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Abstract

We consider the triangular lattice ice model (20-Vertex model) with four types of
domain-wall type boundary conditions. In types 1 and 2, the configurations are
shown to be equinumerous to the quarter-turn symmetric domino tilings of an Aztec-
like holey square, with a central cross-shaped hole. The proof of this statement
makes extensive use of integrability and of a connection to the 6-Vertex model. The
type 3 configurations are conjectured to be in same number as domino tilings of a
particular triangle. The four enumeration problems are reformulated in terms of
four types of Alternating Phase Matrices with entries 0 and sixth roots of unity,
subject to suitable alternation conditions. Our result is a generalization of the
ASM-DPP correspondence. Several refined versions of the above correspondences
are also discussed.

Mathematics Subject Classifications: 05B45, 05A15, 82B20, 82B23

1 Introduction

Few combinatorial objects have fostered as many and as interesting developments as
Alternating Sign Matrices (ASM). As described in the beautiful saga told by Bressoud
[Bre99], these had a purely combinatorial life of their own from their discovery in the 80’s
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the Simons Fellowship No 617036.
†Supported by the grant ANR-14-CE25-0014 (ANR GRAAL)
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by Mills, Robbins and Rumsey [MRR83] to their enumeration [Zei96a, Zei96b] in relation
to other intriguing combinatorial objects such as plane partitions with maximal sym-
metries [MRR86] or descending plane partitions (DPP)[And80, Lal03, Kra06, BDFZJ12,
BDFZJ13], until they crashed against the tip of the iceberg of two-dimensional integrable
lattice models of statistical physics [Bax89]. This allowed not only for an elegant proof
of the so-called ASM conjecture [Kup96] and its variations by changing its symmetry
classes [Kup02], but set the stage for future developments, with some new input from
physics of the underlying six-vertex (6V) “ice” model in the presence of special domain
wall boundary conditions (DWBC), and its relations to a fully-packed loop gas, giving
eventually rise to the Razumov-Stroganov conjecture [RS04], finally proved by Cantini
and Sportiello in 2010 [CS11].

The ice model involves configurations on a domain of square lattice, obtained by
orienting each individual edge in such a way that the ice rule is obeyed at each node,
namely that exactly two edges point in and two edges point out of the node. It is now
recognized that the statistical model for two-dimensional ice, solved in [GAL72] is at the
crossroads of many combinatorial wonders, in relation with loop gases, osculating paths,
rhombus and domino tiling problems, and even equivariant cohomology of the nilpotent
matrix variety. Moreover, due to its inherent integrable structure, the model offers a panel
of powerful techniques for solving, such as transfer matrix techniques, the various available
Bethe Ansätze, Izergin and Korepin’s determinant, the quantum Knikhnik-Zamolodchikov
equation, etc. [GAL72, Bax89, ICK92, Che92, DFZJ05a, DFZJ05b].

In the present paper, we develop and study the combinatorics of the ice model on
the regular triangular lattice, known as the Twenty-vertex (20V) model [Kel74, Bax89].
Focussing on the combinatorial content, we introduce particular “square” domains (n ×
n rhombi of the triangular lattice) with special boundary conditions meant to create
domain walls, i.e. separations between domains of opposite directions of oriented edges,
in an attempt to imitate the 6V situation. Among the many possibilities offered by
the triangular lattice geometry, we found two particularly interesting classes of models,
which we refer to as 20V-DWBC1,2 (where DWBC1 and DWBC2 are two flavors of the
same class viewed from different perspectives) and 20V-DWBC3. These are respectively
enumerated by the sequences:

An = 1, 3, 23, 433, 19705, 2151843, 561696335, 349667866305 . . . (DWBC1,2) (1.1)

Bn = 1, 3, 29, 901, 89893, 28793575 . . . (DWBC3) (1.2)

for n = 1, 2, . . .
From their definition, both models can be interpreted as generalizations of ASMs, in

which non-zero entries may now belong to the set of sixth roots of unity, and we shall refer
to them as Alternating Phase Matrices (APM) of types 1,2,3 respectively. To further study
both sets of objects, we use the integrable version of the 20V model [Kel74, Bax89] to (i)
decorate the model’s configurations with Boltzmann weights parameterized by complex
spectral parameters; and (ii) reformulate whenever possible the partition function. In
this paper, we succeed in performing this program in the case of 20V-DWBC1,2, which
is eventually reformulated as an ordinary 6V-DWBC model on a square grid, but with
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non-trivial Boltzmann weights (a, b, c) = (1,
√

2, 1). The case of DWBC3 is more subtle
as the model can be rephrased as a 6V model with staggered boundary conditions.

Among other possibilities, the 20V configurations may be represented as configurations
of some non-intersecting paths with steps along the edges of the triangular lattice, with
the possibility of double or triple kissing (osculation) points at vertices. Individually, the
same paths, once drawn on a straightened triangular lattice equal to the square lattice
supplemented with a second diagonal edge on each face, are nothing but the Schröder
paths on Z2, with horizontal, vertical and diagonal steps (1, 0), (0,−1) and (1,−1). These
are intimately related to problems of tiling of domains of the square lattice by means of 1×
2 and 2×1 dominos, such as the celebrated Aztec diamond domino tiling problem [CEP96],
or the more recently considered Aztec rectangles with boundary defects [BK18, DFG19].

Looking for candidates in the domino tiling world for being enumerated by the se-
quences An or Bn, we found the two following remarkable models.

In the case of An, the associated domino tiling problem is a natural generalization of
the descending plane partitions introduced by Andrews [And80] and reformulated as the
rhombus tiling model of a hexagon with a central triangular hole, with 2π/3 rotational
symmetry [Lal03, Kra06], which allows to interpret it also as rhombus tilings of a cone. In
the same spirit, we find that An counts the domino tiling configurations of an Aztec-like,
quasi-square domain, with a cross-shaped central hole, and with π/2 rotational symmetry,
or equivalently the domino tilings of a cone. The fact that 20V DWBC1,2 configurations
and quarter-turn symmetric domino tilings of a holey square are enumerated by the sane
sequence An is proved in the present paper, together with a refinement, which paral-
lels the refinement in the so-called ASM-DPP conjecture of Mills, Robbins and Rumsey
[MRR83]. We use similar techniques to those of [BDFZJ12, BDFZJ13], namely identify
both counting problems as given by determinants of finite truncations of infinite matrices,
whose generating functions are simply related.

In the case of Bn, a natural candidate was found by using the online encyclopedia
of integer sequences (OEIS). The number of domino tilings of a square of size 2n ×
2n is 2nb2n [Kas63, FMP+15], where bn itself counts the number of domino tilings of a
triangle obtained by splitting the square into two equal domains [Pac97]. We found
perfect agreement between our data for Bn and bn, which we conjecture to be equal for
all n. Despite many interesting properties of the model, we have not been able to prove
this correspondence.

The paper is organized as follows.
In Section 2, we introduce the 20V model and define a first class of models in its two

flavors of domain wall boundary conditions DWBC1, 2, conveniently expressed in terms
of osculating Schröder paths. We also define the special integrable weights, parameterized
by triples of complex spectral parameters z, t, w, and obeying the celebrated Yang-Baxter
relation.

These models are mapped onto the 6V-DWBC model (Theorem 1) with anisotropy
parameter ∆ = 1/

√
2 in Section 3, by use of the integrability property, leading to compact

formulas for the partition function and in particular the numbers An, in the form of some
simple determinant, with known asymptotics leading to the free energy f = 3

2
Log 4

3
per
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site. The integrability of the model allows us moreover to keep track of a refinement of
the number An according to the number of occupied vertical edges in the last column of
the domain, in the osculating Schröder path formulation (Theorem 2). The generating
polynomial of the refined numbers is also given by some simple determinant.

Section 4 is devoted to the definition and enumeration of the domino tiling problem
of a cone corresponding to the sequence An, which generalizes the notion of Andrews’
descending plane partitions in domino terms. After defining the tiling problem, we per-
form enumeration using a non-intersecting Schröder path formulation and Gessel-Viennot
determinants (Theorem 4). We also introduce refinements in the same spirit as the re-
finements of the DPP conjecture of [MRR83] (Theorem 5).

The equivalence between the enumerations in Sections 3 and 4 is proved in Section
5, in the same spirit as the refined ASM-DPP proof of [BDFZJ12]. We first evaluate
the homogeneous limit of the Izergin-Korepin determinantal formula for the 6V-DWBC
partition function, and write it in the form of the determinant of the finite n×n truncation
of an infinite matrix independent of n. We then identify this determinant with the Gessel-
Viennot determinant of Section 4 (Theorem 7). We also work out the refined version of this
result, by keeping one non-trivial spectral parameter in the 20V model, and identifying
it in a special weighting of the Schröder path configurations for the domino tiling of the
cone of Section 4 (Theorem 8).

We turn to other possible domain wall boundary conditions in Section 6. We first
define the 20V-DWBC3 model and formulate the Conjecture 10 that its configurations
are also enumerated by the domino tilings of the triangle of [Pac97]. We extend this to
a sequence of models corresponding to half-hexagonal shapes with the same boundary
conditions, conjecturally enumerated by the domino tilings of Aztec-like extensions of the
former triangle (Conjecture 11). We complete the section with another possible DWBC4
for which no general conjecture was formulated.

In Section 7, we identify the various 20V-DWBC configurations considered in this
paper with sets of matrices with entries made of triples of elements in {0, 1,−1}, or
equivalently taking values among 0 and the sixth roots of unity, that generalize the notion
of Alternating Sign Matrix.

We gather a few concluding remarks in Section 8.

2 The 20V model with Domain Wall Boundary Conditions

2.1 Definition of the model: ice rule and osculating paths

The combinatorial problem that we wish to address corresponds to a particular instance
of the 20V model on a finite regular domain with specific boundary conditions. The
corresponding geometry is directly inspired from that of the 6V model on a portion of
square lattice with Domain Wall Boundary Conditions (DWBC) [Kor82], suitably adapted
to the triangular lattice as follows: we first straighten the triangular lattice into a square
lattice supplemented with a second diagonal within each face. In this setting, the regular
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Figure 1: Left: A sample configuration of a 20V model configuration with DWBC1. Right:
The equivalent osculating path configuration.

Figure 2: Left: A sample configuration of a 20V model configuration with DWBC2. The
boundary condition differs from that of Fig. 1 by the orientation imposed on the upper-left and
lower-right edges. Right: The equivalent osculating path configuration.

domain underlying our 20V model is an n × n square portion of lattice1, whose vertices
occupy all points with integer coordinates (i, j) for i, j = 1, 2, . . . , n. Its set of inner edges
is made of all the elementary horizontal segments (i, j) → (i + 1, j) (i < n) and vertical
segments (i, j)→ (i, j + 1) (j < n) joining neighboring vertices, as well as all the second
diagonals (i, j + 1)→ (i+ 1, j) (i, j < n). This edge set is completed by a set of oriented
boundary edges, with the following prescribed orientations:

• West boundary: horizontal edges oriented from (0, j) to (1, j), j = 1, 2, . . . , n and
diagonal edges oriented from (0, j + 1) to (1, j) for j = 1, 2, . . . n− 1;

• South boundary: vertical edges oriented from (i, 1) to (i, 0), i = 1, 2, . . . , n and
diagonal edges oriented from (i, 1) to (i+ 1, 0) for i = 1, 2, . . . n− 1;

1Before straightening, this domain is an n× n rhombus of the triangular lattice.
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Figure 3: Top: The 20 possible environments allowed by the ice rule for a node of the triangular
lattice. Bottom: the equivalent 20 vertices in the osculating path language. A path edge is drawn
whenever the underlying orientation runs from North, Northwest or West to East, Southeast or
South. Path steps are then concatenated into non-crossing paths.

• East boundary: horizontal edges oriented from (n + 1, j) to (n, j), j = 1, 2, . . . , n
and diagonal edges oriented from (n+ 1, j) to (n, j + 1) for j = 1, 2, . . . n− 1;

• North boundary: vertical edges oriented from (i, n) to (i, n+ 1), i = 1, 2, . . . , n and
diagonal edges oriented from (i+ 1, n) to (i, n+ 1) for i = 1, 2, . . . n− 1.

The boundary edge set itself is finally completed by two diagonal corner edges, and we dis-
tinguish two types of DWBC, referred to as DWBC1 and DWBC2 respectively, depending
on the orientation of these corner edges:

• DWBC1: the diagonal edge oriented from (0, n+ 1) to (1, n) and the diagonal edge
oriented from (n, 1) to (n+ 1, 0);

or

• DWBC2: the diagonal edge oriented from (1, n) to (0, n+ 1) and the diagonal edge
oriented from (n+ 1, 0) to (n, 1).

The domain thus defined is clearly a portion of triangular lattice where each inner
node (i, j), i, j = 1, 2, . . . , n is incident to six edges. A configuration of the 20V model on
this domain consists in the assignment of an orientation to all the inner edges satisfying
the (triangular) ice rule condition that each node is incident to three outgoing and three
incoming edges. Figures 1 and 2 show examples of configurations corresponding to the
DWBC1 and DWBC2 ensembles respectively. The ice rule gives rise to exactly 20 possible
environments around a given node, as displayed in Fig. 3, hence the name of the model.
In the following, unless otherwise stated, we will be interested in enumerating the 20V
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configurations without discrimination on the possible node environments. In other words,
we attach the same weight 1 to each of the 20 vertices of the model.

As in the case of the 6V model, the edge orientations of a configuration of the 20V
model may be coded bijectively by configurations of so-called osculating paths visiting
the edges of the lattice and obtained as follows: we first assign to each edge of the lattice
a natural orientation, namely from West to East for the horizontal edges, from North to
South for the vertical edges, and from Northwest to Southeast for the diagonal edges.
Each edge of the lattice is then covered by a path step if and only of its actual orientation
matches the natural orientation. Note that the path steps are de facto naturally oriented
from North, Northwest or West (NW for short) to East, Southeast or South (SE) and the
ice rule ensures that the number of paths steps coming from NW at each node is equal
to that leaving towards SE. This allows to concatenate the path steps into global paths.
When four or six path steps are incident to a given node, the prescription for concatenation
is the unique choice ensuring that the paths do not cross each other, even though they
meet at the node at hand. Such paths are called “osculating”. Note that no two paths can
share a common edge. By construction, the path configuration consists of 2n (respectively
2n − 1) paths in the DWBC1 (respectively DWBC2) ensemble, connecting the 2n edges
of the West boundary plus the upper-left corner edge (respectively the 2n−1 edges of the
West boundary) to the 2n edges of the South boundary plus the lower-right corner edge
(respectively the 2n− 1 edges of the South boundary) without crossing. Figures 1 and 2
show examples of such osculating path configurations.

