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Abstract

The Star graph Sn, n > 3, is the Cayley graph on the symmetric group Symn

generated by the set of transpositions {(12), (13), . . . , (1n)}. In this work we study
eigenfunctions of Sn corresponding to the second largest eigenvalue n−2. For n > 8
and n = 3, we find the minimum cardinality of the support of an eigenfunction of
Sn corresponding to the second largest eigenvalue and obtain a characterization of
eigenfunctions with the minimum cardinality of the support.
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1 Introduction

The Star graph Sn = Cay(Symn, S), n > 3, is the Cayley graph on the symmetric group
Symn with the generating set S = {(1 i) | i ∈ {2, . . . , n}}. It is a connected bipartite

(n − 1)-regular graph of order n! and diameter diam(Sn) = b3(n−1)
2
c [1]. Since this

graph is bipartite it does not contain odd cycles but it does contain all even l-cycles
where l = 6, 8, . . . , n! (with the sole exception when l = 4) [9] which means that Sn is
hamiltonian.

The spectrum of the Star graph is integral [5, 12]. More precisely, for n > 3 and
for each integer 1 6 k 6 n − 1, the values ±(n − k) are eigenvalues of Sn; if n > 4,
then 0 is an eigenvalue of Sn. Let mul(λ) denote the multiplicity of an eigenvalue λ.
Since the Star graph is bipartite, mul(n− k) = mul(−n + k) for each integer 1 6 k 6 n.
Moreover, ±(n − 1) are simple eigenvalues of Sn. A lower bound on multiplicities of
the eigenvalues was found as

(
n−2
k−1

)
[12], and it was improved as

(
n−2

n−k−1

) (
n−1
n−k

)
[5] for

any 1 6 k 6 n − 1. Later a method for getting explicit formulas for multiplicities of
eigenvalues ±(n − k) in the Star graphs Sn was suggested [2, 10], and the behavior of
the eigenvalues multiplicity function of the Star graph Sn for eigenvalues ±(n− k) where
1 6 k 6 n+1

2
was investigated [11]. It was shown that the function has a polynomial

behavior on n. Computational results showed that the same polynomial behavior of the
eigenvalues multiplicity function occurs for any integers n > 2 and 1 6 k 6 n. Moreover,
explicit formulas for calculating multiplicities of eigenvalues ±(n − k) where 2 6 k 6 12
were found. In particular, mul(n− 2) = mul(2− n) = (n− 1)(n− 2).

We investigate the following problem.

Problem 1. For a graph Γ and its eigenvalue λ to find the minimum cardinality of the
support of a λ-eigenfunction of Γ.

In many cases Problem 1 is directly related to the problem of finding the minimum
possible difference of two combinatorial objects and the problem of finding the minimum
cardinality of the bitrades. In more details, these connections are described in [13, 14].
Problem 1 was studied for the bilinear forms graphs in [17], the cubical distance-regular
graphs in [16], the Doob graphs in [3], the Grassmann graphs in [14], the Hamming graphs
in [13, 15, 18, 19, 20, 21], the Johnson graphs in [22] and the Paley graphs in [7]. We
note that Problem 1 is completely solved for all eigenvalues only for the Hamming graph
and for the Johnson graph. Moreover, even for distance-regular graphs Problem 1 for the
second largest eigenvalue is solved only for the Hamming graph, the Johnson graph, the
Doob graph and the cubical distance-regular graphs.

In this work we start to investigate Problem 1 for graphs which are not distance-
regular and consider Problem 1 for the Star graph Sn and its eigenvalue n − 2. We
find the minimum cardinality of the support of (n − 2)-eigenfunctions of Sn and give a
characterization of (n − 2)-eigenfunctions with the minimum cardinality of the support
for n > 8 and n = 3. We also show that for n > 8 and n = 3 an arbitrary (n − 2)-
eigenfunction of Sn with the minimum cardinality of the support is the difference of the
characteristic functions of two completely regular codes of covering radius 2.
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The paper is organized as follows. In Section 2, we introduce basic definitions and give
some preliminary results. In Section 3, we reduce Problem 1 for the Star graph Sn and its
eigenvalue n− 2 to some extremal problem on the set of real n× n matrices. In Section
4, we solve this extremal problem. In Section 5, for n > 8 and n = 3 we prove that the
minimum cardinality of the support of an (n − 2)-eigenfunction of Sn is 2(n − 1)! and
give a characterization of eigenfunctions with the minimum cardinality of the support. In
Section 6, for n > 8 and n = 3 we show that an arbitrary (n−2)-eigenfunction of Sn with
the minimum cardinality of the support is the difference of the characteristic functions of
two completely regular codes of covering radius 2.

