On the Divisibility of Character Values of the Symmetric Group

Jyotirmoy Ganguly Amritanshu Prasad*

The Institute of Mathematical Sciences (HBNI) CIT Campus, Taramani, Chennai 600113, India

{jyotirmoy, amri}@imsc.res.in

Steven Spallone

Department of Mathematics Indian Institute of Science Education and Research Homi Bhabha Road, Pashan, Pune 411008, India

sspallone@iiserpune.ac.in

Submitted: Apr 26, 2019; Accepted: Mar 13, 2020; Published: Apr 3, 2020 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Fix a partition $\mu = (\mu_1, \ldots, \mu_m)$ of an integer k and positive integer d. For each $n \ge k$, let χ^{λ}_{μ} denote the value of the irreducible character χ^{λ} of S_n , corresponding to a partition λ of n, at a permutation with cycle type $(\mu_1, \ldots, \mu_m, 1^{n-k})$. We show that the proportion of partitions λ of n such that χ^{λ}_{μ} is divisible by d approaches 1 as n approaches infinity.

Mathematics Subject Classifications: 20C30, 05A16, 05A17

1 Introduction

Let k be a positive integer, and $\mu = (\mu_1, \ldots, \mu_m)$ a partition of k. For a partition λ of an integer $n \ge k$, let χ^{λ}_{μ} denote the value of the irreducible character of S_n corresponding to λ at an element with cycle type $(\mu_1, \ldots, \mu_m, 1^{n-k})$. The purpose of this article is to prove: Main Theorem. For any positive integers k and d, and any partition μ of k,

$$\lim_{n \to \infty} \frac{\#\{\lambda \vdash n \mid \chi_{\mu}^{\lambda} \text{ is divisible by } d\}}{p(n)} = 1.$$

Here p(n) denotes the number of partitions of n.

The electronic journal of combinatorics $\mathbf{27(2)}$ (2020), #P2.1

^{*}Supported by a Swarnajayanti Fellowship of the Department of Science & Technology, Govt. of India.

In particular, for any integer d, the probability that an irreducible character of S_n has degree divisible by d converges to 1 as $n \to \infty$.

Recall the theorem of Lassalle [4, Theorem 6], which defines a rational number A^{λ}_{μ} such that

$$\chi^{\lambda}_{\mu} = \frac{f_{\lambda}}{(n)_k} A^{\lambda}_{\mu}.$$
 (1)

Here $(n)_k = n(n-1)\cdots(n-k+1)$, and f_{λ} is the degree of the irreducible character of S_n corresponding to λ .

In fact, A^{λ}_{μ} is an integer for all λ, μ . This is likely well known to experts, but for the convenience of the reader we sketch a proof in Section 4.

From here, in order to prove the main theorem, we focus on the divisibility properties of f_{λ} . For each prime number q, let $v_q(m)$ denote the q-adic valuation of an integer m, in other words, $q^{v_q(m)}$ is the largest power of q that divides m. The main theorem will follow from the following result:

Theorem A. For every prime number q and non-negative integer m,

$$\lim_{n \to \infty} \frac{\#\{\lambda \vdash n \mid v_q(f_\lambda) \leq m + (q-1)\log_q n\}}{p(n)} = 0.$$

In the rest of this article, we first prove Theorem A, next show that it implies the main theorem, and then explain the integrality of A^{λ}_{μ} .

2 Proof of Theorem A

The proof of Theorem A is based on the theory of q-core towers. This construction originated in the seminal paper [5] of Macdonald, and was developed further by Olsson in [6]. We now recall the relevant aspects.

Let [q] denote the set $\{0, \ldots, q-1\}$. Consider the disjoint union

$$T_q = \prod_{i=0}^{\infty} [q]^i = \{ (a_1, \dots, a_i) \mid i \in \mathbf{N}, \ a_i \in [q] \} \cup \{ \emptyset \},\$$

which can be regarded as a rooted q-ary tree with root \emptyset as follows. The children of a vertex $(a_1, \ldots, a_i) \in [q]^i$ are the vertices $(a_1, \ldots, a_i, a_{i+1})$, where $a_{i+1} \in [q]$. For q = 2, rows 0 to 3 of this tree are as below. For compactness, commas and parentheses have been omitted.