The simplest question we may ask about 20V configuration with DWBC is that of the
number An = Z20V (n) of configurations for a given n. First we note that this number
is the same for the prescriptions DWBC1 and DWBC2 due to a simple duality between
the two models: performing a rotation by 180◦ in the plane sends a configuration of
arrows obeying the DWBC1 prescription to one obeying the DWBC2 and conversely
(the symmetry being an involution). Indeed, the ice rule is invariant under this rotation
and the boundary conditions are unchanged, except for the orientation of the corner edges
which are reversed. This gives a bijection between the configurations in the two ensembles
which thus have the same cardinality. In the osculating path language, the DWBC2 path
configuration is obtained by taking the complement of the DWBC1 path configuration
(i.e. covering uncovered edges and conversely) and rotating it by 180◦ . The configuration
in Fig. 2 is the image of that of Fig. 1 by this bijection. The distinction between the two
ensembles will still be significant when we address a more refined question in the next
sections. The sequence of the first values of the numbers An = Z20V (n) for n up to 8 are
listed in (1.1). The 23 configurations for n = 3 are represented for illustration in Fig. 4

2.2 General properties

Following Baxter [Bax89], we may transform the 20V model into an ice model on the
Kagome lattice as follows: starting from our portion of triangular lattice and splitting
each node into a small triangle, say by slightly sliding each horizontal line to the North,
results in a portion of Kagome lattice, as shown in Fig. 5. Clearly, any orientation of
the edges of the Kagome lattice satisfying the ice rule (i.e. with two incoming and two
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Figure 4: The 23 configurations of the 20V model with DWBC1 for n = 3, represented in the
osculating path language.

outgoing edges incident to each node) results into a configuration where the six edges of
the original triangular lattice satisfy the ice rule around any small triangle replacing an
original node. Conversely, any orientation satisfying the ice rule on the original triangular
lattice may be completed via some appropriate choice of orientation of the newly formed
edges so as to create an ice model configuration on the Kagome lattice (note that the
choice of orientation for the new edges is not unique in general). This construction allows
to rephrase our 20V model in terms of an ice model on the Kagome lattice. Let us
now discuss how to recover the desired weight 1 per vertex of the 20V model by some
appropriate weighting of the vertex configurations around each node of the Kagome lattice.
The Kagome lattice is naturally decomposed into three sublattices, denoted 1, 2 and 3
with the following choice:

• lattice 1: vertices at the crossing of a horizontal and a vertical line;

• lattice 2: vertices at the crossing of a horizontal and a diagonal line;
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1

1 1

1 1 1

1

11

2 2

2 2

22 2

2

2

3

3

3 3

3

3 3

3

3

Figure 5: The deformation of the triangular lattice into the Kagome lattice by sliding the
horizontal lines to the North, splitting each node into a small triangle (colored in light blue).
The Kagome lattice is naturally split into three sublattices denoted 1, 2 and 3 as shown. Each
configuration of the 20V model (left) may be completed into a configuration satisfying the ice
rule at each vertex of the Kagome lattice by some (non-unique) appropriate choice of orientation
for the newly created edges (blue arrows).

• lattice 3: vertices at the crossing of a vertical and a diagonal line.

Due to the ice rule, each vertex of sublattice 1 (respectively 2 and 3) matches one of the six
vertex configurations of the 6V model and we may naturally weight these configurations
with three weights a1, b1, c1 (respectively a2, b2, c2 and a3, b3, c3) according to the rules of
Fig. 6. In order to recover the desired weight 1 for each vertex of the 20V model, the
weights of the Kagome model must satisfy the following 10 relations2

1 = a1a2a3 = b1a2b3 = b1a2c3 = c1a2a3 = b1c2a3 = b1b2a3

= a1b2c3 + c1c2b3 = a1b2b3 + c1c2c3 = c1b2b3 + a1c2c3 = c1b2c3 + a1c2b3
(2.1)

For instance, the relation a1b2c3 + c1c2b3 = 1 comes from the summation over the two
possible orientations in the small triangle shown in Fig. 7. A possible choice of solution
for the system of equations (2.1) is

(a1, b1, c1) =
α

21/3
(1,
√

2, 1) , (a2, b2, c2) =
β

21/3
(
√

2, 1, 1) , (a3, b3, c3) =
γ

21/3
(
√

2, 1, 1)

(2.2)
for any choice of α, β and γ such that αβγ = 1. A very efficient tool in solving the
6V model is the use of the so called Yang-Baxter relations which allow to deform and
eventually unravel the underlying lattice into a simpler graph. In the above Kagome
lattice setting, denoting by α1, · · · , α6 the six orientations around a small triangle as

2Note that our definition of the weights on the Kagome lattice differ from that of Baxter in [Bax89]
upon the exchange a1 ↔ b1. The 20 relations for the 20 possible vertices reduce to 10 by symmetry.
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3

a1 a1 b1 b1

b3b3a3a3

a2 a2 b2 b2 c2

c1

c3

c1

c2

c3

Figure 6: The weight denomination for the three copies of 6V models on the Kagome lattice.
The index of the weights corresponds to that of the underlying sublattice. Vertices related by a
global reversing of all arrows are chosen to have the same weight.

1

2

3

1

2

3

1 a1b2c3 c1c2b3= +

Figure 7: The relation a1b2c3 + c1c2b3 = 1 ensuring a weight 1 for the vertex of the 20V model
shown on the left, as obtained by summing over the two possible orientations for the edges of
the central small triangle in the equivalent Kagome lattice setting (right).

1

2

3

1

2

3

α2

α4

α6α1

α5

α3

Sα4,α5,α6α1,α2,α3

=
31

2

3

α2

α4

α6α1

α5

α3

T α4,α5,α6α1,α2,α3

Figure 8: A schematic picture of the Yang-Baxter equation Sα4,α5,α6
α1,α2,α3 = Tα4,α5,α6

α1,α2,α3 . For fixed
orientations α1, · · · , α6, S

α4,α5,α6
α1,α2,α3 and Tα4,α5,α6

α1,α2,α3 are obtained by summing over the orientations
of the edges of the central triangle allowed by the ice rule on the Kagome lattice, with their
associated weights of Fig. 6.
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···
·
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(i, j)

Figure 9: Spectral parameters for the Kagome lattice version of the 20V model.

shown in Fig. 8, with αi = 1 if the orientation matches the natural (from NW to SE)
orientation and 0 otherwise, these relations ensure that the weight Sα4,α5,α6

α1,α2,α3
obtained by

summing over the possible orientations of the edges of the small triangle is equal, for any
choice of the αi’s, to that, Tα4,α5,α6

α1,α2,α3
, obtained by sliding the diagonal line (passing through

vertices of sublattices 2 and 3) to the other side of the node of the sublattice 1 (see Fig. 8).
In terms of the weights (ai, bi, ci), it is easily checked that this equality holds if and only
if we have the three relations:

(a1b2−b1a2)c3 +c1c2b3 = 0 , (a1b3−b1a3)c2 +c1c3b2 = 0 , (b2b3−a2a3)c1 +c2c3a1 = 0 .
(2.3)

Note that these relations are in practice weaker than the relations (2.1) in the sense that
imposing (2.1) automatically implies (2.3). For instance, the relation (a1b2 − b1a2)c3 +
c1c2b3 = 0 is a direct consequence of the two identities b1a2c3 = a1b2c3 + c1c2b3 = 1. In
particular, (2.3) is satisfied by the solution (2.2), as easily verified by a direct computation.

2.3 Integrable weight parametrization

It is useful to introduce more general weights for our 20V model, or equivalently for its
Kagome reformulation, by introducing so called spectral parameters in the following way,
mimicking the well known use of spectral parameters for the 6V model. Let us number the
horizontal lines of our lattice by i = 1, 2, . . . , n from bottom to top and attach a (complex)
parameter zi to the i’th line. Similarly, we label the vertical lines by j = 1, 2, . . . , n from
left to right and attach a parameter wj to the j’th line. Finally, the diagonal lines are
labeled by k = 1, 2 . . . , 2n− 1 from bottom left to top right and we attach a parameter tk
to the k-th line. This labeling induces a similar labeling for the horizontal, vertical and
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diagonal lines of the Kagome lattice, see Fig. 9. Each node of the sublattice 1 is then
at the crossing of a horizontal and a vertical line, hence naturally labeled by a pair (i, j)
with i, j = 1, 2, . . . , n. Similarly, each node of the sublattice 2 is labeled by a pair (i, k),
with i = 1, 2, . . . , n and k = i, i + 1, . . . , i + n − 1, while each node of the sublattice 3
corresponds to a pair (k, j) with j = 1, 2, . . . , n and k = j, j+1, . . . , j+n−1. This allows
us to introduce non-homogeneous weights (a1(i, j), b1(i, j), c1(i, j)) for the configurations
around vertices of the sublattice 1 according to the dictionary of Fig. 6, and similarly
weights (a2(i, k), b2(i, k), c2(i, k)) and (a3(k, j), b3(k, j), c3(k, j)).

Introducing the notations

A(u, v) = u− v , B(u, v) = q−2 u− q2 v , C(u, v) = (q2 − q−2)√u v ,

with u, v and q some complex numbers, we consider the following integrable weight parame-
trization:

a1(i, j) = A(zi, wj) , b1(i, j) = B(zi, wj) , c1(i, j) = C(zi, wj) ,
a2(i, k) = A(q zi, q

−1 tk) , b2(i, k) = B(q zi, q
−1 tk) , c2(i, k) = C(q zi, q

−1 tk) ,
a3(k, j) = A(q tk, q

−1wj) , b3(k, j) = B(q tk, q
−1wj) , c3(k, j) = C(q tk, q

−1wj) ,
(2.4)

where the complex numbers zi, i−1, 2, . . . , n, wj, j = 1, 2, . . . , n, and tk, k = 1, 2, . . . , 2n−1
are arbitrarily fixed spectral parameters. The main feature of this integrable parametriza-
tion is that, for any choice of the spectral parameters, the Yang Baxter relations (2.3)
are automatically satisfied for any triple (i, j, k) in (2.4), as easily checked by a direct
computation.

The solution (2.2) of (2.1) may be recovered in this framework by choosing

tk = t , zi = q6 t , wj = q−6 t (2.5)

for all k, i and j, leading to the homogeneous weights:

a1 = (q6 − q−6)t , b1 = (q4 − q−4)t , c1 = (q2 − q−2)t ,
a2 = (q7 − q−1)t , b2 = (q5 − q)t , c2 = (q5 − q)t ,
a3 = (q − q−7)t , b3 = (q−1 − q−5)t , c3 = (q−1 − q−5)t .

Upon taking the particular value
q = eiπ/8 , (2.6)

these weights reduce, using q8 = −1 and (q4 − q−4) =
√

2 (q2 − q−2), to

(a1, b1, c1) = (q2 − q−2)t (1,
√

2, 1) ,

(a2, b2, c2) = q3 (q2 − q−2)t (
√

2, 1, 1) ,

(a3, b3, c3) = q−3 (q2 − q−2)t (
√

2, 1, 1) ,

(2.7)

a form which matches precisely that of (2.2) with α = 1, β = q3 and γ = q−3 whenever
((q2 − q−2)t)3 = 1/2, namely, say

t =
1

21/3 (q2 − q−2) = − i

25/6
. (2.8)
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3 Mapping to a 6V model with Domain Wall Boundary Condi-
tions

3.1 Unraveling the 20V configurations

We now return to our 20V model with, say the DWBC1 prescription and with a weight
1 per vertex and consider its Kagome equivalent formulation with the weights given by
(2.2). As already mentioned, as solution of the equation (2.1), these weights automatically
satisfy the conditions (2.3) ensuring the Yang Baxter property. This allows to deform the
lattice by expelling the diagonal lines from the n × n square grid as shown in Fig. 10.
The diagonal lines with index k 6 n are expelled towards the lower-left of the square grid
and those with index k > n towards the upper-right. The choice for the main diagonal
(k = n) is adapted to the DWBC1 prescription. For the DWBC2 prescription, the proper
choice would be to move this diagonal towards the upper-right instead. In the deformed
configuration, all the vertices of the sublattices 2 and 3 have been expelled outside of the
n×n square grid which contains only vertices of the sublattice 1. More interestingly, due
to the ice rule and to the prescribed boundary conditions, the orientations of all the edges
outside the central n × n square grid are entirely fixed (see Fig. 10), and all correspond
to configurations of ”type a”, namely receive the weight a2 if they belong to sublattice
2 and a3 is they belong to the sublattice 3. This leads to a global contribution (a2 a3)

n2

while the remaining configuration is that of a standard 6V model on the n × n square
grid with the celebrated Domain Wall Boundary Conditions. We immediately deduce the
following:

Theorem 1. The number An of configurations of the 20V model with DWBC1,2 on an
n× n grid reads

An = Z20V (n) = Z6V

[1,
√
2,1](n) .

where Z6V
[a,b,c](n) denotes the partition function of the 6V model on an n × n square grid

with DWBC and weights (a, b, c) according to the dictionary of Fig. 11.

Proof. We indeed have

An = Z20V (n) = (a2 a3)
n2

Z6V
[a1,b1,c1]

(n) =


β γ

(√
2

21/3

)2


n2

Z6V[
α 1

21/3
,α
√
2

21/3
,α 1

21/3

](n)

= Z6V[
αβ γ

( √
2

21/3

)2
1

21/3
,α β γ

( √
2

21/3

)2 √
2

21/3
,α β γ

( √
2

21/3

)2
1

21/3

](n)

where we used the multiplicative nature of the weights to redistribute the prefactor within
the weights of the n2 nodes of the sublattice 1. Since αβ γ = 1, the theorem follows.

Using Theorem 1 and straightforward generalizations, we will recourse to known results
on the 6V model with DWBC to address a number of enumeration results for the 20V
model. In the following, we will mainly use the osculating path formulation of the 20V
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Figure 10: The unraveling of a configuration of the 20V model with DWBC1 (top left). Using
the Yang Baxter property allows to deform the diagonal lines and expel them out of the central
square grid (top right). Note that the main diagonal is expelled towards the lower-left of the
square grid, a choice adapted to the DWBC1 prescription. Due to the ice rule and the boundary
conditions, the orientations of all the edges outside of the central square grid are entirely fixed
(lower left), leaving as only degrees of freedom the orientation of the edges inside the central
square grid, reproducing a 6V model with DWBC (lower right).
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a c} } }}b

Figure 11: Vertex configurations of the 6V model on the square grid and the associated weights
a, b and c (top row) and their equivalent osculating path representation (bottom row).

1 2 2 2

844

Figure 12: Illustration of the property Z6V
[1,
√
2,1]

(3) = 1 + 2 + 2 + 2 + 4 + 4 + 8 = 23 obtained

by listing all the 6V model configurations with DWBC (here in the osculating path language)
and their associated weight (as indicated for each configuration), corresponding to attaching a
factor

√
2 to each node traversed vertically or horizontally by a path (as shown by cross marks).
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model and the corresponding one for the 6V model according to the correspondence of
Fig. 11. Fig. 12 shows how to recover the value A3 = Z20V (3) = 23 from that of Z6V

[1,
√
2,1]

(3)

in the osculating path framework.

3.2 Refined enumeration

A refined enumeration of the 20V model configurations consists, in the osculating path
language, in keeping track of the position i = ` (` = 1, 2, . . . , n) where the uppermost
path3 first hits the vertical line j = n. Alternatively, ` − 1 is the number of occupied
inner vertical edges in the last column. We denote by Z20VBC1

` = Z20VBC1
` (n) the number

of configurations with a given ` for the DWBC1 prescription and Z20VBC2
` this number for

the DWBC2 prescription. These numbers are encoded in the generating functions

Ẑ20VBC1(τ) =
n∑

`=1

Z20VBC1
` τ `−1 ,

Ẑ20VBC2(τ) =
n∑

`=1

Z20VBC2
` τ `−1 ,

(with an implicit n-dependence) which clearly satisfy Ẑ20VBC1(1) = Ẑ20VBC2(1) = Z20V (n).
Similarly we denote by Z6V

[1,
√
2,1];`

= Z6V

[1,
√
2,1];`

(n) the number of configurations of the 6V

model with DWBC for which the uppermost osculating path first hits the vertical line
j = n at position i = ` and set

Ẑ6V

[1,
√
2,1](σ) =

n∑

`=1

Z6V

[1,
√
2,1];`σ

`−1 (3.1)

with Ẑ6V

[1,
√
2,1]

(1) = Z6V

[1,
√
2,1]

(n).

Let us now show the following:

Theorem 2. The generating polynomials Ẑ20VBC1,2(τ) for the refined 20V model are de-
termined by the relations

Ẑ20VBC2(τ) = Ẑ6V

[1,
√
2,1]

(
1 + τ

2

)
= Ẑ20VBC1(0) +

1 + τ

2τ

(
Ẑ20VBC1(τ)− Ẑ20VBC1(0)

)
. (3.2)

Equivalently, coefficient-wise:

Z20VBC1
1 = Z6V

[1,
√
2,1];1 and Z20VBC1

` =
n∑

m=`

(
m− 2

`− 2

)
1

2m−2
Z6V

[1,
√
2,1];m for ` > 2 ,

Z20VBC2
` =

n∑

m=`

(
m− 1

`− 1

)
1

2m−1
Z6V

[1,
√
2,1];m .