2 Preliminaries

2.1 Star graph

Let G be a group and S be an inverse-closed identity-free generating set in G. The Cayley
graph on G with the generating set S (denoted by Cay(G,S)) is the graph whose vertices
are the elements of G, and any two elements x, y ∈ G are adjacent in Cay(G,S) whenever
xy−1 ∈ S. For a positive integer n > 3, the Star graph (denoted by Sn) is the Cayley
graph on the symmetric group Symn with the generating set S = {(1 i) | i ∈ {2, . . . , n}}.

2.2 Eigenfunctions of graphs

Let Γ = (V,E) be a graph with the adjacency matrix A(Γ). The set of neighbors of a
vertex x is denoted by N(x). Let λ be an eigenvalue of the matrix A(Γ). A function
f : V −→ R is called a λ-eigenfunction of Γ if f 6≡ 0 and the equality

λ · f(x) =
∑

y∈N(x)

f(y)

holds for any x ∈ V . Note that the vector of values of a λ-eigenfunction is an eigenvector
of A(Γ) with eigenvalue λ. The support of a function f : V −→ R is the set Supp(f) =
{x ∈ V | f(x) 6= 0}. For a function f : V −→ R denote E(f) = {y ∈ R | y = f(x), x ∈ V }.

Let u ∈ {1, . . . , n} and v, w ∈ {2, . . . , n}, where v 6= w. We define the function
f v,wu : Symn −→ R by the following rule:

f v,wu (π) =


1, if π(v) = u;

−1, if π(w) = u;

0, otherwise.

The following result is a particular case of Proposition 1 proved in [8].

Lemma 2. Let u ∈ {1, . . . , n} and v, w ∈ {2, . . . , n}, where v 6= w. Then for n > 3, the
function f v,wu is an (n− 2)-eigenfunction of Sn.
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Denote
F2 = {f 2,w

u | u ∈ {2, . . . , n}, w ∈ {3, . . . , n}}.

The following lemma was proved in [8].

Lemma 3 ([8], Lemma 15). For n > 3, the set F2 forms a basis of the eigenspace of Sn
with eigenvalue n− 2.

Denote
F = {f v,wu | u ∈ {1, . . . , n}, v, w ∈ {2, . . . , n}, v 6= w}.

In Section 5 we prove that if f is an (n−2)-eigenfunction of Sn, then |Supp(f)| > 2(n−1)!.
Moreover, we prove that |Supp(f)| = 2(n−1)! if and only if f = c· f̃ , where c is a constant
and f̃ ∈ F .

2.3 Matrices

Let M = (mi,j) be a real n × n matrix. We say that M is special if M is non-zero and
the following conditions hold:

1. mi,1 = 0 for any i ∈ {1, . . . , n}.

2. m1,j = 0 for any j ∈ {1, . . . , n}.

3.
∑n

j=1mi,j = 0 for any i ∈ {1, . . . , n}.

Example 4. The matrix

M =


0 0 0 0
0 1 0 −1
0 3 −1 −2
0 −1 −1 2


is special.

Let M = (mi,j) be a real n× n matrix and let X be a subset of Symn. Denote

gM(n) = |{π ∈ Symn |
n∑
i=1

mi,π(i) 6= 0}|

and

gM(X) = |{π ∈ X |
n∑
i=1

mi,π(i) 6= 0}|.

For an n× n matrix M and α ∈ {1, . . . , n} denote by Rα the α-th row of M .
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2.4 Equitable partitions and completely regular codes

Let Γ = (V,E) be a graph. An ordered partition (C1, . . . , Cr) of V is called equitable if for
any i, j ∈ {1, . . . , r} there is Si,j such that any vertex of Ci has exactly Si,j neighbors in
Cj. The matrix S = (Si,j)i,j∈{1,...,r} is called the quotient matrix of the equitable partition.
A set C ⊆ V is called a completely regular code in Γ if the partition (C(0), . . . , C(ρ)) is
equitable, where C(d) is the set of vertices at distance d from C and ρ (the covering radius
of C) is the maximum d for which C(d) is nonempty. In other words, a subset of V
is a completely regular code in Γ if the distance partition with respect to the subset is
equitable. For more information on equitable partitions and completely regular codes see
[4, 6].