The electronic journal of combinatorics 27(2) (2020), #P2.1

A partition λ is said to be a *q*-core if no cell in its Young diagram has hook length divisible by *q*. Denote the set of all *q*-core partitions by C_q . The *q*-core tower construction associates to each partition λ of *n* a function $\mathcal{T}_q^{\lambda}: T_q \to C_q$ known as the *q*-core tower of λ (see [6, pages 29–30]). In particular, $\mathcal{T}_q^{\lambda}(\emptyset)$ is the *q*-core of λ (the partition obtained by removing all the *q*-hooks from the Young diagram of λ). This function is visualized as the rooted *q*-ary tree T_q with each vertex *x* of T_q replaced by the partition $\mathcal{T}_q^{\lambda}(x) \in C_q$. For example, the 2-core tower of $\lambda = (4, 3, 2, 2, 2, 2)$ is:

For a function $\mathcal{T}_q: T_q \to C_q$, define:

$$w_i(\mathcal{T}_q) = \sum_{x \in [q]^i} |\mathcal{T}_q(x)|.$$

Then the q-core tower satisfies the following constraint:

$$\sum_{i=0}^{\infty} w_i(\mathcal{T}_q^{\lambda}) q^i = n.$$
⁽²⁾

In particular, $\mathcal{T}_q^{\lambda}(x) = \emptyset$ for all $i > \log_q n$. This function $\lambda \mapsto \mathcal{T}_q^{\lambda}$ is a bijection from the set of partitions of n onto the set of all functions $\mathcal{T}: T_q \to C_q$ satisfying the condition

$$\sum_{i=0}^{\infty} w_i(\mathcal{T}) q^i = n$$

Define the weight of a q-core tower \mathcal{T}_q as:

$$w(\mathcal{T}_q) = \sum_{i=0}^{\infty} w_i(\mathcal{T}_q)$$

For a partition λ , define $w(\lambda) = w(\mathcal{T}_q^{\lambda})$.

Let n be a positive integer with q-ary expansion:

$$n = a_0 + a_1 q + \dots + a_r q^r$$
, with $a_i \in [q]$ for $i = 1, \dots, r$, and $a_r > 0$. (*)

Define $a(n) = \sum_{i=0}^{r} a_i$.

Recall the following Theorem:

The electronic journal of combinatorics $\mathbf{27(2)}$ (2020), #P2.1

Theorem 1 ([5, Equation (3.3)]). For any partition λ of n and any prime q,

$$v_q(f_\lambda) = \frac{w(\lambda) - a(n)}{q - 1}.$$

For example when $\lambda = (4, 3, 2, 2, 2, 2)$, a partition of 15, and q = 2, from the 2-core tower of λ computed above, $w_1(\lambda) = 3$, $w_2(\lambda) = 0$, $w_3(\lambda) = w_4(\lambda) = 1$ so that $w(\lambda) = 5$. On the other hand a(15) = 4. Therefore $v(f_{\lambda}) = w(\lambda) - a(n) = 1$.

Theorem 1 can be used to find constraints on partitions with small values of $v_q(f_{\lambda})$. Suppose that $v_q(f_{\lambda}) \leq b$. By Theorem 1, this is equivalent to

$$w(\lambda) \leqslant a(n) + b(q-1).$$

The expansion (*) implies that $r \leq \log_q n < r+1$, so that $a(n) \leq (q-1)(r+1) \leq (q-1)(\log_q n+1)$. So if $v_q(f_{\lambda}) \leq b$, then