3The uppermost path corresponds to the 2n-th path from the bottom for DWBC1 and to the (2n−1)-th
path for DWBC2.
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==

=

=

=

+

a1(i, n)a2(i, k)a3(k, n)

+

+

b1(i, n)a2(i, k)b3(k, n)

a1(i, n)b2(i, k)c3(k, n)

c1(i, n)c2(i, k)b3(k, n)

+
a1(i, n)c2(i, k)c3(k, n)

c1(i, n)b2(i, k)b3(k, n)

=

=

=

=

√
u(1+u)
2

√
u(1+u)
2

(1+u)(u+i)(1−i)
4

(1+u)(u−i)(1+i)
4

=

=

=

=

W1

W2

W3

W4

i = `

j = nj = n

Figure 13: Left: modification of the weights of the 20V model with DWBC2 when performing
the change wn → wn u for the spectral parameter attached to the last column from the special
values (2.5), (2.6) and (2.8). We display only the four vertices which may appear in the last
column due to the boundary condition at the East boundary. The weights are easily computed
in the Kagome formulation, with the result W1, . . . ,W4 shown, satisfying Wi → 1 when u→ 1,
as required. Right: the configuration in the last column is, from bottom to top, made of a
sequence of vertices weighted by W2, then of a single vertex with weight W3 or W4 (hitting
point) and finally of a complementary sequence of vertices weighted by W1.

Note that the second relation in (3.2) may alternatively be rewritten as

Corollary 3.

Ẑ20VBC1(τ) =
2τ

1 + τ
Ẑ6V

[1,
√
2,1]

(
1 + τ

2

)
+

1− τ
1 + τ

Ẑ6V

[1,
√
2,1](0) . (3.3)

To prove Theorem 2, let us start with the simplest case of DWBC2. The generating
function Ẑ20VBC2(τ) may easily be obtained, in the equivalent Kagome formulation of
the 20V model, by slightly modifying the spectral parameter wn for the last column.
Choosing the integrable parametrization (2.4) for the Kagome vertex weights with q as
in (2.6), tk = t as in (2.8) for all k, zi = q6 t for all i and wj = q−6 t for all j < n
while wn = q−6 t u for some parameter u, only the weights (a1(i, n), b1(i, n), c1(i, n)) and
(a3(k, n), b3(k, n), c3(k, n)) are modified with respect to the homogeneous values of (2.7).
The new values are

a1(i, n) = (q2 u− q−2)t , b1(i, n) = (q4 − q−4 u)t , c1(i, n) = (q2 − q−2)√u t ,
a3(i, n) = q−3(q4 − q−4 u)t , b3(i, n) = q−3(q2 − q−2 u)t , c3(i, n) = q−3(q2 − q−2)√u t .
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Figure 14: In the unraveled configuration (here for DWBC2, hence with the main diagonal
expelled towards the upper-right corner), changing wn → wn u modifies only those weights
corresponding to the encircled sets of nodes. The top set results into a global factor while the
bottom set corresponds to a change of the 6V weights in the last column (see text).

This in turns leaves all the vertex weights of the 20V model equal to 1, except for those
of the last column (j = n). Due to the boundary condition on the right of this column,
only four vertex configurations are possible, as displayed in Fig. 13, corresponding to a
vertex not visited by the uppermost path (weight W1), a vertex crossed vertically by the
uppermost path (weight W2), or a vertex where the uppermost path hits the last column
for the first time after a diagonal step (weight W3) or a horizontal step (weight W4). The
respective new weights W1, . . .W4 are easily computed from the new Kagome weights
above (see Fig. 13), with the result:

W1 =
(1 + u)(u+ i)(1− i)

4
, W2 =

(1 + u)(u− i)(1 + i)

4
W3 = W4 =

√
u(1 + u)

2
.

Clearly, a configuration for which the uppermost path hits the last column at position `
corresponds to the last column formed (from bottom to top) of `− 1 vertices with weight
W2 (below the hitting point), one vertex with weight W3 or W4 (the hitting point) and
(n − `) vertices with weight W1 (above the hitting point). Note the crucial property
W3 = W4 which ensures that configurations, when hitting the last column, are weighted
independently on the way (horizontal or diagonal) they reach this column and receive the
weight W `−1

2 W3W
n−`
1 . To summarize, setting wn = q−6 t u instead of q−6 t changes the
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partition function Z20V (n) into the quantity
n∑

`=1

Z20VBC2
`

(
(1 + u)(u− i)(1 + i)

4

)`−1 √
u(1 + u)

2

(
(1 + u)(u+ i)(1− i)

4

)n−`
. (3.4)

This quantity may be computed alternatively in the 6V model language by unraveling
our configuration of the 20V model, or more precisely its Kagome lattice equivalent, as
we did in the previous section. Indeed, the Yang Baxter relations still hold with the
modified value of wn. Note that since we are now considering the DWBC2 prescription,
the diagonal line k = n must be moved towards the upper-right of the central square grid.
As shown in Fig. 14, changing wn from q−6 t to q−6 t u generates, compared with the fully
homogeneous case, the following modifications:

• a global factor

(
A(q t,q−7 t u)
A(q t,q−7 t)

)n
=
(
q4−q−4 u
q4−q−4

)n
=
(
1+u
2

)n
for the vertices of the sub-

lattice 3 crossing the vertical line j = n (top encircled set of nodes in Fig. 14);

• a change of the weights (1,
√

2, 1) for the equivalent DWBC 6V model in the last
column of the central square grid into weights:(
A(q6 t,q−6 t u)
A(q6 t,q−6 t)

,
B(q6 t,q−6 t u)
B(q6 t,q−6 t)

,
C(q6 t,q−6 t u)
C(q6 t,q−6 t)

)
=
(

1× (u+i)(1−i)
2

,
√

2× 1+u
2
, 1×√u

)

(bottom encircled set of nodes in Fig. 14).

Gathering the weights in the last column for a configuration where the uppermost path
hits the last column at position i = ` (with the same argument as for the 20V model), we
obtain for the modified partition function (3.4) the alternative expression

(
1 + u

2

)n n∑

`=1

Z6V

[1,
√
2,1];`

(
1 + u

2

)`−1 √
u

(
(u+ i)(1− i)

2

)n−`
. (3.5)

Equating (3.4) and (3.5) leads directly to the announced relation (3.2) identifying
Ẑ20VBC2(τ) to Ẑ6V

[1,
√
2,1]

(
1+τ
2

)
upon setting τ = i u−i

u+i
.

We may now easily repeat the argument in the case of the DWBC1 prescription.
The modified weights are the same as those listed in Fig. 13 but the lower right vertex
(i = 1, j = n) involves new modified vertex weightsW5, W6 andW7 listed in Fig. 15. Again
we note the crucial property W5 = W6 which ensures that configurations are weighted
independently on the way the penultimate (just below the uppermost) path reaches the
(i = 1, j = n) vertex. For ` > 1, a configuration where the uppermost path hits the last
column at position i = ` receives a weight W5W

`−2
2 W3W

n−`
1 while for ` = 1, it receives

the weight W7W
n−1
1 . The partition function Z20V is now transformed into the quantity

Z20VBC1
1

(√
u(1 + u)

2

)(
(1 + u)(u+ i)(1− i)

4

)n−1

+
n∑

`=2

Z20VBC1
`

(
1 + u

2

)2(
(1 + u)(u− i)(1 + i)

4

)`−2√
u(1 + u)

2

(
(1 + u)(u+ i)(1− i)

4

)n−`
.

(3.6)
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==

=

=

b1(i, n)c2(i, k)a3(k, n)

b1(i, n)b2(i, k)a3(k, n) =

=
(
1+u
2

)2

=

W5

W6 i = `

j = nj = n

===

=

c1(i, n)a2(i, k)a3(k, n) =
√
u(1+u)
2 W7=

(
1+u
2

)2

Figure 15: Left: modification of the weights of the 20V model with DWBC1 when performing
the change wn → wn u for the spectral parameter attached to the last column from the special
values (2.5), (2.6) and (2.8). We display only the three new vertices specific to DWBC1 (and
thus not encountered in Fig. 13), corresponding to the three possible environments of the lower-
right node. The associated values W5,W6,W7 satisfy Wi → 1 when u → 1, as required. Right:
a sample configuration of the last column.

As before, this quantity must be equal to that of (3.5) for the equivalent 6V model
after unraveling (note that the diagonal line with k = n must now be moved to the
lower-left of the central square grid but this does not alter the global prefactor in (3.5)).
Setting τ = iu−i

u+i
and equating the two expressions (3.6) and (3.5) leads directly to the

announced relation (3.2) between Ẑ20VBC1(τ) and Ẑ6V

[1,
√
2,1]

(
1+τ
2

)
. This completes the proof

of Theorem 2 and its Corollary 3.

3.3 Free energy and partition function from the 6V solution

From the above identifications, we may now rely on known results on the 6V model
with DWBC to explore the statistic of the 20V model with DWBC1 or DWBC2. A
first result concerns the asymptotics of An = Z20V (n) for large n, directly given from
that of Z6V

[1,
√
2,1]

(n). For (a, b, c) = (1,
√

2, 1), the value of the anisotropy parameter is

∆ = a2+b2−c2
2 a b

= 1√
2
, meaning that the 6V model is in the so-called “disordered phase”

region. Using the standard parametrization

a = ρ sin(λ− φ) , b = ρ sin(λ+ φ) , c = ρ sin(2λ) ,
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with |φ| < λ, where we may take in our case λ = 3π/8, φ = π/8 and ρ =
√

2, the
exponential growth of Z6V

[1,
√
2,1]

(n), hence of Z20V (n) at large n is known to be [BF06, ZJ00].

An = Z20V (n) = Z6V

[1,
√
2,1](n) ∼

n→∞

(
ρ
π (cos(2φ)− cos(2λ))

4λ cos
(
π t
2λ

)
)n2

=

(
4

3

) 3
2
n2

,

hence a free energy per site

f =
3

2
Log

4

3
.

If we use for the 6V model a parametrization of the form (2.4) by taking

a(i, j) = zi − wj , b(i, j) = q−2 zi − q2 wj , c(i, j) = (q2 − q−2)√ziwj , (3.7)

for the weights at the nodes (i, j), the homogeneous values (a, b, c) = (1,
√

2, 1) correspond
to choosing4

q = eiπ/8 zi = z =
1

1− q4 =
1 + i

2
wj = w =

q4

1− q4 =
i− 1

2
(3.8)

for all i, j = 1, . . . , n.
For arbitrary spectral parameters, the partition function of the 6V model with DWBC

is obtained via the celebrated so-called Izergin-Korepin determinant formula [Kor82, Ize87,
ICK92]:

Z6V =

n∏
i=1

c(i, i)
n∏

i,j=1

(a(i, j) b(i, j))

∏
16i<j6n

(zi − zj)(wj − wi)
det

16i,j6n

(
1

a(i, j) b(i, j)

)
(3.9)

with a(i, j), b(i, j) and c(i, j) as in (3.7). This expression is singular when the zi and wj
tend to their homogeneous values (3.8) but we will explain in Section 5 how to circumvent
this problem.

4 Quarter-turn symmetric Domino tilings of a holey Aztec
square

Leaving the ice models aside for a while, we now turn to a different class of problems, that
of domino tilings of conic domains. Our interest in these problems is motivated by the
observation that their configurations are enumerated by the same sequence An of (1.1).
A proof of this remarkable fact will be given in Section 5 below.
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1 3 70

1
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8

Figure 16: (a) The quasi-square Aztec-like domain An with a central cross-shaped hole. (b) A
sample tiling configuration of An invariant under quarter-turn rotations around the central cross.
The dashed lines identify a fundamental domain w.r.t. rotational symmetry. We have shaded
the dominos from the top right domain that touch the vertical dashed line: these determine the
zig-zag boundary of the fundamental domain. Summing over all positions of shaded dominos
and all tiling configurations of the corresponding fundamental domain yields the desired number
of tiling configurations of An that are quarter-turn symmetric. (c) The tiling of the fundamental
domain is in bijection with configurations of non-intersecting Schröder paths with fixed ends on
the shaded dominos, with symmetric positions (here 1, 3, 7 and 2, 4, 8) on the horizontal and
vertical axes.
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4.1 Definition of the model: domain and domino tilings

We consider the domain An depicted in Fig. 16 (a) forming a quasi-square of Aztec-like
shape of size 2n × 2n, with a cross-shaped hole in the middle. We wish to enumerate
the domino tilings of this domain that are invariant under a quarter-turn rotation (i.e. of
angle π/2) around the center of the cross. Equivalently, identifying the domain modulo
quarter-turns, the problem is equivalent to domino tilings of a cone with a hole at its
apex.

The present setting can be viewed as an Aztec-like generalization of that derived in
[Lal03, Kra06] to reformulate Andrews’ DPP [And80]. There, the DPP were shown to be
in bijection with the rhombus tiling configurations of a quasi-regular hexagon (of shape
(n, n+2, n, n+2, n, n+2)) with a central triangular hole of size 2, invariant under rotations
of angle 2π/3.

4.2 Counting the tilings via Schröder paths

To perform the desired enumeration, let us delineate a fundamental domain w.r.t. the
rotational symmetry of the tiling configurations as shown in Fig. 16 (b). We draw axes
centered at the center of the cross, and concentrate on the first quadrant. For any tiling
configuration, we shade the dominos that touch the vertical half-axis by a corner and
belong to the first quadrant. As shown in Fig. 16, these delineate a zig-zag boundary,
with a “defect” protruding to the left for each shaded domino. We then draw a copy
of this zig-zag boundary, obtained by rotation of −π/2: these delimit the fundamental
domain of the tiling. Note that the fundamental domain is entirely determined by the
set of shaded dominos. To characterize the tiling configurations of such a fundamental
domain, we use the standard mapping to non intersecting Schröder paths (Fig. 16 (c))
obtained by first bi-coloring the underlying (tilted) square lattice so that say the center
of the cross is black, and by applying the following dictionary:

(4.1)

The Schröder paths are drawn on another Z2 lattice, with coordinates shifted by 1/2
on both axes. When oriented from their starting point on the (new) horizontal axis
to their endpoints on the (new) vertical axis, these paths have left, up and diagonal
steps (−1, 0), (0, 1), (−1, 1) respectively. The endpoints of the paths belong to the shaded
dominos and occupy positions (0, 1 + ik) for some integers i1, . . . , i` ∈ [1, n− 1] since the
first position (i = 0) is forbidden by the cross-shaped hole. The corresponding starting
points occupy positions (ik, 0) for the same set {i1, . . . , i`}. Moreover, from the above

4Here when computing c, we adopt the convention that
√

(q2 − q−2)2 = (q2−q−2). Choosing the other
branch of the square root would yield c = −1 but, from the relation Z6V

[1,
√
2,1]

(n) = (−1)nZ6V

[1,
√
2,−1]

(n)

for the 6V model with DWBC, we would eventually recover for Z6V

[1,
√
2,1]

(n) the very same expression as

that (5.2) presented in Section 5 below.
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construction, the endpoints of the paths are on the NW border of the leftmost (white)
half of the shaded dominos, and therefore the last step of all the paths can only be either
left or diagonal, but cannot be up: we shall call these restricted Schröder paths. Finally,
the total number of tiling configurations of An with quarter-turn symmetry is obtained
by summing over all possible positions and orientations of the shaded dominos, i.e. over
all possible positions i1, . . . , i` of the endpoints, of the number of configurations of non-
intersecting restricted Schröder paths with these particular endpoints and their associated
symmetric starting points.

Schröder paths are readily enumerated via the generating function

S(r, s) :=
∑

i,j>0

ri sj Si,j =
1

1− r − s− r s

where Si,j is the number of Schröder paths from point (i, 0) to point (0, j). We may think
of r, s as generators of left and up steps respectively, and r s as the generator of a diagonal
step: in any term of the expansion of the generating function of the form r`su(r s)d = ri sj

for respectively `, u, d left, up and diagonal steps, we indeed have i = `+ d and j = u+ d.
Restricted Schröder paths require that the last step cannot be up. If we now denote by
S̃i,j the number of restricted Schröder paths from (i, 0) to (0, j), then the desired entries
S̃i,j+1 of the Gessel-Viennot matrix are generated by:

∑

i,j>0

S̃i,j+1r
i sj =

1

s

(
r s S(r, s) + r (S(r, s)− S(r, 0))

)
=

2r

(1− r)(1− r − s− r s)

where we have decomposed the paths according to their last step, respectively with weight
r s (if diagonal) or r (if left) and preceded respectively by an arbitrary Schröder path,
generated by S(r, s), or by an arbitrary Schröder path with a height difference of at least
one, generated by (S(r, s) − S(r, 0)). The global 1/s is simply due to the fact that we
attach a weight sj in our definition instead of the natural sj+1 associated with a height
difference j + 1. Note that, for i = 0, S̃0,j+1 = 0 as there is no restricted Schröder path
with only vertical steps, while, for j = 0, S̃i,1 = 2i.