3 Correspondence between the values of an (n−2)-eigenfunction
of Sn and the diagonals of an n × n matrix

In this section, for an arbitrary (n−2)-eigenfunction f of Sn, we introduce a special n×n
matrix M(f) and match the permutations from Symn with diagonals of M(f) in such a
way that the value of f on a permutation π is the sum of elements of the corresponding
diagonal of M(f).

Let f be an (n − 2)-eigenfunction of Sn. By Lemma 3, there exist the numbers
µji (f) ∈ R, where i ∈ {2, . . . , n} and j ∈ {3, . . . , n}, such that

f =
∑

j∈{3,...,n}
i∈{2,...,n}

µji (f) · f 2,j
i .

We define the matrix M(f) = (mi,j(f))i,j∈{1,...,n} by the following rule:

mi,j(f) =


−µji (f), if i > 1 and j > 2;∑n

s=3 µ
s
i (f), if i > 1 and j = 2;

0, if i = 1 or j = 1.

(1)

Lemma 5. Let f be an (n− 2)-eigenfunction of Sn. Then

f(π) =
n∑
i=1

mi,π−1(i)(f)

for any π ∈ Symn.

Proof. For i ∈ {2, . . . , n} denote

fi =
n∑
j=3

µji (f) · f 2,j
i .
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By the definition of f v,wu we have

fi(π) =


−µji (f), if π(j) = i and j ∈ {3, . . . , n};∑n

s=3 µ
s
i (f), if π(2) = i;

0, if π(1) = i.

(2)

Using the equalities (1) and (2), we see that fi(π) = mi,π−1(i)(f) for any i ∈ {2, . . . , n}
and π ∈ Symn. Then

f(π) =
n∑
i=2

fi(π) =
n∑
i=2

mi,π−1(i)(f)

for any π ∈ Symn. Since m1,π−1(1)(f) = 0 due to the definition of M(f), we obtain that

f(π) =
n∑
i=1

mi,π−1(i)(f).

Lemma 6. Let f be an (n− 2)-eigenfunction of Sn. Then

E(f) =

{
n∑
i=1

mi,π(i)(f) | π ∈ Symn

}
.

Proof. We note that{
n∑
i=1

mi,π(i)(f) | π ∈ Symn

}
=

{
n∑
i=1

mi,π−1(i)(f) | π ∈ Symn

}
.

Then by Lemma 5 we have

E(f) =

{
n∑
i=1

mi,π(i)(f) | π ∈ Symn

}
.

Using Lemma 6 and the definition of gM(n), we immediately obtain the following
result.

Lemma 7. Let f be an (n− 2)-eigenfunction of Sn. Then |Supp(f)| = gM(f)(n).

4 Extremal problem on the set of all special n × n matrices

In view of Lemma 7, in order to solve Problem 1 for the Star graph Sn and its eigenvalue
n − 2, it suffices to find the minimum value of gM(f)(n), where n is fixed and f is an
arbitary (n− 2)-eigenfunction of Sn. Since the matrix M(f) is special, in this section we
focus on the following extremal problem formulated for the class of special matrices.

Problem 8. Given a positive integer n, to find the minimum value of gM(n) for the class
of special n× n matrices M .

the electronic journal of combinatorics 27(2) (2020), #P2.14 6



In this section, we solve Problem 8 (see Theorem 1) and prove that gM(n) > 2(n− 1)!
holds for any special n × n matrix M with n > 8 or n = 3. We then prove that this
bound is tight and classify the special matrices in the equality case. This finally leads to
a solution of Problem 1 for the Star graph Sn and its eigenvalue n− 2 (see Theorem 20).

