (*) implies that » < log,n < r + 1, so that a(n) < (¢ — 1)(r +1) <
(¢ —1)(log,n +1). So if vy(fr) < b, then

w(A) < (¢ —1)(log,n +1+0b).

Thus an upper bound for the number p,(n) of partitions A of n such that v,(fy) < b can
be obtained by counting the number of g-core towers with weight (¢ — 1)(log,n + 1+ b)
or less. The total number of vertices in the first r + 1 rows of T}, i.e., in [[I_,[q]", is:

qr—i-l -1

l+q+-+q¢ =—7 <qn,
qg—1

since ¢" < n. Let ¢,(n) denote the number of g-core partitions of n. Set N, = (q —

1)(log,n +b+1). Let ¢,(n) denote max{cy(i) | 1 < i < n}. There are (1) ways to
distribute the weight w into N vertices of T},. Thus

It is known that, for every integer ¢, there exists a polynomial f,(n) such that ¢,(n) <
fq(n) for all n > 0. Indeed, for ¢ = 2, it is well-known that cy(n) < 1, and for ¢ = 3,
using a formula of Granville and Ono [2, Section 3, p. 340], c3(n) < 3n+ 1. For ¢ > 4,
the existence of f,(n) follows from Anderson [1, Corollary 7].
We get:
po(n) < fo(No)™(qn + Np)™,

whence
log, py(n) < Ny[log, fo(Ny) +log,(gn + Ny)].

Taking b = m+ (¢ —1)log, n gives Ny, = (¢ —1)(qlog, n+m+1). Thus log, py(n) = o(n°)
for every € > 0. On the other hand, the Hardy-Ramanujan asymptotic [3] for p(n) implies
that log, p(n) grows faster than n2=¢ for any € > 0. Thus Theorem A follows.
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3 Proof of the Main Theorem

The identity (1) implies that

va(Xp) = vg(f2) — vg((n)i)-

n—a(n)

1 we have:

Using Legendre’s formula on the valuation of a factorial, that v,(n!) =

- >_k+a(n_k>_a<n) <k+(g—1)log,n

A -

Hence if vy(fy) = m + (¢ — 1)log, n, then vy(x;) > (m — k). Thus taking m = k + b in
Theorem A tells us that

#{AEn]u(x;) < b}

lim = 0.
From this the main theorem follows.
4 Integrality of Al);
For each partition u = (1, ..., ttm), with m positive parts, the constant Af; from (1) is

given in [4, Theorem 6] as
SEDIID DR R | AT 3)
€ (i1yeesim) k

The ¢ in the first sum runs over “upper triangular matrices” € = (g;;) for 1 <i < j <

with ¢;; € {0,2}. The second sum runs over r-tuples of nonnegative integers. The

quantities ¢2(q), defined for nonnegative integers i, ¢ and partitions ), are certain rational

numbers. Their “boundary values” are ¢}(q) = —1/¢, and ¢?(¢) = 0 for i > 0. However,

c?(q) are integers for i > 0, which may be seen recursively by Lemma 1 on page 396 of [4].

The quantities AS)M (u) are defined in Theorem 6 on page 399 by an intricate formula.
For a given € and 14, ..., 1, we argue below that each of the terms

AET)Z(M) ) H C?k (Mk),

k
from (3) are integers. From this it follows that A;} is an integer.
Lemma 2. If there exists a k with

1. ey =0 for all 0 < k,
2. epe =0 forall k <, and
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3. i, =0,

then
Agf) i (1o ) = 0.

-----

Proof. In the definition of Agf) i (1, ..., pm) in Theorem 6 of Lassalle, it is expressed

.....

as a sum over certain a, b of products, including a product over certain Stirling numbers.
The Stirling number corresponding to k as above is

s +1,0) =0,
since by the given convention the a’s and b’s are 0. O

Let Z = {k : i, = 0}. The product [T, ¢ (1) is an integer multiple of [],_, p;, ", and
A i (u) is an integer multiple of

D] 5eeny
H Oij = H Hoifg -

1<J i<j and €;;#0
:::::

.....

it too must be an integer.
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