The partition function of the tiling model is given by the following:

Theorem 4. The number T4(An) of quarter-turn symmetric tilings of the domain An is
given by the n× n determinant:

T4(An) = det(In +Mn)

where (In)i,j = δi,j and (Mn)i,j = S̃i,j+1 for i, j = 0, 1, . . . , n− 1.

Proof. Recall the Lindström Gessel-Viennot (LGV) determinant formula [Lin73, GV85]:
the number of non-intersecting restricted Schröder paths with fixed starting points (ik, 0)
and endpoints (0, 1 + ik), k = 1, 2, . . . , ` is given by the sub-determinant |Mn|i1,...,i`i1,...,i`

of the
matrix Mn obtained by keeping rows and columns with labels i1, . . . , i` (corresponding
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respectively to the starting and ending points). The theorem follows from the standard
Cauchy-Binet identity:

det(In +Mn) =
n∑

`=0

∑

06i1<i2···<i`6n−1

|Mn|i1,...,i`i1,...,i`
,

which realizes the desired sum over all possible choices of symmetric starting and end-
points. Note that the sum includes paths with i1 = 0, which do not contribute as
(Mn)0,j = S̃0,j+1 = 0.

Using the generating function for the infinite matrix I +M :

T4(r, s) =
∑

i,j>0

(I +M)i,jr
i sj =

1

1− r s +
2r

(1− r)(1− r − s− r s) (4.2)

we easily generate the numbers T4(An) from

T4(An) = det
06i,i6n−1

((
1

1− r s +
2r

(1− r)(1− r − s− r s)

)∣∣∣∣
risj

)
(4.3)

(here f(r, s)|risj denotes the coefficient of risj in a double series expansion of f(r, s) in r
and s). Remarkably, these numbers match precisely the sequence An of (1.1).

4.3 Refined enumeration

In this section, we consider refined quarter-turn symmetric tiling configurations of An.
The origin of the refinement is best explained in the formulation as non-intersecting
Schröder paths of Fig. 16 (c). Comparing these configurations to those attached to DPP
in [Kra06], we are led to consider the following two statistics for restricted Schröder paths.
For each such path p from (i, 0) → (0, j), where 0 6 i 6 n− 1 and 1 6 j 6 n, we define
numbers `1(p) and `2(p) as:

• if j < n, `1(p) = `2(p) = 0.

• if j = n, `1(p) is the x coordinate of the last point with y coordinate 6 n− 1.

• if j = n, `2(p) is the x coordinate of the first point with y coordinate equal to n.

This allows to define the refined numbers T
(m)
4,k (An), m = 1, 2 of non-intersecting

restricted Schröder path configurations P with5 `m(P) :=
∑

p∈P `m(p) = k, for some
k = 0, 1, . . . , n−1. We refer to such models as type 1 or 2 according to the value of m. In
turn, these correspond to a refinement of the quarter-turn symmetric tiling configurations
of An:

5Note that at most one path contributes to this sum, namely the topmost one if it hits the height n.
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Type 1: `1(P) = k iff the top row of the fundamental domain corresponds to the following
tiling pattern (with k or k − 1 up-right dominos):

k k

Type 2: `2(P) = k iff there are exactly k up-right dominos in the top row of the fundamental
domain.

k

The generating polynomial for the type m = 1, 2 model:

T
(m)
4 (An; τ) :=

n−1∑

k=0

τ k T
(m)
4,k (An)

is interpreted as the partition functions for non-intersecting restricted Schröder path con-
figurations with some extra weight:

Type 1: τ per horizontal step taken at vertical position y = n and τ for a possible diagonal
step from y = n− 1 to y = n.

Type 2: τ per horizontal step taken at vertical position y = n.

Theorem 5. The partition functions T
(m)
4 (An; τ) for type m refined quarter-turn sym-

metric domino tilings of the domain An are given by:

T
(1)
4 (An; τ) = det

06i,j6n−1



(

1
1−r s + 2r

(1−r)(1−r−s−r s)

)∣∣∣
risj

j 6 n− 2(
1

1−r s + 2τr
(1−τ r)(1−r−s−r s)

)∣∣∣
risj

j = n− 1




= det
06i,j6n−1

((
1

1− r s +
2r

(1− r)(1− r − s− r s)

+ sn−1 r

{
2τ

1− τ r −
2

1− r

}
(1 + r)n−1

(1− r)n

)∣∣∣∣∣
risj

)
.
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T
(2)
4 (An; τ) = det

06i,j6n−1



(

1
1−r s + 2r

(1−r)(1−r−s−r s)

)∣∣∣
risj

j 6 n− 2(
1

1−r s + (1+τ)r
(1−τ r)(1−r−s−r s)

)∣∣∣
risj

j = n− 1




= det
06i,j6n−1

((
1

1− r s +
2r

(1− r)(1− r − s− r s)

+ sn−1 r

{
1 + τ

1− τ r −
2

1− r

}
(1 + r)n−1

(1− r)n

)∣∣∣∣∣
risj

)
.

To prove the theorem, we may evaluate T
(m)
4 (An; τ) by use of the LGV formula, by

noticing that only the paths ending at (x, y) = (0, j+1) with j = n−1 receive a modified
weight. More precisely, the partition function for a restricted Schröder path from (i, 0)
to (0, n) in types m = 1, 2 correspond to the coefficient of sj = sn−1 in the generating
functions:

Type1 :
1

s

{(
τ r

1− τ rs+
1

1− τ rτ r s
)
S(r, s)

}
=

2τ r

1− τ r
1

1− r − s− r s

Type2 :
1

s

{(
r s+

τ r

1− τ r (s+ r s)

)
S(r, s)

}
=

(1 + τ)r

1− τ r
1

1− r − s− r s

In type 1, we have performed a decomposition of the path according to its last visit at
height n−1: it is either followed by an up step (generated by s) and then by an arbitrary
succession of k horizontal steps, with k > 1 since the up step cannot take place at x = 0
for a restricted Schröder path (generated by τ r/(1− τ r)) or it is followed by a diagonal
step from y = n − 1 to y = n (generated by τ r s) and then by an arbitrary succession
of k > 0 horizontal steps at y = n (generated by 1/(1 − τ r)), all of which are preceded
by a standard Schröder path, generated by S(r, s). As before, the 1/s global prefactor
comes from our choice of extracting the coefficient of sj = sn−1 instead of the natural one
of sj+1.

In type 2, this is again obtained by decomposing the path according its last step(s): it
is either a single diagonal step (generated by r s) or an arbitrary succession of k > 1 left
steps (generated by τ r/(1− τ r)) preceded by either an up or a diagonal step (generated
by s + r s) and the preceding part of the path is a generic Schröder path, generated by
S(r, s).

The total partition functions S̃
(m)
i,n (τ) for a restricted Schröder path from (i, 0) to (0, n)

in type m = 1, 2 read:

S̃
(1)
i,n (τ) =

2τ r

1− τ r
1

1− r − s− r s

∣∣∣∣
ri sn−1

=
2τ r

1− τ s
(1 + r)n−1

(1− r)n
∣∣∣∣
ri

S̃
(2)
i,n (τ) =

(1 + τ)r

1− τ r
1

1− r − s− r s

∣∣∣∣
ri sn−1

=
(1 + τ)r

1− τ r
(1 + r)n−1

(1− r)n
∣∣∣∣
ri
.

Note that the partition functions for all the other paths (ending at vertical coordinate
y 6 n − 1) are the same as before, namely equal to S̃i,j for paths from (i, 0) to (0, j).
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Applying again the LGV formula, we see that the partition function T
(m)
4 (An; τ) is the

determinant of a matrix with an analogous form In + M
(m)
n (τ), where the n × n matrix

M
(m)
n (τ) differs from Mn only in its last column, in which the entries S̃i,n are replaced by

the new partition functions S̃
(m)
i,n (τ). We deduce the following:

T
(m)
4 (An; τ) = det

(
In +M (m)

n (τ)
)
, M (m)

n (τ)i,j =

{
S̃i,j+1 for j ∈ [0, n− 2]

S̃
(m)
i,n (τ) forj = n− 1

which is nothing but Theorem 5 in its first form.
To put this result in the second and more compact form of Theorem 5, let us compute

the generating function T
(m)
4 (r, s; τ) =

∑
i,j>0 r

isj(I + M (m)(τ))i,j) for the new infinite

matrix whose n×n truncations’ determinant yields the polynomial T
(m)
4 (An; τ). We have

Lemma 6.

T
(1)
4 (r, s; τ) =

1

1− r s +
2r

(1− r)(1− r − s− r s) + sn−1 r
2(τ − 1)

1− τ r
(1 + r)n−1

(1− r)n+1

T
(2)
4 (r, s; τ) =

1

1− r s +
2r

(1− r)(1− r − s− r s) + sn−1 r
τ − 1

1− τ r
(1 + r)n

(1− r)n+1

Proof. To get the new generating function from T4(r, s) in (4.2), we must subtract the
contribution of the last column, i.e. sn−1 times the coefficient of sn−1 in 2r/((1− r)(1−
r−s−r s)) and add the new generating function sn−1

∑
i>0 S̃

(m)
i,n (τ)ri. Note that any term

of order > n in r or s is irrelevant and may therefore be chosen arbitrarily, as it does not
affect the truncation to size n. The net result is the generating function:

T
(1)
4 (r, s; τ) =

1

1− r s +
2r

(1− r)(1− r − s− r s) + sn−1 r

{
2τ

1− τ r −
2

1− r

}
(1 + r)n−1

(1− r)n

T
(2)
4 (r, s; τ) =

1

1− r s +
2r

(1− r)(1− r − s− r s) + sn−1 r

{
1 + τ

1− τ r −
2

1− r

}
(1 + r)n−1

(1− r)n

and the Lemma follows.

Theorem 5 allows for a very efficient calculation of the partition functions T
(m)
4 (An; τ).

The first few terms read as follows.
For type 1, the polynomials T

(1)
4 (An; τ) for n = 1, . . . , 7 read:

1

1 + 2τ

3 + 14τ + 6τ 2

23 + 198τ + 166τ 2 + 46τ 3

433 + 6322τ + 7874τ 2 + 4210τ 3 + 866τ 4

19705 + 468866τ + 777258τ 2 + 606026τ 3 + 240578τ 4 + 39410τ 5

the electronic journal of combinatorics 27(2) (2020), #P2.13 28



2151843 + 81652574τ + 169682406τ 2 + 172604734τ 3 + 99699558τ 4

+31601534τ 5 + 4303686τ 6

For type 2, the polynomials T
(2)
4 (An; τ) for n = 1, . . . , 7 read:

1

2 + τ

10 + 10τ + 3τ 2

122 + 182τ + 106τ 2 + 23τ 3

3594 + 7098τ + 6042τ 2 + 2538τ 3 + 433τ 4

254138 + 623062τ + 691642τ 2 + 423302τ 3 + 139994τ 4 + 19705τ 5

42978130 + 125667490τ + 171143570τ 2 + 136152146τ 3 + 65650546τ 4

+17952610τ 5 + 2151843τ 6

We note the identities for n > 1

T
(1)
4 (An; 0) = T4(An−1) , T

(1)
4 (An; τ)|τn−1 = 2T4(An−1) , T

(2)
4 (An; τ)|τn−1 = T4(An−1) .

All these identities have an easy explanation in terms of paths, which we leave as an
exercise for the reader.

5 Proof of the equivalence between 20V-DWBC1,2 and holey
square tilings

5.1 From the Izergin-Korepin to the Gessel-Viennot determinant

The aim of this Section is to prove the identity:

Theorem 7. The number of configurations for the 20V model with DWBC1 or DWBC2
on an n × n grid is equal to that of the quarter-turn symmetric domino tilings of the
domain An, namely:

Z20V (n) = T4(An) . (5.1)

The proof goes as follows. From Theorem 1, we may get Z20V (n) from Z6V

[1,
√
2,1]

(n)

whose expression may itself be obtained from the general Izergin-Korepin determinant
expression (3.9). Here however, we need to take as spectral parameters the specific values
given by (3.8) and, for such homogeneous values, the expression (3.9) cannot be used
as such as both the determinant in the expression and the denominator of its prefac-
tor vanish identically, resulting in an indeterminate limit. Some manipulations on the
Izergin-Korepin determinant are therefore required before letting zi and wj tend to their
homogeneous limiting values z and w. Remarkably, the result of these manipulations is a
new expression for Z6V

[1,
√
2,1]

(n) which resembles the Gessel-Viennot determinant encoun-

tered in Theorem 4 for the expression of T4(An). The identity (5.1) is then proved by
simple rearrangements of the determinant.
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In the limit zi → z and wj → w for the weights (3.7), the expression (3.9) may be
rewritten as:

Z6V =(−1)
n(n−1)

2

(
(q2 − q−2)√z w

)n (
(z − w)(q−2z − q2w)

)n2 q2n

(1− q4)nwn

× det
16i,j6n

((
1

(z + r)− (w + s)
− 1

(z + r)− q4(w + s)

)∣∣∣∣
ri−1sj−1

)
.

(5.2)

The passage from (3.9) to (5.2) is explained in [BDFZJ12] and we reproduce the various
steps of the computation in Appendix A.

In the particular case where q, z and w take the values (3.8), this leads immediately
to

Z6V

[1,
√
2,1](n) = (−1)

n(n−1)
2

√
2
n2

(
1+i√

2

)n det
16i,j6n

((
1

1 + r − s −
1

1 + i + r − i s

)∣∣∣∣
ri−1sj−1

)

=

(
i
√

2
)n(n−1)

(
1+i
2

)n det
16i,j6n

((
1

1 + r − s −
1

1 + i + r − i s

)∣∣∣∣
ri−1sj−1

)

= det
16i,j6n

((
1− i

1 + i
√

2(r − s)
− 1− i

1 + i + i
√

2(r − i s)

)∣∣∣∣
ri−1sj−1

)

expressing Z6V

[1,
√
2,1]

(n) as the determinant of the finite truncation of an infinite matrix

with the generating function f(r, s) explicited above. To go from the second to the third
line, we used the identity f(αr, βs)|ri−1sj−1 = αi−1βj−1f(r, s)|ri−1sj−1 with α = β = i

√
2

and
∏n

i,j=1 α
i−1βj−1 = (αβ)

n(n−1)
2 to insert the numerator of the prefactor inside the

determinant. As for the denominator, we also transferred it inside the determinant via
the trivial identity 1/((1 + i)/2) = 1− i. Performing the transformation

r → 1 + i√
2

r

1− i r
, s→ 1− i√

2

s

1 + i s
(5.3)

in the above infinite matrix generating function leaves the determinant unchanged. In-
deed, this amounts to first multiply r by α = 1+i√

2
and s by β = 1−i√

2
changing the deter-

minant by an overall multiplicative factor
(

1+i√
2
× 1−i√

2

)n(n−1)
2

= 1 and to then to change

r → r/(1− i r) and s→ s/(1 + i s). Using

f

(
r

1− γr , s
)∣∣∣∣

rksl
= f(r, s)|rksl +

∑

m<k

γk−m
(
k − 1

k −m

)
f(r, s)|rmsl

the change r → r/(1 − i r) amounts to add to each row of the determinant a linear
combination of the previous rows while the change s→ s/(1+i s) amounts to add to each
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column a linear combination of the previous ones. These operations leave the determinant
unchanged. Applying the above substitution (5.3), we get the alternative expression

Z6V

[1,
√
2,1](n) = det

16i,j6n

(
(1− i r)(1 + i s)

(
1− i

1− r − s− r s +
i

1− r s

)∣∣∣∣
ri−1sj−1

)

= det
16i,j6n

((
1− i

1− r − s− r s +
i

1− r s

)∣∣∣∣
ri−1sj−1

)
.