Let M = (mi,j) be a real n×n matrix and let (A1, . . . , At) be a partition of {1, . . . , n},
where t > 2. Let α, β ∈ {1, . . . , n} and α 6= β. We say that Rα and Rβ have the
(A1, . . . , At)-property if for any k,m ∈ {1, . . . , t}, k 6= m, and for any a ∈ Ak, b ∈ Am the
condition

mα,a +mβ,b 6= mα,b +mβ,a

holds.

Example 9. Let us consider the matrix

M =


0 0 0 0
0 1 −1 0
2 2 0 0
0 0 3 3

 .

1. The rows R1 and R2 have (A1, A2, A3)-property, where A1 = {1, 4}, A2 = {2} and
A3 = {3}.

2. The rows R1 and R3 have (A1, A2)-property, where A1 = {1, 2} and A2 = {3, 4}.

3. The rows R3 and R4 have (A1, A2)-property, where A1 = {1, 2} and A2 = {3, 4}.

In Lemmas 10 and 11, we obtain lower bounds for gM(n), where M is an arbitrary
real matrix having a pair of rows with the (A1, . . . , At)-property.

Let {a1, . . . , a`} and {α1, . . . , α`} be subsets of {1, . . . , n} for some 1 6 ` 6 n. Denote
by Sα1,...,α`

a1,...,a`
the set of permutations π ∈ Symn such that π(αi) = ai for any i ∈ {1, . . . , `}.

Lemma 10. LetM = (mi,j) be a real n×n matrix. Let {c1, . . . , ch, a, b}, {γ1, . . . , γh, α, β}
be subsets of {1, . . . , n} for some 0 6 h 6 n−2. Suppose Rα and Rβ have the (A1, . . . , At)-
property and a ∈ Ak, b ∈ Am for some k,m ∈ {1, . . . , t} and k 6= m. Then

gM

(
Sγ1,...,γh,α,βc1,...,ch,a,b

∪ Sγ1,...,γh,α,βc1,...,ch,b,a

)
> (n− h− 2)!.

Proof. Denote Y1 = Sγ1,...,γh,α,βc1,...,ch,a,b
and Y2 = Sγ1,...,γh,α,βc1,...,ch,b,a

. We note that for any permutation
π ∈ Y1 there is a unique permutation π′ ∈ Y2 such that π(s) = π′(s) for any s ∈
{1, 2, . . . , n} \ {α, β}. Then

n∑
i=1

mi,π(i) −
n∑
i=1

mi,π′(i) = mα,a +mβ,b −mα,b −mβ,a

for any π ∈ Y1. Since Rα and Rβ have the (A1, . . . , At)-property, a ∈ Ak and b ∈ Am, we
have

n∑
i=1

mi,π(i) 6=
n∑
i=1

mi,π′(i).
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Therefore,
∑n

i=1mi,π(i) 6= 0 or
∑n

i=1mi,π′(i) 6= 0 for any π ∈ Y1. Using the equality

|Y1| = |Y2| = (n− h− 2)!,

we obtain
gM(Y1 ∪ Y2) > (n− h− 2)!.

Lemma 11. Let M be a real n × n matrix, α, β ∈ {1, . . . , n} and α 6= β. Suppose Rα

and Rβ have the (A1, . . . , At)-property. Then

gM(n) >

( ∑
16k<m6t

|Ak| · |Am|

)
· (n− 2)!.

Proof. Let k,m ∈ {1, . . . , t} and k < m. Let us consider arbitrary a ∈ Ak and b ∈ Am.
Lemma 10 implies that gM(Sα,βa,b ∪ S

α,β
b,a ) > (n− 2)!. Denote

X =
⋃

16k<m6t
a∈Ak,b∈Am

(
Sα,βa,b ∪ S

α,β
b,a

)
.

Then we have

gM(X) =
∑

16k<m6t
a∈Ak,b∈Am

gM(Sα,βa,b ∪ S
α,β
b,a ) >

( ∑
16k<m6t

|Ak| · |Am|

)
· (n− 2)!.

Thus, we obtain

gM(n) > gM(X) >

( ∑
16k<m6t

|Ak| · |Am|

)
· (n− 2)!.

Lemma 12. Let n = n1 + . . . + nt, where ni ∈ N for any i ∈ {1, . . . , t}, n1 > . . . > nt,
n > 7 and t > 3. Then either ∑

16k<m6t

nknm > 2(n− 1)

or

t = 3, n1 = n− 2 and n2 = n3 = 1.