$$w(\lambda) \leqslant (q-1)(\log_q n + 1 + b).$$

Thus an upper bound for the number $p_b(n)$ of partitions λ of n such that $v_q(f_\lambda) \leq b$ can be obtained by counting the number of q-core towers with weight $(q-1)(\log_q n+1+b)$ or less. The total number of vertices in the first r+1 rows of T_q , i.e., in $\prod_{i=0}^r [q]^i$, is:

$$1 + q + \dots + q^r = \frac{q^{r+1} - 1}{q - 1} < qn_1$$

since $q^r \leq n$. Let $c_q(n)$ denote the number of q-core partitions of n. Set $N_b = (q - 1)(\log_q n + b + 1)$. Let $\tilde{c}_q(n)$ denote $\max\{c_q(i) \mid 1 \leq i \leq n\}$. There are $\binom{w+N-1}{w}$ ways to distribute the weight w into N vertices of T_q . Thus

$$p_b(n) \leqslant \tilde{c}_q (N_b)^{N_b} \begin{pmatrix} qn+N_b \\ N_b \end{pmatrix}$$
$$\leqslant \tilde{c}_q (N_b)^{N_b} (qn+N_b)^{N_b}$$

It is known that, for every integer q, there exists a polynomial $f_q(n)$ such that $\tilde{c}_q(n) \leq f_q(n)$ for all $n \geq 0$. Indeed, for q = 2, it is well-known that $c_2(n) \leq 1$, and for q = 3, using a formula of Granville and Ono [2, Section 3, p. 340], $c_3(n) \leq 3n + 1$. For $q \geq 4$, the existence of $f_q(n)$ follows from Anderson [1, Corollary 7].

We get:

$$p_b(n) \leqslant f_q(N_b)^{N_b}(qn+N_b)^{N_b},$$

whence

$$\log_q p_b(n) \leqslant N_b [\log_q f_q(N_b) + \log_q (qn + N_b)].$$

Taking $b = m + (q-1) \log_q n$ gives $N_b = (q-1)(q \log_q n + m + 1)$. Thus $\log_q p_b(n) = o(n^{\epsilon})$ for every $\epsilon > 0$. On the other hand, the Hardy-Ramanujan asymptotic [3] for p(n) implies that $\log_q p(n)$ grows faster than $n^{\frac{1}{2}-\epsilon}$ for any $\epsilon > 0$. Thus Theorem A follows.

3 Proof of the Main Theorem

The identity (1) implies that

$$v_q(\chi^{\lambda}_{\mu}) \ge v_q(f_{\lambda}) - v_q((n)_k).$$

Using Legendre's formula on the valuation of a factorial, that $v_q(n!) = \frac{n-a(n)}{q-1}$, we have:

$$v_q((n)_k) = v_q\left(\frac{n!}{(n-k)!}\right) = \frac{k + a(n-k) - a(n)}{q-1} \le k + (q-1)\log_q n$$

Hence if $v_q(f_\lambda) \ge m + (q-1)\log_q n$, then $v_q(\chi_\mu^\lambda) \ge (m-k)$. Thus taking m = k + b in Theorem A tells us that

$$\lim_{n \to \infty} \frac{\#\{\lambda \vdash n \mid v_p(\chi_{\mu}^{\lambda}) \leq b\}}{p(n)} = 0.$$

From this the main theorem follows.

Integrality of A^{λ}_{μ} 4

For each partition $\mu = (\mu_1, \ldots, \mu_m)$, with *m* positive parts, the constant A^{λ}_{μ} from (1) is given in [4, Theorem 6] as

$$A^{\lambda}_{\mu} = \sum_{\varepsilon} \sum_{(i_1,\dots,i_m)} A^{(\varepsilon)}_{i_1,\dots,i_m}(\mu) \prod_k c^{\lambda}_{i_k}(\mu_k).$$
(3)