Here again the prefactor (1−i r)(1+i s) was removed without changing the determinant as
the matrices with and without this prefactor are obtained from one another by subtracting
from each row (for the r-dependent factor) or respectively adding to each column (for the
s-dependent factor) i times the preceding one.

Using the identity

(1 + i r)(1− s)
(

1− i

1− r − s− r s +
i

1− r s

)

= (1− r)(1− i s)

(
1

1− r s +
2r

(1− r)(1− r − s− r s)

)
,

(5.4)

we may play once more the same trick and get the alternative expression

Z6V

[1,
√
2,1](n) = det

16i,j6n

(
(1 + i r)(1− s)

(
1− i

1− r − s− r s +
i

1− r s

)∣∣∣∣
ri−1sj−1

)

= det
16i,j6n

(
(1− r)(1− i s)

(
1

1− r s +
2r

(1− r)(1− r − s− r s)

)∣∣∣∣
ri−1sj−1

)

= det
16i,j6n

((
1

1− r s +
2r

(1− r)(1− r − s− r s)

)∣∣∣∣
ri−1sj−1

)
.

This latter expression is nothing but that (4.3) for T4(An) up to a trivial shift by 1 of the
indices i and j. This proves the theorem.

5.2 Refined equivalence

We now wish to refine the above result and get the interpretation of Ẑ20VBC1(τ) and
Ẑ20VBC2(τ) in the quarter-turn symmetric tiling language. We have the following:

Theorem 8. The refined partition functions for the 20V-DWBC1,2 model on an n × n
grid are equal to the refined partition functions for type 1 and 2 quarter-turn symmetric
domino tilings of the domain An, namely

Ẑ20VBC1(τ) = T
(1)
4 (An; τ) , Ẑ20VBC2(τ) = T

(2)
4 (An; τ) .

The remainder of this section is devoted to the proof of this theorem. From equation,
(3.2), we may relate Ẑ20VBC1(τ) and Ẑ20VBC2(τ) to their analogue Ẑ6V

[1,
√
2,1]

(σ) (3.1) for the

6V model, with σ = 1+τ
2

. As explained in Section 3.2, this latter partition function may
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be obtained by letting zi and wj tend to their special values z and w of (3.8) except
for the spectral parameter wn attached to the last column which tends instead to the
value w u for some parameter u. We therefore have to evaluate the expression (3.9) of
the Izergin-Korepin determinant in this limit. This can be done along the same lines as
in the previous section: in the limit zi → z, i = 1, . . . , n, wj → w, j = 1, . . . , n − 1 and
wn → w u, the expression (3.9) may be rewritten as:

Z6V =(−1)
n(n−1)

2

(
(q2 − q−2)√z w

)n−1 (
(z − w)(q−2z − q2w)

)n(n−1) q2(n−1)

(1− q4)n−1wn−1

× (q2 − q−2)√z w u
(
(z − w u)(q−2z − q2w u)

)n q2

(1− q4)wu
1

(w u− w)n−1

× det
16i,j6n



(

1
(z+r)−(w+s) − 1

(z+r)−q4(w+s)

)∣∣∣
ri−1sj−1

j 6 n− 1(
1

(z+r)−wu − 1
(z+r)−q4 wu

)∣∣∣
ri−1

j = n


 .

(5.5)

A derivation of this expression in given in Appendix B. For the specific values (3.8), this
yields

Z6V

[1,
√
2,1];[ (u+i)(1−i)

2
,
√
2 1+u

2
,
√
u]

(n)

= (−1)
n(n−1)

2

(√
2
)n2

(
1+i√

2

)n
1√
u

(
1 + u

2

(u+ i)(1− i)

2

)n(
1 + i

1− u

)n−1

× det
16i,j6n



(

1
1+r−s − 1

1+i+r−is

)∣∣
ri−1sj−1

j 6 n− 1(
1

1−iu
1−i

+r
− 1

1+u
1−i

+r

)∣∣∣∣
ri−1

j = n




=
1√
u

(i
√

2)n−1
(

1 + u

2

(u+ i)(1− i)

2

)n(
1 + i

1− u

)n−1

× det
16i,j6n




(
1−i

1+i
√
2(r−s) −

1−i
1+i+i

√
2(r−is)

)∣∣∣
ri−1sj−1

j 6 n− 1(
1−i

1−iu
1−i

+i
√
2r
− 1−i

1+u
1−i

+i
√
2r

)∣∣∣∣
ri−1

j = n


 .

Here the notation Z6V

[1,
√
2,1];[ (u+i)(1−i)

2
,
√
2 1+u

2
,
√
u]

(n) indicates that the weights in the last col-

umn are different from those in the other columns, with the indicated u-dependent values.
Again we perform the substitution (5.3). Note that, as opposed to what we had before,
the change in s does not affect the last column j = n. The effect of the substitution on the

determinant is compensated by multiplying simultaneously by an overall factor
(

1−i√
2

)n−1
.
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This leads to

Z6V

[1,
√
2,1];[ (u+i)(1−i)

2
,
√
2 1+u

2
,
√
u]

(n)

=
1√
u

(i
√

2)n−1
(

1 + u

2

(u+ i)(1− i)

2

)n(
1 + i

1− u

)n−1(
1− i√

2

)n−1

× det
16i,j6n

(
(1− i r)(1 + i s)

(
1−i

1−r−s−r s + i
1−r s

)∣∣
ri−1sj−1

j 6 n− 1

(1− i r)
(

−2i
1−iu+(i−u)r − −2i

1+u+i(1−u)r

)∣∣∣
ri−1

j = n

)

=
1√
u

(
(1 + u)(u+ i)(1 + i)

2(1− u)

)n

× det
16i,j6n

(
(1− i r)(1 + i s)

(
1−i

1−r−s−r s + i
1−r s

)∣∣
ri−1sj−1

j 6 n− 1

(1− i r)
(

u−1
1−iu+(i−u)r − u−1

1+u+i(1−u)r

)∣∣∣
ri−1

j = n

)

=
1√
u

(
(1 + u)(u+ i)(1 + i)

2(1− u)

)n
det

16i,j6n

( (
1−i

1−r−s−r s + i
1−r s

)∣∣
ri−1sj−1

j 6 n− 1(
u−1

1−iu+(i−u)r − u−1
1+u+i(1−u)r

)∣∣∣
ri−1

j = n

)

where we again removed the factors (1−i r) and (1+i s) without changing the determinant.
We now recall from (3.5) the expression

Z6V

[1,
√
2,1];[ (u+i)(1−i)

2
,
√
2 1+u

2
,
√
u]

(n) =
n∑

`=1

Z6V

[1,
√
2,1];`

(
1 + u

2

)`−1 √
u

(
(u+ i)(1− i)

2

)n−`

=
√
u

(
(u+ i)(1− i)

2

)n−1
Ẑ6V

[1,
√
2,1](σ)

where σ = 1+u
(i+u)(1−i) , or equivalently, u = 1−(1+i)σ

(1−i)σ−1 . Comparing the two expressions above
leads to

Ẑ6V

[1,
√
2,1](σ) =

1

u

(
(1 + u)(u+ i)(1 + i)

2(1− u)

)(
i

1 + u

1− u

)n−1

× det
16i,j6n

( (
1−i

1−r−s−r s + i
1−r s

)∣∣
ri−1sj−1

j 6 n− 1(
u−1

1−iu+(i−u)r − u−1
1+u+i(1−u)r

)∣∣∣
ri−1

j = n

)

=
σ − 1

σ(1− i) + i

(
σ

σ − 1

)n
det

16i,j6n

( (
1−i

1−r−s−r s + i
1−r s

)∣∣
ri−1sj−1

j 6 n− 1(
1−i

1+(1−2σ)r + i
σ+(1−σ)r

)∣∣∣
ri−1

j = n

)
.

Setting σ = 1+τ
2

and using (3.2), we deduce alternatively

Ẑ20VBC2(τ) =
(1 + i)(τ − 1)

2(τ + i)

(
τ + 1

τ − 1

)n
det

16i,j6n

((
1−i

1−r−s−r s + i
1−r s

)∣∣
ri−1sj−1

j 6 n− 1(
1−i
1−τ r + 2i

(τ+1)−(τ−1)r

)∣∣∣
ri−1

j = n

)

=
1 + i

τ + i

(
τ + 1

τ − 1

)n−1
det(Qn + Pn)
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where

(Pn)i,j =

{ (
i

1−r s

)∣∣
ri−1sj−1

= i δi,j j 6 n− 1(
i

1− τ−1
τ+1

r

)∣∣∣
ri−1

= i
(
τ−1
τ+1

)i−1
j = n

(Qn)i,j =

{( 1−i
1−r−s−r s

)∣∣
ri−1sj−1

j 6 n− 1(
1−i
2

(τ+1)

1−τ r

)∣∣∣
ri−1

j = n
.

Now the matrix Pn differs from the matrix i In only in its last column and its determinant
is therefore easily obtained as

det(Pn) = in−1(Pn)n,n = in
(
τ − 1

τ + 1

)n−1

and we deduce

Ẑ20VBC2(τ) =
1 + i

τ + i
det(i In + i QnP

−1
n ) .

Using

i (P−1n )i,j =





δi,j j 6 n− 1

−
(
τ+1
τ−1

)n−i
i 6 n− 1, j = n(

τ+1
τ−1

)n−1
i = n, j = n

,

we get i (QnP
−1
n )i,j = (Qn)i,j for j < n, while

i (QnP
−1
n )i,n =

( 1−i
2

(τ + 1)

1− τ r

)∣∣∣∣
ri−1

(
τ + 1

τ − 1

)n−1
−

n−1∑

k=1

(
1− i

1− r − s− r s

)∣∣∣∣
ri−1sk−1

(
τ + 1

τ − 1

)n−k

=

(
τ + 1

τ − 1

)n−1( 1−i
2

(τ + 1)

1− τ r − 1− i

1− r − τ−1
τ+1
− r τ−1

τ+1

)

︸ ︷︷ ︸
=0

∣∣∣∣∣
ri−1

+
∞∑

k=n

(
τ + 1

τ − 1

)n−k (
1− i

1− r − s− r s

)∣∣∣∣
ri−1sk−1

= (1− i)

(
∞∑

k=n

(
τ + 1

τ − 1

)n−k
(1 + r)k−1

(1− r)k

)∣∣∣∣∣
ri−1

=
1− i

2

(
1 + r

1− r

)n−1 (
1 + τ

1− τ r

)∣∣∣∣
ri−1

.

We end up with the expression

Ẑ20VBC2(τ) =
1 + i

τ + i

× det
16i,j6n

((
i

1− r s+
1− i

1− r − s− r s+sn−1
(

1 + r

1− r

)n−1{1− i

2

1 + τ

1− τ r −
1− i

1− r

})∣∣∣∣∣
ri−1sj−1

)

where the last term corrects the wrong value 1−i
1−r−s−r s

∣∣
ri−1sn−1

=
(
1+r
1−r

)n−1 1−i
1−r

∣∣
ri−1

coming
from the second term to the correct value above. As before, we may multiply the function
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inside the determinant by (1+i r)(1−s)
(1−r)(1−i s) without changing the value of the determinant. Using

again the identity (5.4), we obtain

Ẑ20VBC2(τ) =
1 + i

τ + i
det

16i,j6n

((
1

1− r s +
2r

(1− r)(1− r − s− r s)

+sn−1
(

1 + r

1− r

)n−1
(1 + i r)(1− �s)

(1− r)(1− i �s)

(
1− i

2

1 + τ

1− τ r −
1− i

1− r

))∣∣∣∣∣
ri−1sj−1

)

=
1 + i

τ + i
det

16i,j6n
(Ki,j)

Ki,j :=

(
1

1−r s+
2r

(1−r)(1−r−s−r s) +sn−1
(1+r)n−1

(1− r)n
1 + i r

1+i

{
1+τ

1−τ r−
2

1− r

})∣∣∣∣
ri−1sj−1

(5.6)

where the crossed out �s play no role and were thus removed. In this form, the expression
is now very close to that of Theorem 5 for T4,2(An; τ), namely (with a trivial shift by 1 of
the indices)

T4,2(An; τ) = det
16i,j6n

(Li,j)

Li,j :=

(
1

1−r s+
2r

(1−r)(1−r−s−r s) + sn−1
(1+r)n−1

(1−r)n r

{
(1+τ)

1−τ r −
2

1−r

})∣∣∣∣
ri−1sj−1

.

(5.7)

The identification of the two formulas follows from the following simple remark:

Lemma 9. We have the identities

Ki,j = Li,j j < n

Ki,n =
τ + i

1 + i
Li,n +

τ − 1

1 + i

n−1∑

j=1

Li,j j = n .
(5.8)

Proof. The first statement for j < n is by definition. For j = n, we use

Li,j =





(
rj−1 + (1+r)j−1

(1−r)j
2 r
1−r

)∣∣∣
ri−1

j 6 n− 1(
rn−1 + (1+r)n−1

(1−r)n
(1+τ) r
1−τ r

)∣∣∣
ri−1

j = n
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so that

τ + i

1 + i
Li,n +

τ − 1

1 + i

n−1∑

j=1

Li,j =

(
τ + i

1 + i
rn−1 +

τ − 1

1 + i

1− rn−1
1− r

+
τ + i

1 + i

(1 + r)n−1

(1− r)n
(1 + τ) r

1− τ r −
τ − 1

1 + i

1−
(
1+r
1−r

)n−1

1− r

)∣∣∣∣∣
ri−1

=

((
τ + i

1 + i
− τ − 1

1 + i

1

1− �r

)
rn−1 +

(
τ + i

1 + i

(1 + τ) r

1− τ r +
τ − 1

1 + i

)
(1 + r)n−1

(1− r)n
)∣∣∣∣

ri−1

=

(
rn−1 +

(
τ + i

1 + i

(1 + τ) r

1− τ r +
τ − 1

1 + i

)
(1 + r)n−1

(1− r)n
)∣∣∣∣

ri−1

=

(
rn−1 +

(
1 + i r

1 + i

(
1 + τ

1 + τ r
− 2

1− r

)
+

2r

1− r

)
(1 + r)n−1

(1− r)n
)∣∣∣∣

ri−1

= Ki,n .

Here again, we removed the crossed out �r as it plays no role for i 6 n and we used the
easily checked identity

τ + i

1 + i

(1 + τ) r

1− τ r +
τ − 1

1 + i
=

1 + i r

1 + i

(
1 + τ

1 + τ r
− 2

1− r

)
+

2r

1− r .

The lemma follows.

With the identities (5.8), the expression (5.6) is transformed into (5.7) by a simple
expansion of the determinant with respect to the last column. This completes the proof
that the expression (5.6) for Ẑ20VBC2(τ) matches that (5.7) for T

(2)
4 (An; τ). This amounts

precisely to the second statement of Theorem 8.

To compute Ẑ20VBC1(τ), we first note that the expression (5.7) for Ẑ20VBC2(τ) can be
substituted in (3.2) to get

Ẑ6V

[1,
√
2,1](σ) = det

16i,j6n




(
1

1−r s + 2r
(1−r)(1−r−s−r s)

)∣∣∣
ri−1sj−1

j 6 n− 1(
1

1−r s + 2σ r
(1−(2σ−1) r)(1−r−s−r s)

)∣∣∣
ri−1sj−1

j = n




for σ = 1+τ
2

. The partition function Ẑ20VBC1(τ) is then obtained via (3.3), which yields

Ẑ20VBC1(τ) =
2τ

1 + τ
det

16i,j6n



(

1
1−r s + 2r

(1−r)(1−r−s−r s)

)∣∣∣
ri−1sj−1

j 6 n− 1(
1

1−r s + (1+τ) r
(1−τ r)(1−r−s−r s)

)∣∣∣
ri−1sj−1

j = n




+
1− τ
1 + τ

det
16i,j6n

((
1

1−r s + 2r
(1−r)(1−r−s−r s)

)∣∣∣
ri−1sj−1

j 6 n− 1(
1

1−r s

)∣∣
ri−1sj−1

j = n

)

= det
16i,j6n




(
1

1−r s + 2r
(1−r)(1−r−s−r s)

)∣∣∣
ri−1sj−1

j 6 n− 1(
2τ
1+τ

(
1

1−r s + (1+τ) r
(1−τ r)(1−r−s−r s)

)
+ 1−τ

1+τ
1

1−r s

)∣∣∣
ri−1sj−1

j = n




the electronic journal of combinatorics 27(2) (2020), #P2.13 36



Figure 17: Left: DWBC3 boundary conditions for an n×n grid for n = 5. All outer horizontal
edges along the West boundary, as well as all vertical edges along the South boundary are
occupied by paths. All other outer edges are empty. Right: This gives rise to configurations of
n = 5 non-intersecting osculating Schröder paths, such as that depicted.