Proof. Denote

S =
∑

16k<m6t

nknm.

We consider three cases.
In the first case we suppose that 3 6 n1 6 n− 3. Then we have

S > n1(n2 + . . .+ nt) + n2n3 > 3(n− 3) + 1 > 2(n− 1).
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In the second case we suppose that n1 > n−2. Since t > 3, it is possible only if t = 3,
n1 = n− 2 and n2 = n3 = 1.

In the third case we suppose that n1 6 2. Let i = |{1 6 k 6 t | nk = 2}|.
If i > 2, then n1 = n2 = 2 and

S > n1(n2 + . . .+ nt) + n2(n3 + . . .+ nt) = 4n− 12 > 2(n− 1).

If n− i > 3, then nt = nt−1 = nt−2 = 1 and

S > nt(n1 + . . .+nt−1) +nt−1(n1 + . . .+nt−2) +nt−2(n1 + . . .+nt−3) = 3n− 6 > 2(n− 1).

Since n > 7, i > 2 or n− i > 3 and we obtain the case considered above.

Let M = (mi,j) be a real n × n matrix and α ∈ {1, . . . , n}. Let x, y ∈ R and
r1, r2, s ∈ {2, . . . , n}, where x, y 6= 0 and r1 6= r2. We say that Rα is the (x, r1, r2)-row if
mα,r1 = x, mα,r2 = −x and mα,j = 0 for any j ∈ {1, . . . , n} \ {r1, r2}. We say that Rα is
the (y, s)-row if mα,s = (n− 2)y, mα,1 = 0 and mα,j = −y for any j ∈ {1, . . . , n} \ {1, s}.

Example 13. Let

M =


0 0 0 0
0 1 0 −1
0 0 0 0
0 −2 4 −2

 .

Then R2 is the (1, 2, 4)-row and R4 is the (2, 3)-row.

Lemma 14. LetM be a special n×n matrix, gM(n) 6 2(n−1)!, n > 7 and α ∈ {1, . . . , n}.
Suppose Rα is a non-zero row. Then Rα is the (x, r1, r2)-row or the (y, s)-row.

Proof. Suppose that Rα consists of the distinct elements z1, . . . , zt each of them zk, where
1 6 k 6 t, occurs nk times in Rα. Without loss of generality, we assume that n1 > . . . >
nt. If t 6 2, then by the definition of special matrix we obtain that all elements of Rα are
zeros. So, we can assume that t > 3.

For k ∈ {1, . . . , t} denote

Ak = {j ∈ {1, . . . , n} | mα,j = zk}.

We note that |Ak| = nk for any k ∈ {1, . . . , t}. Since M is special, all elements of R1 are
zeros. Hence R1 and Rα have (A1, . . . , At)-property. Lemma 11 implies that

gM(n) >

( ∑
16k<m6t

nknm

)
· (n− 2)!.

On the other hand, we have gM(n) 6 2(n− 1)!. So∑
16k<m6t

nknm 6 2(n− 1).

Recall that in the beginning of the proof we assumed t > 3. Then by Lemma 12 we obtain
that t = 3, n1 = n− 2 and n2 = n3 = 1. Therefore, by the definition of special matrix we
obtain that Rα is the (x, r1, r2)-row or the (y, s)-row.
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Lemma 15. Let M be a special n × n matrix and gM(n) 6 2(n − 1)!, where n > 8.
Suppose α, β ∈ {1, . . . , n}, α 6= β and Rα 6= Rβ. Then there exists a partition (A,B) of
{1, . . . , n} such that Rα and Rβ have the (A,B)-property and |A| = 2.

Proof. Firstly, we prove that Rα and Rβ have the (A,B)-property, where |A| ∈ {2, 3, 4}.
For a set X ⊆ {1, . . . , n} denote X = {1, . . . , n} \X. By Lemma 14 we have four cases
for Rα and Rβ.

Case 1. Suppose Rα or Rβ is a zero row. Without loss of generality, we assume that
Rα is a zero row. Let us consider two subcases.