The ε in the first sum runs over "upper triangular matrices" $\varepsilon = (\varepsilon_{ij})$ for $1 \leq i < j \leq n$ with $\varepsilon_{ij} \in \{0,2\}$. The second sum runs over r-tuples of nonnegative integers. The quantities $c_i^{\lambda}(q)$, defined for nonnegative integers *i*, *q* and partitions λ , are certain rational numbers. Their "boundary values" are $c_0^{\lambda}(q) = -1/q$, and $c_i^{\emptyset}(q) = 0$ for i > 0. However, $c_i^{\lambda}(q)$ are integers for i > 0, which may be seen recursively by Lemma 1 on page 396 of [4]. The quantities $A_{i_1,\ldots,i_m}^{(\varepsilon)}(\mu)$ are defined in Theorem 6 on page 399 by an intricate formula. For a given ε and i_1,\ldots,i_m , we argue below that each of the terms

$$A_{i_1,\ldots,i_m}^{(\varepsilon)}(\mu)\cdot\prod_k c_{i_k}^\lambda(\mu_k),$$

from (3) are integers. From this it follows that A^{λ}_{μ} is an integer.

Lemma 2. If there exists a k with

- 1. $\varepsilon_{\ell k} = 0$ for all $\ell < k$,
- 2. $\varepsilon_{k\ell} = 0$ for all $k < \ell$, and

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(2) (2020), #P2.1

3. $i_k = 0$,

then

$$A_{i_1,\ldots,i_m}^{(\varepsilon)}(\mu_1,\ldots,\mu_m)=0.$$

Proof. In the definition of $A_{i_1,\ldots,i_m}^{(\varepsilon)}(\mu_1,\ldots,\mu_m)$ in Theorem 6 of Lassalle, it is expressed as a sum over certain a, b of products, including a product over certain Stirling numbers. The Stirling number corresponding to k as above is

$$s(\mu_k + 1, 0) = 0$$

since by the given convention the a's and b's are 0.

Let $Z = \{k : i_k = 0\}$. The product $\prod_k c_{i_k}^{\lambda}(\mu_k)$ is an integer multiple of $\prod_{k \in Z} \mu_k^{-1}$, and $A_{i_1,\ldots,i_m}^{(\varepsilon)}(\mu)$ is an integer multiple of

$$\prod_{i < j} \theta_{ij} = \prod_{i < j \text{ and } \varepsilon_{ij} \neq 0} \mu_i \mu_j.$$

Therefore $A_{i_1,\ldots,i_m}^{(\varepsilon)}(\mu) \cdot \prod_k c_{i_k}^{\lambda}(\mu_k)$ is an integer, unless for some $k \in \mathbb{Z}$ we have $\varepsilon_{ik} = 0$ for all i < k and $\varepsilon_{kj} = 0$ for all k < j. But then the product anyway vanishes by Lemma 2.

Since A^{λ}_{μ} is the sum over the tuples (i_1, \ldots, i_m) and the (ε) of the $A^{(\varepsilon)}_{i_1, \ldots, i_m}(\mu) \cdot \prod_k c^{\lambda}_{i_k}(\mu_k)$, it too must be an integer.

Acknowledgements

The authors thank the referee for several helpful remarks, which helped improve the readability of this article.

References

- [1] J. Anderson. An asymptotic formula for the *t*-core partition function and a conjecture of Stanton. J. Number Theory, 128(9):2591–2615, 2008.
- [2] A. Granville and K. Ono. Defect zero p-blocks for finite simple groups. Trans. Amer. Math. Soc., 348(1):331–347, 1996.
- [3] G. H. Hardy and S. Ramanujan. Asymptotic formulae in combinatory analysis. *Proc. London Math. Soc.* (2), 17(1):75–115, 1918.
- [4] M. Lassalle. An explicit formula for the characters of the symmetric group. Math. Ann., 340(2):383-405, 2008.
- [5] I. G. Macdonald. On the degrees of the irreducible representations of symmetric groups. Bull. London Math. Soc., 3:189–192, 1971.
- [6] J. B. Olsson. McKay numbers and heights of characters. Math. Scand., 38(1):25–42, 1976.