= det
16i,j6n



(

1
1−r s + 2r

(1−r)(1−r−s−r s)

)∣∣∣
ri−1sj−1

j 6 n− 1(
1

1−r s + 2τ r
(1−τ r)(1−r−s−r s)

)∣∣∣
ri−1sj−1

j = n


 .

We recognize the expression of Theorem 5 for T
(1)
4 (An; τ) (up to a trivial shift in the

indices) so that the first statement of Theorem 8 follows.

6 Other boundary conditions

In this section, we explore other possible DWBC-like boundary conditions. One of them,
which we call DWBC3, leads to a striking conjecture.

6.1 The 20V model with DWBC3

We consider the following variant of the DWBC1,2 of Section 2 for the 20V model. We
still consider a square grid of size n × n in the square lattice with the second diagonal
edge on each face. The boundary conditions on the external edge orientations are now as
follows: (i) all horizontal external edges point towards the square domain (ii) all vertical
external edges point away from the square domain (iii) all diagonal external edges points
towards the NW.

In the osculating Schröder path formulation, we have paths entering the grid on each
horizontal external edge on the West boundary, and exiting the grid on each vertical
external edge along the South boundary (see Fig. 17 for an illustration).

The 20V-DWBC3 configurations are easily counted by use of transfer matrices, giving
rise to the sequence Bn of (1.2). Remarkably, these numbers appear in the context of yet
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another enumeration problem of domino tilings, which we describe now.

6.2 Domino tilings of a triangle and the DWBC3 conjecture

6.2.1 Domino tilings of a square

Let us consider the number of tilings of a (2n)×(2n) square domain Sn of the square lattice
by means of rectangular dominos of size 2× 1 and 1× 2. This is part of the archetypical
dimer problems solved by Kasteleyn and Temperley and Fisher [Kas63, TF61]. If T (Sn)
denotes this number, we have:

T (Sn) =
n∏

i=1

n∏

j=1

{
4 cos2

(
i

2n+ 1

)
+ 4 cos2

(
j

2n+ 1

)}
.

It was later observed that:
T (Sn) = 2n b2n (6.1)

with

bn =
∏

16i<j6n

{
4 cos2

(
i

2n+ 1

)
+ 4 cos2

(
j

2n+ 1

)}
= 1, 3, 29, 901, . . .

where we recognize the first terms of the sequence Bn (1.2) above. The asymptotics of
the numbers bn for large n read:

lim
n→∞

1

n2
Log(bn) =

2

π
G = .583121808 . . . ,

where G is the Catalan constant, G = 1− 1
32

+ 1
52
− 1

72
+ · · · .

6.2.2 Domino tilings of a triangle

A combinatorial proof of the integrality of bn due to Pachter [Pac97] shows in fact that
the sequence bn enumerates domino tilings of a “triangle” Tn (half of the square Sn), with
the following shape of an inverted staircase with the first step of size 1, and all other steps
of size 2:

2

2n

2n−1

2

1
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In our notations, we write6:
bn = T (Tn) .

From a practical point of view, it is interesting to recover the first terms of the sequence
bn = T (Tn) from standard combinatorial techniques easily amenable to generalizations.
As before, the enumeration of domino tilings of Tn is easily performed by means of non-
intersecting Schröder paths, now with steps (1, 1), (1,−1) and (2, 0) as shown below:

(a) (b) (c)

2n−1

Here we have first bi-colored the underlying square lattice, considered a tiling configuration
(a), and used the dictionary (4.1) mapping each domino to a path step. We have displayed
two equivalent path formulations (b) and (c) of the same domain (upon reflection and
rotation by 90◦). In both cases, the paths are non-intersecting Schröder paths with fixed
ends as shown, and constrained to remain within a strip of height 2n− 1 (we have added
a trivial path of length 0 in the case (b) for simplicity).

The path configurations are best enumerated by means of the LGV formula. Let
S
(L)
a,b (M) denote the partition function of a single Schröder path (with steps (1, 1), (1,−1)

and (2, 0)), starting at point (0, a), ending at point (M, b) and constrained to remain in
the strip 0 6 y 6 L. Then the partition function for domino tilings of Tn is:

T (Tn) = det
06i,j6n−1

(
S
(2n−1)
2i,2j (2j)

)
= det

06i,j6n−1

(
S
(2n−1)
2i,2j+1(2j + 1)

)

corresponding respectively to situations (b) and (c).

The single path partition function S
(L)
a,b (M) may easily be generated from the following

recursion relation:

S
(L)
a,b (M) =

{
0 if a < 0 or a > L or b < 0 or b > L,

S
(L)
a,b (M − 2) + S

(L)
a−1,b(M − 1) + S

(L)
a+1,b(M − 1) otherwise,

together with the initial conditions S
(L)
a,b (−1) = 0 and S

(L)
a,b (0) = δa,b when a, b ∈ [0, L] and

0 otherwise. This allows to recover the first terms of the sequence bn.

6 This formula can also be obtained by using Ciucu’s factorization theorem (Theorem 1.2 in [Ciu97]
– see more particularly Theorem 2.1 and Figure 2.2 in this paper).
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n−k−1

n−1

k

Figure 18: Left: Extension of the DWB3 boundary on a (n + k) × n rectangular grid in
osculating Schröder path representation: due to non-intersection constraints the effective domain
is a pentagon of shape (n− 1)× k × (n− k − 1)× (n+ k − 1)× (n− 1). Right: A sample path
configuration.

6.2.3 The DWBC3 conjecture

In view of the matching of the first values of Bn with the sequence bn, we are led to the
following:

Conjecture 10. We conjecture that the number of configurations of the 20V model with
DWBC3 boundary conditions on an n×n square grid is the same as the number of domino
tilings of the triangle Tn.

We have checked this conjecture numerically up to size n = 6.

6.3 Pentagonal extensions of the DWBC3 conjecture

6.3.1 The 20V-DWBC3 model on a pentagon

We now consider a variant of the model 20V-DWBC3 on a “pentagon” Pn,k of the original
triangular lattice. Starting from a rectangular grid of shape (n+ k)× n, we impose that
the n top external horizontal edges along the West boundary be occupied by paths, while
the k bottom ones be empty (vacancies), and impose the same condition as for DWBC3
on vertical external edges along the South boundary, while all other external edges are
unoccupied (see Fig. 18 for an illustration with n = 6 and k = 3). Due to the non-
intersection constraint which freezes some portions of the paths, the effective domain
reduces to a pentagon of shape7 (n − 1) × k × (n − k − 1) × (n + k − 1) × (n − 1) (see

7Note the distinction between the notion of grid and that of shape: the size of a shape is measured in
actual length of its sides, which is one less than the measure on a grid.
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Fig. 18). This holds for k < n− 1. For k > n− 1, the effective domain degenerates into a
tetragon of shape (n− 1)× (n− 1)× (2n− 2)× (n− 1) independent of k, which can be
viewed as half of a regular hexagon on the original triangular lattice.

The number pn,k of osculating Scröder path configurations on Pn,k is easily computed
by transfer matrix techniques. The first few are listed below for n = 1, 2, . . . , 6

pn,0 = 1, 3, 29, 901, 89893, 28793575 . . .

pn,1 = 1, 4, 56, 2640, 411840, 210613312 . . .

pn,2 = 1, 4, 60, 3268, 628420, 417062340 . . .

pn,3 = 1, 4, 60, 3328, 675584, 495222784 . . .

pn,4 = 1, 4, 60, 3328, 678912, 507356160 . . .

pn,5 = 1, 4, 60, 3328, 678912, 508035072 . . . (6.2)

As expected, we note a saturation property of pn,k which becomes independent of k
for k > n− 1.

6.3.2 Tilings of extended triangles

We start from the triangular domain Tn of Sect. 6.2.2 above, and consider the follow-
ing extensions Tn,k, k = 0, 1, . . . , n. Focussing on the non-intersecting Schröder path
description of the tiling configurations given by the example (c) above, Tn,k corresponds
to raising by k vertical steps the top border of the domain accessible to the paths, while
keeping identical starting and endpoints. In practice, for k 6 n − 1, the new effective
domain Tn,k accessible to the Schröder paths takes the following shape (represented here
for n = 4) which can be viewed as Aztec-like extensions of Tn:

T4,0 T4,1 T4,2 T4,3
As a result, the number of configurations augments, until it reaches a threshold at k =
n− 1, since, for k > n− 1, raising the top border further no longer affects the number of
configurations as the paths never reach this height.

The counting of tiling configurations is readily performed by use of the LGV formula
for the corresponding Schröder paths:

T (Tn,k) = det
06i,j6n−1

(
S
(2n−1+k)
2i,2j+1 (2j + 1)

)
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Figure 19: Left: 20V-DWBC4 on an n × n square grid: all horizontal and vertical external
edges are occupied by paths, while diagonals are empty. Right: A sample osculating Schröder
path configuration.

where we have simply raised the top boundary by k. As a result, we find perfect agreement
between the numbers pn,k and T (Tn,k).

6.3.3 The extended DWBC3 conjecture

The remarkable coincidence between the numbers in Sections 6.3.1 and 6.3.2 leads to the
following:

Conjecture 11. We conjecture that the number of configurations of the 20V model with
extended DWBC3 boundary conditions on a pentagon Pn,k is equal to the number of
domino tilings of the extended triangle Tn,k for all n, k.

The conjecture has been checked numerically for n up to 6 and arbitrary k.

6.4 More Domain Wall Boundary Conditions with no conjecture

We have considered some other variants of the DWBC boundary conditions, but found
no conjecture for those. First we studied the 20V with the DWBC4 illustrated in Fig. 19
for the osculating Schröder path formulation, in which all horizontal and vertical external
edges of a square n × n grid are occupied by paths, all the other external edges being
unoccupied8. The transfer matrix calculation leads to the following sequence:

1, 3, 59, 7813, 6953685, 41634316343 . . . (6.3)

for which we have found no other interpretation.

8We use here the denomination DWBC4 for simplicity although the boundary conditions do not infer
the creation of domain walls in general, as exemplified by the trivial configuration where all horizontal
(resp. vertical, diagonal) arrows point East (resp. South, Northwest).
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Figure 20: The hexagonal extension of 20V-DWBC4 obtained on a rectangular (a + b + 1) ×
(b+ c+ 1) grid by imposing b vacancies on the bottom West and top East boundaries.

b,c a=0 1 2 3 4 5 6
0,1 1 3 8 21 55 144 377
0,2 1 8 59 415 2874 19810 136358
1,1 3 11 41 153 571 2131 7953
0,3 1 21 415 7813 143336 2598735 46881130
1,2 8 85 959 10934 124869 1426389 16294360
2,1 5 23 103 456 2009 8833 38803
0,4 1 55 2874 143336 6953685 331859360 15697347566
1,3 21 604 19018 615405 20055060 654666505 21378877706
2,2 20 333 5331 83821 1305844 20250090 313317426
3,1 7 39 201 1000 4888 23673 114087
0,5 1 144 19810 2598735 331859360 41634316343 5164420164680
1,4 55 4194 355234 31391724 2816672309 254000932538 22940968768675
2,3 76 4151 213173 10696445 530068706 26081095911 1278122145554
3,2 36 881 18859 379449 7391755 141473217 2681264915
4,1 9 59 343 1880 9976 51944 267385

Table 1: The first numbers Na,b,c for a ∈ [0, 6], b > 0, c > 0 and b+ c 6 5.
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Figure 21: Top: the number of 20V-DWBC4 configurations on the hexagon (a, b, c = 1) (left)
is conjecturally identified with the number of domino tilings of a domain (center), in bijection
with configurations of a single Schröder path (right) from (0, 1) to (2a + b + 1, b), constrained
to stay on a strip 0 6 y 6 b + 1. Bottom: the number of 20V-DWBC4 configurations on the
hexagon (a = 0, b, c) (left) is conjecturally identified with the number of domino tilings of a
domain (center), in bijection with configurations of a single Schröder path (right) from (0, 0) to
(2c+ b, b), constrained to stay on a strip 0 6 y 6 b.

An easy generalization consists in considering arbitrary rectangular grids of size (a+
b+ 1)× (b+ c+ 1), and imposing that all vertical external edges be occupied while only
the top a + 1 horizontal ones on the West boundary, and bottom a + 1 horizontal ones
on the East boundary be occupied (see Fig. 20). Equivalently the bottom b horizontal
external edges on the West boundary and the top b ones on the East boundary are empty.
This leads to numbers Na,b,c of configurations.

The case b = 0 corresponds to rectangular grids of arbitrary size (a+ 1)× (c+ 1), for
which the boundary condition DWBC4 still makes sense. In particular, N(n− 1, 0, n− 1)
reproduces the above sequence (6.3). Note also that Na,b,0 = 1, as there is a unique, fully
osculating, configuration in that case, as illustrated for (a, b, c) = (2, 3, 0) below:
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We have listed some of the non-trivial numbers Na,b,c in Table 6.4. So far we have identified
conjecturally only the numbers Na,b,1 and N0,b,c as also counting the domino tilings of plane
domains depicted in Fig. 21. The latter are easily enumerated by the configurations of a
single Schröder path with fixed ends, and constrained to remain within a strip, as shown
on the right. More precisely, we have, with the notation of Section 6.2.2:

Conjecture 12.

Na,b,1 = S
(b+1)
1,b (2a+ b+ 1), N0,b,c = S

(b)
0,b(2c+ b).

7 Alternating Phase Matrices

We may reformulate the 20V models with DWBC1,2,3 in terms of Alternating Phase
Matrices (APM), which generalize the Alternating Sign Matrices (ASM), with entries
among 0 and the sixth roots of unity, and with specific alternating conditions.

7.1 From 20V configurations to APM

In the case of the 6V model with DWBC, one possible construction of ASM is by viewing
the six possible vertex configurations as “transmitters” or “reflectors” of the orientation
of the arrows when going say from left to right and from top to bottom. A vertex either
reflects or transmits both directions as a consequence of the ice rule. Starting from a
6V-DWBC configuration, we map vertices to entries of the ASM built according to the
following rules:

1. If the vertex is a transmitter, the entry of the ASM is 0;

2. If the vertex is a reflector, the entry is +1 if the horizontal arrows point inwards,
and −1 otherwise.

In the case of the 20V model, each vertex is now viewed as a triple of reflectors or
transmitters along the horizontal, vertical and diagonal directions, say going from NW to
SE. To each vertex of a 20V-DWBC1,2 or 3 configuration, we may assign a triple (h, v, d)
of elements of {0, 1,−1} where h, v and d indicate the transmitter of reflector state of the
horizontal, vertical and diagonal directions respectively, with the following rules:

1. If the vertex is a transmitter along a direction, the corresponding entry of the triple
is 0;

2. If the vertex is a reflector along a direction, the corresponding entry is +1 if the
arrows point inwards, and −1 otherwise.