1.1. Rβ is the (x, r1, r2)-row. Let A = {r1, r2} and B = A. Then Rα and Rβ have the
(A,B)-property and |A| = 2.

1.2. Rβ is the (y, s)-row. Let A = {1, s} and B = A. Then Rα and Rβ have the
(A,B)-property and |A| = 2.

Case 2. Suppose Rα is the (x1, r1, r2)-row and Rβ is the (x2, r3, r4)-row. Let us
consider four subcases depending on |{r1, r2} ∩ {r3, r4}|.

2.1. {r1, r2}∩ {r3, r4} = ∅. Let A = {r1, r2, r3, r4} and B = A. Then Rα and Rβ have
the (A,B)-property and |A| = 4.

2.2. |{r1, r2} ∩ {r3, r4}| = 1 and x1 6= x2. Without loss of generality, we assume that
r1 = r3. Let A = {r1, r2, r4} and B = A. Then Rα and Rβ have the (A,B)-property and
|A| = 3.

2.3. |{r1, r2} ∩ {r3, r4}| = 1 and x1 = x2. Without loss of generality, we assume that
r1 = r3. Let A = {r2, r4} and B = A. Then Rα and Rβ have the (A,B)-property and
|A| = 2.

2.4. |{r1, r2} ∩ {r3, r4}| = 2. Without loss of generality, we assume that r1 = r3 and
r2 = r4. Since Rα 6= Rβ, we have x1 6= x2. Let A = {r1, r2} and B = A. Then Rα and Rβ

have the (A,B)-property and |A| = 2.
Case 3. Suppose Rα is the (y1, s1)-row and Rβ is the (y2, s2)-row. Let us consider

three subcases.
3.1. s1 6= s2 and y1 6= y2. Let A = {1, s1, s2} and B = A. Then Rα and Rβ have the

(A,B)-property and |A| = 3.
3.2. s1 6= s2 and y1 = y2. Let A = {s1, s2} and B = A. Then Rα and Rβ have the

(A,B)-property and |A| = 2.
3.3. s1 = s2. Since Rα 6= Rβ, we have y1 6= y2. Let A = {1, s1} and B = A. Then Rα

and Rβ have the (A,B)-property and |A| = 2.
Case 4. Suppose Rα is the (x, r1, r2)-row and Rβ is the (y, s)-row (the case when Rα

is the (y, s)-row and Rβ is the (x, r1, r2)-row is similar). Let us consider three subcases.
4.1. s 6∈ {r1, r2}. Let A = {1, r1, r2, s} and B = A. Then Rα and Rβ have the

(A,B)-property and |A| = 4.
4.2. s ∈ {r1, r2} and x 6= (n− 1)y. Without loss of generality, we assume that s = r1.

Let A = {1, r1, r2} and B = A. Then Rα and Rβ have the (A,B)-property and |A| = 3.
4.3. s ∈ {r1, r2} and x = (n− 1)y. Without loss of generality, we assume that s = r1.

Let A = {1, r2} and B = A. Then Rα and Rβ have the (A,B)-property and |A| = 2.
Thus, we prove that Rα and Rβ have the (A,B)-property, where |A| ∈ {2, 3, 4}. Hence

by Lemma 11 we obtain that gM(n) > |A| · |B| · (n − 2)!. On the other hand, we have
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gM(n) 6 2(n − 1)!. Therefore |A| · |B| 6 2(n − 1). So, |A| = 2 and the cases when
|A| ∈ {3, 4} do not hold. The lemma is proved.

Let M be an n×n matrix and θ ∈ {1, . . . , n}. We say that M is θ-uniform if Rα = Rβ

for any α, β ∈ {1, . . . , n} \ θ.

Lemma 16. Let M be a special n × n matrix and gM(n) 6 2(n − 1)!, where n > 8 or
n = 3. Then M is θ-uniform for some θ ∈ {1, . . . , n}.

Proof. Firstly, let us consider the case n = 3. Since M is special, any non-zero row of
M is the (x, 2, 3)-row. Hence either M is θ-uniform for some θ ∈ {1, 2, 3} or R2 and R3

are (x1, 2, 3)-row and (x2, 2, 3)-row, where x1 6= x2. In the last case we have gM(n) = 6
and we obtain a contradiction with gM(n) 6 2(n− 1)!. In what follows, in this lemma we
assume that n > 8.