For each triple at a vertex, we have the condition h+d+v = 0 as a consequence of the ice
rule, which imposes that either the vertex is a transmitter in all three directions (and then
h = d = v = 0), or it is a transmitter in only one direction and a reflector in the other
two, and in this latter case, one reflected pair points inwards and the other outwards,
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so that the corresponding entries of the triple have zero sum. This gives rise to seven
possible triples: the triple (0, 0, 0) encountered for 8 of the 20 vertices and six non-zero
possible triples, according to the dictionary below in terms of osculating Schröder paths:

(1,−1, 0) (−1, 1, 0) (1, 0,−1) (−1, 0, 1) (0,−1, 1) (0, 1,−1) (7.1)

1 − 1 − ω ω − ω2 ω2 (7.2)

We have also indicated an alternative bijective coding using the sixth roots of unity with
ω = e2iπ/3, the weight of a triple (h, v, d) being bijectively mapped onto the complex
number −ωh + ω2v (which includes the coding (0, 0, 0) 7→ 0). This allows to assign to
each 20V configuration of size n with DWBC1,2 or 3 an n×n matrix with elements either 0
or in the set of sixth roots of unity: we shall call such matrices Alternating Phase Matrices
(APM) of type 1,2 or 3 respectively. Note that all the ASMs are realized as APMs (with
only ±1 non-zero entries), in all three types. To see why, start from the osculating path
formulation of ASM on the square grid, and then superimpose diagonal entirely empty or
entirely occupied lines, according to the diagonal external edge states pertaining to the
chosen DWBC. This generates APMs with entries 0, 1 and −1 only (corresponding to the
first two columns in the figure above) equal to those of the corresponding ASMs.

Alternatively, we may understand the sixth root of unity weights as a weighting of the
turns taken by individual paths, with the rule that the total weight at a vertex is the sum
of the turning weights of all the paths visiting it. More precisely, the expression −ωh+ω2v
for vertex weights may be understood as the sum over all two-step paths p = (pin, pout)
visiting the vertex of turning weights equal to the variation turn(p) := η(pout)− η(pin) of
an edge variable η with the following dictionary:

0

0

ωω

−ω2

−ω2{
{
out

in

where we have indicated the value of η for each in/out edge. With this dictionary, a
path which does not turn (transmitter direction) receives the turning weight 0 while we
have the following assignment of turning weight for respectively horizontal, diagonal and
vertical incoming paths (we have indicated the direction of travel of each path by a straight
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arrow):

1 − ω − ω2 ω − 1 ω2 (7.3)

It is a straightforward exercise to check that all the weights of (7.2) are indeed the sums
of turning weights of all their two-step paths (this is indeed guaranteed by the mapping
(h, v, d) 7→ −ωh + ω2v). For instance, the fifth weight from left on the bottom line is
1 +ω = −ω2, namely equal to the sum of the first and fourth weights on (7.3). Moreover,
a useful consequence of the definition is that the turning weights of a given path p =
(p0, p1, . . . , pk) add up along the path into a telescopic sum equal to

turn(p) :=
k∑

`=1

turn((p`−1, p`)) = η(pk)− η(p0) = turn((p0, pk)) (7.4)

depending only on the orientations of its first and last edges.

7.2 APM of type 1, 2 and 3: definitions and properties

The matrix triple entries (h, v, d) coming from 20V configurations are further constrained
by reflection/transmission properties along the horizontal, vertical and diagonal direc-
tions. In all three cases of DWBC1,2,3 all the external horizontal arrows point towards
the grid and all the external vertical arrows point away from it. If we follow any horizontal
line from left to right, the first arrow on the West side points to the right, and must be
reflected at least once as it points left when it exits on the East side. It must in fact be
reflected an odd number of times. The corresponding entries hj of the triples associated
to the vertices j = 1, 2, . . . , n visited from left to right must therefore alternate between
1,−1, 1, .., 1 whenever they are non-zero. The same reasoning for the vertical directions
leads, from top to bottom, to an alternation of the entries vi in each column between
−1, 1,−1, . . . ,−1 whenever non-zero.

Finally a last alternance condition holds along the diagonal directions, but is different
for DWBC1,2 and 3. For DWBC3, as all external diagonal edges are empty, the entries di
along each diagonal visited from top to bottom, must alternate between −1, 1,−1, . . . , 1
when they are non-zero: note that there is indeed always an even, possibly zero number of
reflectors as the arrows at both ends point towards Northwest. For DWBC1, recall that
the external diagonal edges are occupied in the lower triangular part and empty in the
strictly upper triangular part of the n×n grid. As a consequence, the entries di (labeled by,
say the row index i in increasing order) along each diagonal in the strictly upper triangular
part obey the same rule as in DWBC3, namely alternate between −1, 1,−1, . . . , 1 when
they are non-zero, but the entries di along each diagonal in the lower triangular part
obey the opposite rule, namely alternate between 1,−1, 1, . . . ,−1 when they are non-
zero. Finally, for DWBC2 the entries di along each diagonal in the upper triangular part
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alternate between −1, 1,−1, . . . , 1 when they are non-zero, and the entries di along each
diagonal in the strictly lower triangular part obey the opposite rule, namely alternate
between 1,−1, 1, . . . ,−1 when they are non-zero.

These rules determine entirely the sets of APM of type 1,2,3 whose definition is sum-
marized below.

Definition 13. We define the sets of n× n Alternating Phase Matrices of types 1,2,3 as
n × n arrays of triples of the form (hi,j, vi,j, di,j) for 1 6 i, j 6 n, where hi,j, vi,j, di,j ∈
{0, 1,−1} satisfy hi,j + vi,j + di,j = 0 and are moreover subject to the following conditions
for all types:

1. There is at least one non-zero variable hi,j in each row i = 1, 2, . . . , n, and at least
one non-zero variable vi,j in each column j = 1, 2, . . . , n,

2. Along each row i = 1, 2, . . . , n, the non-zero variables hi,j must alternate between
1,−1, 1, . . . , 1 when j ranges from 1 to n,

3. Along each column j = 1, 2, . . . , n, the non-zero variables vi,j must alternate between
−1, 1,−1, . . . ,−1 when i ranges from 1 to n,

and to three different conditions (4.1), (4.2), (4.3) corresponding to each type 1,2,3:

(4.1) Along each diagonal9 ` ∈ [1− n, n− 1], the non-zero variables di,i+` must alternate
between −1, 1,−1, . . . , 1 if ` > 0 and 1,−1, 1, . . . ,−1 if ` 6 0 when i ranges from
Max(1, 1− `) to Min(n, n− `).

(4.2) Along each diagonal ` ∈ [1 − n, n − 1], the non-zero variables di,i+` must alternate
between −1, 1,−1, . . . , 1 if ` > 0 and 1,−1, 1, . . . ,−1 if ` < 0 when i ranges from
Max(1, 1− `) to Min(n, n− `).

(4.3) Along each diagonal ` ∈ [1 − n, n − 1], the non-zero variables di,i+` must alternate
between −1, 1,−1, . . . , 1 when i ranges from Max(1, 1− `) to Min(n, n− `).

APM entries are expressible ubiquitously in terms of either the above defining triples,
or equivalently zero or sixth roots of unity according to the dictionaries (7.1-7.2).

Proposition 14. The n × n APM of types 1,2,3 are in bijection with respectively the
20V-DWBC1,2,3 on an n× n grid.

Example 15. As a illustration the 5 × 5 APM of types 1,2 and 3 corresponding to the

9Here we label the diagonal from 1 − n to n − 1 from top to bottom, as opposed to the spectral
parameter labelling tk, k = 1, 2, . . . , 2n− 1 from bottom to top. The correspondence is k = n− `.
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configurations depicted respectively in Figs. 1, 2 and 17 read:

7→




0 0 −ω 0 0
0 0 1 −ω2 0
−ω2 −ω2 0 0 1

0 0 −ω 0 0
0 0 −ω 0 0




7→




0 0 −ω 0 0
0 0 −ω 0 0
1 0 0 −ω2 −ω2

0 −ω2 1 0 0
0 0 −ω 0 0




7→




0 1 0 0 0
1 0 0 0 0
−ω 0 0 0 0
ω2 0 0 −ω 0
1 ω −ω2 1 −ω2




We note that the first and second APMs of respective types 1 and 2 are exchanged under
a rotation by 180◦, which matches the fact that the corresponding 20V configurations are
also interchanged under the same transformation.

We conclude with a simple property satisfied by all APMs introduced so far.

Proposition 16. APMs A = (ai,j)16i,j6n of any type 1, 2 or 3, when expressed in terms
of sixth roots of unity, have the following property:

n∑

i,j=1

ai,j = n .

Proof. We use the interpretation of weights in terms of turning weights for the paths
(7.3). For each path p in the osculating Schröder path configuration, recall the quantity
turn(p) (7.4) defined as the sum over its turning weights. Then it is clear that the desired
quantity is

∑n
i,j=1 ai,j =

∑
p turn(p), where the sum extends over all the paths in the

configuration. Next, we note that irrespectively of the type of DWBC, all paths have the
following property:
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1. each path starting with a horizontal external edge on the West boundary ends with
a vertical edge on the South boundary (call these HV paths). From (7.4), these
paths have a turning weight turn(p) = −ω2 − ω = 1.

2. each path starting with a diagonal external edge on the West boundary ends with
a diagonal edge on the South boundary. From (7.4), these paths have a turning
weight turn(p) = 0− 0 = 0.

The Proposition follows from the fact that there are always exactly n HV paths in all
configurations.

7.3 Other APMs

Using the same dictionaries as in the previous sections, we now define APM of type 4
corresponding to 20V-DWBC4 of Section 6.4.

Definition 17. We define APM of type 4 as n×n arrays of triples of the form (hi,j, vi,j, di,j)
for 1 6 i, j 6 n, where hi,j, vi,j, di,j ∈ {0, 1,−1} and hi,j + vi,j + di,j = 0, moreover subject
to the following conditions:

1. Along each row i = 1, 2, . . . , n, the non-zero variables hi,j must alternate between
1,−1, 1, . . . ,−1 when j ranges from 1 to n,

2. Along each column j = 1, 2, . . . , n, the non-zero variables vi,j must alternate between
1,−1, 1, . . . ,−1 when i ranges from 1 to n,

3. Along each diagonal ` ∈ [1 − n, n − 1], the non-zero variables di,j must alternate
between −1, 1,−1, . . . , 1 when i ranges from Max(1, 1− `) to Min(n, n− `).

Proposition 18. The n×n APM of type 4 are in bijection with the configurations of the
20V-DWBC4 model on an n× n grid.

In particular, the zero matrix is an APM of type 4, which corresponds to all vertices
being transmitters. The APM of type 4 are indeed very different from those of types
1,2,3: we note in particular that ASM do not form a subset of APM of type 4, as the
DWBC4 is incompatible with the DWBC of the underlying square lattice leading to
ASM10. Moreover, Proposition 16 no longer holds, and is replaced by

Proposition 19. For Any APM A = (ai,j)16i,j6n of type 4, when expressed in terms of
sixth roots of unity, we have the following property:

n∑

i,j=1

ai,j = 0

10This echoes the previous remark that DWBC4 are not really domain wall inducing.
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Proof. We use the same argument as in the proof of Proposition 16. All n paths entering
from the top must exit on the right. Each of them has a turning weight ω− (−ω2) = −1.
All n paths entering from the left must exit on the bottom. Each of them has turning
weight −ω2 − ω = +1. The total turning weight is therefore n− n = 0.

We also have the following refined sum rules:

Proposition 20. For Any APM A = (ai,j)16i,j6n of type 4, when expressed in terms of
sixth roots of unity, we have the following properties:

n∑

j=1

ai,j ∈ ω2 Z,
n∑

i=1

ai,j ∈ ω Z,
Min(n,n−`)∑

i=Max(1,1−`)

ai,i+` ∈ Z .

Proof. We use the fomulation of the matrix entries ai,j as the sum of turning weights of
all paths visiting the vertex i, j. Focussing on a given row i of the matrix, the horizontal
occupied edges form a union of segments of edges belonging each to a different path:
[a0, a1], [a2, a3],. . . , [a2k−2, a2k−1] with k > 1, a0 = 0 6 a1 6 · · · 6 a2k−2 6 a2k−1 = n + 1.
Inside each segment all vertices are transmitters, with turning weights 0. All the junctures
a1, a2, . . . , a2k−2 are turning points. Inspecting the possibilities of local configurations of
paths through these points, there are two possibilities of exiting the row at each aj for
odd j < 2k − 1:

1 − ω

and two possibilities to enter the row at each aj for even j > 0:

−1 ω

Let θj denote the corresponding turning weight, with θj ∈ {1,−ω} for odd j and θj ∈
{−1, ω} for even j. Summing over all turning weights along the row i gives

∑n
j=1 ai,j =∑k−1

j=1(θ2j−1+θ2j): this includes double and also triple osculations, as the latter must have
a transmitter diagonal which does not affect the turning weight. The quantity θ2j−1 + θ2j
may take only the values: 1− 1 = 0, 1 + ω = −ω2, −ω − 1 = ω2 and −ω + ω = 0, all in
ω2Z, and the first assertion of the Proposition follows. The second and third ones follow
from a similar argument.

Example 21. As a illustration, the 6×6 APM of type 4 corresponding to the configuration
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on the left in Fig. 19 reads:

7→




−ω ω2 ω2 ω2 −1 0
0 1 −ω2 0 ω 0
0 −ω −1 −ω 0 −1
0 0 −ω2 0 1 ω
ω2 ω2 ω2 −ω 0 ω
1 −ω2 −ω2 −ω2 ω −ω2




The sum rules of Props.19 and 20 are easily checked. We find row sums: 4ω2, −2ω2, 2ω2,
−2ω2, 3ω2, −5ω2, column sums: −2ω, −2ω, ω, −2ω, 2ω, 3ω, and diagonal sums: 1, 0, 0,
0, 1, 1, 1, −1, −2, −1, 0, each adding up to 0.

8 Discussion/Conclusion

In this paper we have considered the two-dimensional ice model of statistical physics on
the triangular lattice, the 20V model, from a combinatorial point of view. In particular, we
have defined analogs of the known DWBC for the 6V model, and investigated their possible
combinatorial content, using as much as possible the underlying integrable structure of
the models.

8.1 DWBC1,2: summary and perspectives

The first class of boundary conditions DWBC1,2 have displayed a remarkably rich com-
binatorial content. We have shown in particular that the configurations of the models are
equinumerous to the domino tilings of a quasi-square Aztec-like domain with a central
cross-shaped hole and with quarter-turn symmetry. We also presented a refined version,
in the same spirit as the Mills-Robins-Rumsey conjecture [MRR86] for DPP, fully proved
in [BDFZJ12]. Note that this coincidence of (refined) partition functions is still lacking a
direct bijective interpretation. However, such a canonical bijection is not known even for
the ASM-DPP correspondence.

The 20V model presents interesting new features compared to the 6V model. Its oscu-
lating path version involves Schröder paths with three different kinds of steps (horizontal,
vertical, diagonal). Note that the same paths, but with a stronger non-intersecting con-
dition are involved in the description of domino tilings of the holey square. It is easy to
keep track say of the diagonal steps when dealing with a single path (with a weight γ per
diagonal step), as well as when dealing with families of such non-intersecting paths (see
Ref. [DFG19] for the problem of tiling Aztec rectangles with defects). The corresponding
decoration is easy to implement in the holey square tiling problem (where γ is simply
a weight for one kind of domino). Unfortunately, it is easily checked that the partition
functions of the 20V-DWBC1,2 and that of domino tilings of the holey square no longer
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match for γ 6= 1. Besides, it turns out that weights incorporating a factor γ per diag-
onal step of path in the 20V model are non-longer integrable in general, namely cannot
be obtained by special choices of spectral parameters. On the other hand, it would be
interesting to find a weighting of the 20V model equivalent to the γ-deformation of the
tiling.

Another easily implementable natural weight in the particular context of the quarter-
turn symmetric domino tilings of the holey Aztec square is a weight θ per path in the
formulation as non-intersecting paths on a cone of Section 4. The suitably modified
partition function reads det(In + θMn) in the notations of Theorem 4: when evaluating
the determinant via the Cauchy-Binet formula, we indeed pick a factor θ per row of the
chosen submatrix of Mn. It would also be interesting to find a weighting of the 20V model
that corresponds to this.

Finally, like in the DPP case [BDFZJ13], further refinements could in principle be
derived, by use of the Desnanot-Jacobi relation. We hope to return to these questions in
future work.

8.2 The DWBC3 conjecture

Proving the DWBC3 conjecture 10 is the next challenge. Let us mention that the partition
function Z20V BC3(n) of the 20V-DWBC3 model on an n × n grid, due to the integrable
nature of its weights, can be related to a partition function of the 6V model on a 2n× 2n
grid of square lattice, by unraveling the diagonal lines in a way similar to that of Section
3.1.