Suppose that M is not θ-uniform for any θ ∈ {1, . . . , n}. Then there exist four rows
Rα, Rβ, Rγ and Rδ such that Rα 6= Rβ and Rγ 6= Rδ.

Since Rα 6= Rβ, by Lemma 15 we obtain that Rα and Rβ have (A,B)-property, where

|A| = 2. Let a ∈ A and b ∈ B. Lemma 10 implies that gM(Sα,βa,b ∪S
α,β
b,a ) > (n−2)!. Denote

X1 =
⋃

a∈A,b∈B

(Sα,βa,b ∪ S
α,β
b,a ).

Then we have

gM(X1) =
∑

a∈A,b∈B

gM(Sα,βa,b ∪ S
α,β
b,a ) > |A| · |B| · (n− 2)! = 2(n− 2)(n− 2)! (3)

Since Rγ 6= Rδ, by Lemma 15 we obtain that Rγ and Rδ have (C,D)-property, where
|C| = 2. Let c ∈ C and d ∈ D. Let us consider arbitrary b′, b′′ ∈ B \ {c, d}, where b′ 6= b′′.
Lemma 10 implies that

gM

(
Sα,β,γ,δb′,b′′,c,d ∪ S

α,β,γ,δ
b′,b′′,d,c

)
> (n− 4)!.

Denote
X2 =

⋃
c∈C,d∈D

b′,b′′∈B\{c,d},b′ 6=b′′

(
Sα,β,γ,δb′,b′′,c,d ∪ S

α,β,γ,δ
b′,b′′,d,c

)
.

Then we have

gM(X2) =
∑

c∈C,d∈D
b′,b′′∈B\{c,d},b′ 6=b′′

gM

(
Sα,β,γ,δb′,b′′,c,d ∪ S

α,β,γ,δ
b′,b′′,d,c

)
>

> |C| · |D| · (|B| − 2) · (|B| − 3) · (n− 4)! =

= 2(n− 2)(n− 4)(n− 5)(n− 4)!.

(4)

Note that X1 ∩X2 = ∅. Therefore, gM(X1 ∪X2) = gM(X1) + gM(X2). Using (3) and
(4), we obtain that gM(X1 ∪X2) > 2(n − 1)!. Thus, gM(n) > gM(X1 ∪X2) > 2(n − 1)!
and we obtain a contradiction with gM(n) 6 2(n− 1)!.
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Let x ∈ R, x 6= 0 and p1, p2 ∈ {2, . . . , n}, p1 6= p2. We say that an n × n matrix
M = (mi,j) is the (x, p1, p2)-matrix if

mi,j =


x, if j = p1 and i > 1;

−x, if j = p2 and i > 1;

0, otherwise.

Example 17. The matrix

M =


0 0 0 0
0 3 0 −3
0 3 0 −3
0 3 0 −3


is the (3, 2, 4)-matrix.

We say that an n×n matrix M belongs to the setM1(n) if M is the (x, p1, p2)-matrix
for some x ∈ R, x 6= 0 and p1, p2 ∈ {2, . . . , n}, p1 6= p2.

Let x ∈ R, x 6= 0 and q1, q2, τ ∈ {2, . . . , n}, q1 6= q2. We say that an n× n matrix M
is the (x, q1, q2, τ)-matrix if

mi,j =


x, if i = τ and j = q1;

−x, if i = τ and j = q2;

0, otherwise.

Example 18. The matrix

M =


0 0 0 0
0 0 0 0
0 5 0 −5
0 0 0 0


is the (5, 2, 4, 3)-matrix.

We say that an n×n matrix M belongs to the setM2(n) if M is the (x, q1, q2, τ)-matrix
for some x ∈ R, x 6= 0 and q1, q2, τ ∈ {2, . . . , n}, q1 6= q2.

Now we prove the main theorem of this section.

Theorem 19. Let M be a special n × n matrix, where n > 8 or n = 3. Then gM(n) >
2(n− 1)!. Moreover, gM(n) = 2(n− 1)! if and only if M ∈M1(n) or M ∈M2(n).

Proof. One can verify that if M ∈M1(n) or M ∈M2(n), then gM(n) = 2(n− 1)!.
Suppose that gM(n) 6 2(n − 1)!. Let us prove that M ∈ M1(n) or M ∈ M2(n).