More precisely, we start from the general DWBC3 partition function, with arbi-
trary Kagome spectral parameters zi, wj, i, j = 1, 2, . . . , n and homogeneous tk = t,
k = 1, 2, . . . , 2n − 1. First, we note that the (n − 1) bottom diagonal lines are “im-
prisoned” due to the alternating orientations of external arrows on the West and South
boundaries, and the corresponding lines cannot be expelled like in the case of Section
3.1. The top n on the other hand could in principle be disposed of in the same way as
before. However, it proves more interesting to keep them and to deform the lines in the
manner illustrated in Fig. 22. The idea is to place the former nodes of the sublattices 2
and 3 of the Kagome on square (sub-)lattices, still denoted by 2,3, and to form artificial
new nodes at the kissing between pairs of deformed diagonal lines, and positioned on a
square sublattice denoted by 4 (see Fig. 22 (b)). At these nodes, the kissing condition is
guaranteed by choosing vertex weights (a4, b4, c4) = (1, 0, 1), where the vanishing of the
weight b4 ensures the transmission of the arrow orientation from top to right and from
left to bottom for these artificially created vertices. By careful inspection of the vertex
weights whenever some tk = t is involved, we find that the weights for sublattices 2 and
3 may be expressed (up to a global multiplicative factor q for sublattice 2 and q−1 for
sublattice 3) with the same definition as that used for the sublattice 1 of the Kagome
lattice (or equivalently given by (3.7)) provided we change t → q2t in the definition of
horizontal spectral parameters and t → q−2t in the definition of the vertical ones (see
Fig. 22 (c)). Remarkably, with these modified spectral parameters and this very same
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Figure 22: Starting from the 20V-DWBC3 model on an n × n grid in its equivalent Kagome
lattice formulation (a), we deform the diagonal lines so as to form an intermediate square grid
of size 2n× 2n (b) with four sublattices corresponding to the 3 original sublattices 1,2,3 of the
Kagome lattice indicated respectively with black squares (1), empty circles (2), filled circles (3)
plus an extra sublattice 4 of kissing points (circled), including the top right kissing point with an
added trivial corner oriented line. Thanks to the equivalence to 6V weights indicated in (c), the
model is finally reexpressed as a staggered 6V model with appropriate spectral parameters (d).
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unified definition, the 6V weights on the sublattice 4 would be

(
A(q2t, q−2t), B(q2t, q−2t), C(q2t, q−2t)

)
= (q2 − q−2)t× (1, 0, 1) , (8.1)

which reproduce precisely the desired weights (a4, b4, c4) up to the proportionality factor
µ = (q2 − q−2)t. Otherwise stated, the weights on the four sublattices correspond (up to
global factors 1, q, q−1 and µ−1 for sublattices 1, 2, 3, 4 respectively) to 6V weights for a
consistent set of spectral parameters on the horizontal and vertical lines of a 2n×2n grid.

The other spectral parameters zi and wj have remained unchanged in the process.
Taking them to the homoegeous 20V values zi = q6t and wj = q−6t, we obtain a new 6V
model now on a 2n× 2n grid, but with staggered boundary conditions and weights:

(a1, b1, c1) = (A(q6t, q−6t), B(q6t, q−6t), C(q6t, q−6t)) = µ (1,
√

2, 1)

(a2, b2, c2) = q (A(q6t, q−2t), B(q6t, q−2t), C(q6t, q−2t)) = q3µ (
√

2, 1, 1)

(a3, b3, c3) = q−1 (A(q2t, q−6t), B(q2t, q−6t), C(q2t, q−6t)) = q−3µ (
√

2, 1, 1)

(a4, b4, c4) = (1, 0, 1) ,

respectively on the sublattices 1,2,3 (as in (2.7)) and 4. Recalling the choice of spectral
parameter t (2.8), leading to µ3 = 1/2, to ensure that the original 20V weights are all 1,
the net result is a re-expression of the total number of configurations of the 20V-DWBC3
as:

Z20V BC3(n) = µn
2

(q3µ)n
2

(q−3µ)n
2

Z
6Vstaggered
WS (2n) =

1

2n2 Z
6Vstaggered
WS (2n) ,

where Z
6Vstaggered
WS (2n) denotes the partition function of the staggered 6V model on a 2n×2n

grid, with weights (a, b, c) respectively equal to (1,
√

2, 1), (
√

2, 1, 1), (
√

2, 1, 1) and (1, 0, 1)
on the sublattices 1,2,3,4, and with alternating external arrow orientations on the West
and South boundaries (indicated by the index WS), entering arrows on the East and
outgoing arrows on the North (as in Fig. 22(d)).

In fact, the same transformation could be performed on the 20V model on an n×n grid
with arbitrary boundary conditions. In particular, this allows to re-express the partition
function for the 20V-DWBC4 model as a staggered 6V model with the same definition of
weights as above, but with alternating external arrow orientations on all (West, South,
East, North) boundaries:

Z20V BC4(n) =
1

2n2 Z
6Vstaggered
WSEN (2n) .

The same transformation for the DWBC1 20V model leads to an alternative re-expression
as:

Z20V BC1(n) =
1

2n2 Z
6Vstaggered(2n) ,

where the staggered 6V model has domain wall boundary conditions, i.e. all horizontal
external arrows pointing towards the domain, and all vertical external arrows pointing
away from the domain.
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There are no known general determinantal formulas for the partition functions of the
staggered 6V model. However, the latter can be solved by use of algebraic Bethe Ansatz,
so there is some hope of transforming the relevant partition functions into some simpler
objects. We also leave this investigation to some future work.

8.3 Symmetry classes

Among the many questions that remain, an interesting direction which is similar to that in
the case of 6V/ASM/Rhombus Tilings correspondences is the introduction of symmetry
classes, obtained by restricting to configurations with some specified symmetry.

Our problem allows for less possible symmetries than the original 6V one, as we have
broken the natural symmetries of the square domain in our choices of DWBC. Neverthe-
less, we have identified two interesting symmetry classes for the DWBC1,2 models, one
for DWBC3 and two for DWBC4.

In osculating Schröder path language, the first symmetry, common to all DWBC1,2,3
and 4, is simply the symmetry under reflection w.r.t. the first diagonal, which clearly
respects all four choices of boundary conditions. In the APM language (with 0 and sixth
root of unity entries), this symmetry amounts, for the APM A, to the condition:

A∗n+1−j,n+1−i = Ai,j (i, j = 1, 2, . . . , n) ,

where the complex conjugation interchanges ω and ω2. We denote the APMs having this
symmetry by Symmetric Alternating Phase Matrices (SAPM), which come in four types.

The second symmetry is more subtle and applies only to DWBC1 and 2. It is the
composition of a reflection w.r.t. the second diagonal and the complementation which
interchanges occupied and empty edges, while the central diagonal line remains entirely
occupied (DWBC1) or entirely empty (DWBC2). Note that in the cases of DWBC3 and
4 this transformation would be incompatible with the boundary conditions. In the APM
language, this amounts to the condition:

A∗j,i = Ai,j (i, j = 1, 2, . . . , n) ,

namely that the corresponding APMs be Hermitian. We denote the APMs having this
symmetry by Transpose Conjugate Alternating Phase Matrices (TCAPM).

The last symmetry occurs only for DWBC4: it is the rotation of the grid by 180◦. In
the APM language, this amounts to the condition:

An+1−i,n+1−j = −Ai,j (i, j = 1, 2, . . . , n) .

We denote the APM having this symmetry by Half-Turn (symmetric) Alternating Phase
Matrices (HTAPM).

Using transfer matrix techniques, we found the following sequences for the various
symmetry classes of APM:

Type 1, 2 : SAPM : 1, 3, 13, 85, 861
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TCAPM : 1, 2, 6, 28, 204

Type 3 : SAPM : 1, 3, 15, 135, 2223

Type 4 : SAPM : 1, 3, 27, 639

HTAPM : 1, 1, 7, 53

We remark that the first 5 TCAPMs of type 1, 2 are enumerated by the q = 2 q-Bell
numbers Bn(q) defined recursively by B0(q) = 1 and Bn+1(q) =

∑n
k=0

(
n
k

)
q
Bk(q) where(

n
k

)
q

=
∏k

i=1(1 − qn+1−i)/(1 − qi) is the q-binomial coefficient. It is tempting to make a

conjecture, but clearly some extra numerical effort is needed here.

8.4 Arctic phenomenon

To conclude, we expect, at least for the case of 20V with DWBC1,2, the existence of an
“arctic phenomenon” similar to that observed for ASMs [CP10, CPS19, CS16] as well
as the more general 6V-DWBC [CNP11, CPZJ10]. This was our original motivation for
considering the 20V model with DWBC, and will be the subject of future work.

A The passage from Eq. (3.9) to Eq. (5.2) in the homogeneous
case

We wish to get an expression for (3.9) when zi → z and wj → w for all i and j. Following
[BDFZJ12], we start with the following identity, valid for any power series f(z, w):

1∏
16i<j6n

(zj − zi)(wj − wi)
det

16i,j6n
(f(zi, wj)) = det

16i,j6n
(f [z1, . . . , zi][w1, . . . , wj]) (A.1)

where

f [z1, . . . , zi][w1, . . . , wj] :=
i∑

k=1

j∑

l=1

f(zk, wl)
i∏

k′=1
k′ 6=k

(zk − zk′)
j∏

l′=1
l′ 6=l

(wl − wl′)
. (A.2)

Indeed, introducing the lower triangular matrix

L[z1, . . . , zn]i,j =





i∏
k=1
k 6=j

1
zj−zk

if i > j

0 if i < j

(A.3)

and the matrix H with elements Hi,j = f(zi, wj), the left hand side of (A.1) is nothing
but the product det(L[z1, . . . , zn]) det(L[w1, . . . , wn]t) det(H) while the right hand side is
nothing but det(L[z1, . . . , zn]) ·H ·L[w1, . . . , wn]t) so that the identity follows immediately.
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We may now evaluate

f [z1, . . . , zi][w1, . . . , wj] =

(
1

2i π

)2 ∮
dt

∮
dt′

1
i∏

k=1

(t− zk)

1
j∏
l=1

(t′ − zl)
f(t, t′)

=
∞∑

m,m′=0

fm,m′

(
1

2iπ

)2 ∮
dt

∮
dt′

1
i∏

k=1

(t− zk)

1
j∏
l=1

(t′ − zl)
tm t′m

′

=
∞∑

m,m′=0

fm,m′ Res∞
tm

i∏
k=1

(t− zk)
Res∞

tm
′

j∏
l=1

(t− wl)

where we introduced the coefficient fm,m′ of the series expansion f(z, w)=
∞∑

m,m′=0

fm,m′z
mwm

′

and where the contours in the integrals were deformed so as to pick the residue at infinity.
Clearly this residue is non-zero only if m > i− 1 (respectively m′ > j− 1) with the result

Res∞
tm

i∏
k=1

(t− zk)
=

∑

p1,p2,...,pi>0

i∑
k=1

pk=m+1−i

i∏

k=1

zpkk = hm+1−i(z1, . . . , zi)

in terms of the complete symmetric polynomial hm. This yields

f [z1, . . . , zi][w1, . . . , wj] =
∑

m>i−1
m′>j−1

fm,m′hm+1−i(z1, . . . , zi)hm′+1−j(w1, . . . , wj)

and in particular

f [z, . . . , z︸ ︷︷ ︸
i

][w, . . . , w︸ ︷︷ ︸
j

] =
∑

m>i−1
m′>j−1

fm,m′hm+1−i(z, . . . , z︸ ︷︷ ︸
i

)hm′+1−j(w, . . . , w︸ ︷︷ ︸
j

)

=
∑

m>i−1
m′>j−1

fm,m′

(
m

i− 1

)
zm+1−i

(
m′

j − 1

)
wm

′+1−j

= f(z + r, w + s)|ri−1sj−1 .

This leads to the desired limit

1∏
16i<j6n

(zj − zi)(wj − wi)
det

16i,j6n
(f(zi, wj)) →zk→z

wl→w

det
16i,j6n

(f(z + r, w + s)|ri−1sj−1) .

Using

1

a(i, j) b(i, j)
=

1

zi − wj
1

q−2zi − q2wj
=

q2

(1− q4)wj

(
1

zi − wj
− 1

zi − q4wj

)
,
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we deduce

n∏
i=1

c(i, i)
n∏

i,j=1

(a(i, j) b(i, j))

∏
16i<j6n

(zi − zj)(wj − wi)
det

16i,j6n

(
1

a(i, j) b(i, j)

)

=

n∏
i=1

c(i, i)
n∏

i,j=1

(a(i, j) b(i, j))
n∏
j=1

(
q2

(1−q4)wj

)

∏
16i<j6n

(zi − zj)(wj − wi)
det

16i,j6n

(
1

zi − wj
− 1

zi − q4wj

)

→
zk→z
wl→w

(−1)
n(n−1)

2

n∏

i=1

(
(q2 − q−2)√z w

) n∏

i,j=1

(
(z − w)(q−2z − q2w)

) n∏

j=1

q2

(1− q4)w

× det
16i,j6n

((
1

(z + r)− (w + s)
− 1

(z + r)− q4(w + s)

)∣∣∣∣
ri−1sj−1

)
.

This is nothing but (5.2).

B A proof of Eq. (5.5)

We now wish to get an expression for (3.9) when zi → z, i = 1, . . . , n, wj → w, j =
1, . . . n − 1 and wn → w u. Following again [BDFZJ12], we have the following general
identity:

1∏
16i<j6n

(zj−zi)
∏

16i<j6n−1
(wj − wi)

det
16i,j6n

(f(zi, wj))= det
16i,j6n

(
f [z1, . . . , zi][w1, . . . , wj ] j 6 n−1

f [z1, . . . , zi][wn] j = n

)

(B.1)
where f [z1, . . . , zi][w1, . . . , wj] is as in (A.2). This identity is obtained as in Appendix A
by multiplying the matrix H with elements Hi,j = f(zi, wj) to the left by the matrix
L[z1, . . . , zn] of (A.3) and to the right by the transpose of the matrix L(n)[w1, . . . , wn−1]
with elements

L(n)[w1, . . . , wn−1]i,j =





i∏
k=1
k 6=j

1
wj−wk

if n− 1 > i > j

δn,j if i = n
0 if i < j

,

then taking the determinant. We have in particular in the desired limit

1∏
16i<j6n

(zj − zi)
∏

16i<j6n−1
(wj − wi)

det
16i,j6n

(f(zi, wj))

→
zk→z , wl<n→w

wn→wu

det
16i,j6n

(
f(z + r, w + s)|ri−1sj−1 j 6 n− 1
f(z + r, w u)|ri−1 j = n

)
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We now deduce

n∏
i=1

c(i, i)
n∏

i,j=1

(a(i, j) b(i, j))

∏
16i<j6n

(zi − zj)(wj − wi)
det

16i,j6n

(
1

a(i, j) b(i, j)

)

=
n−1∏

i=1

c(i, i)
n∏

i=1

n−1∏

j=1

(a(i, j) b(i, j))
n−1∏

j=1

(
q2

(1− q4)wj

)

× c(n, n)
n∏

i=1

(a(i, n) b(i, n))

(
q2

(1− q4)wn

)
1

n−1∏
i=1

(wn − wi)

× 1∏
16i<j6n

(zi − zj)
∏

16i<j6n−1
(wj − wi)

det
16i,j6n

(
1

zi − wj
− 1

zi − q4wj

)

→
zk→z , wl<n→w

wn→wu

(−1)
n(n−1)

2

n−1∏

i=1

(
(q2−q−2)√z w

) n∏

i=1

n−1∏

j=1

(
(z−w)(q−2z−q2w)

) n−1∏

j=1

q2

(1−q4)w

× (q2 − q−2)√z w u
n∏

i=1

(
(z − w u)(q−2z − q2w u)

) q2

(1− q4)w u
1

n−1∏
i=1

(w u− w)

× det
16i,j6n



(

1
(z+r)−(w+s) − 1

(z+r)−q4(w+s)

)∣∣∣
ri−1sj−1

j 6 n− 1(
1

(z+r)−w u
− 1

(z+r)−q4wu

)∣∣∣
ri−1

j = n


 .

This is nothing but (5.5).
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