Lemma 16 implies that M is θ-uniform for some θ ∈ {1, . . . , n}. We consider two cases.
Case 1. Suppose θ = 1. Then R2 = R3 = . . . = Rn. By Lemma 14, R2 is the

(x, r1, r2)-row or the (y, s)-row. If R2 is the (x, r1, r2)-row, then M is the (x, r1, r2)-matrix.
So, in this subcase M ∈ M1(n). If R2 is the (y, s)-row, then gM(n) = (n − 1) · (n − 1)!
and we obtain a contradiction with gM(n) 6 2(n− 1)!.
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Case 2. Suppose θ > 1. By Lemma 14, Rθ is the (x, r1, r2)-row or the (y, s)-row. If Rθ

is the (x, r1, r2)-row, then M is the (x, r1, r2, θ)-matrix. So, in this subcase M ∈ M2(n).
If Rθ is the (y, s)-row, then gM(n) = (n− 1) · (n− 1)! and we obtain a contradiction with
gM(n) 6 2(n− 1)!.

5 Main Theorem

In this section we prove the main theorem of this paper.

Theorem 20. Let f be an (n − 2)-eigenfunction of Sn, where n > 8 or n = 3. Then
|Supp(f)| > 2(n− 1)!. Moreover, |Supp(f)| = 2(n− 1)! if and only if f = c · f̃ , where c
is a real non-zero constant and f̃ ∈ F .

Proof. Lemma 7 implies that |Supp(f)| = gM(f)(n). We note that M(f) is special. Then
by Theorem 19 we obtain that gM(f)(n) > 2(n − 1)!. Therefore |Supp(f)| > 2(n − 1)!.
Moreover, gM(f)(n) = 2(n − 1)! if and only if M(f) ∈ M1(n) or M(f) ∈ M2(n). We
consider two cases.

Suppose that M(f) ∈ M1(n). Then M(f) is the (x, p1, p2)-matrix. Using Lemma 5,
we have

f(π) =


x, if π(p2) = 1;

−x, if π(p1) = 1;

0, otherwise.

So, in this case f = x · fp2,p11 .
Suppose that M(f) ∈ M2(n). Then M(f) is the (x, q1, q2, τ)-matrix. Using Lemma

5, we have

f(π) =


x, if π(q1) = τ ;

−x, if π(q2) = τ ;

0, otherwise.

So, in this case f = x · f q1,q2τ .

6 Correspondence between the extremal (n− 2)-eigenfunctions
and completely regular codes

Lemma 21. Let α ∈ {2, . . . , n}, a ∈ {1, . . . , n} and n > 3. Then the set Sαa is a
completely regular code of covering radius 2 in Sn.

Proof. Firstly, we note that (Sαa )(1) = S1
a,

(Sαa )(2) =
⋃

β∈{1,...,n}\{1,α}

Sβa
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and (Sαa )(3) = ∅. On the other hand, the partition ((Sαa )(0), (Sαa )(1), (Sαa )(2)) has the quo-
tient matrix n− 2 1 0

1 0 n− 2
0 1 n− 2

 .

So, Sαa is a completely regular code of covering radius 2 in Sn.

For a set A ⊆ Symn we define the characteristic function χA of A in Symn as follows:

χA(π) =

{
1, if π ∈ A;

0, otherwise.

Using Theorem 20 and the definition of f v,wu , we immediately obtain the following
result.

Lemma 22. Let f be an (n − 2)-eigenfunction of Sn and |Supp(f)| = 2(n − 1)!, where
n > 8 or n = 3. Then

f = c · (χSv
u
− χSw

u
),

where c is a real non-zero constant, u ∈ {1, . . . , n}, v, w ∈ {2, . . . , n} and v 6= w.

Thus, Lemma 21 and Lemma 22 imply that for n > 8 and n = 3 an arbitrary (n− 2)-
eigenfunction of Sn with the minimum cardinality of the support is the difference of the
characteristic functions of two completely regular codes of covering radius 2. It is very
interesting that there is an analogue of this fact for the Hamming graph H(n, q) (see [18],
Theorem 3). Namely, an arbitrary eigenfunction of H(n, q) corresponding to the second
largest eigenvalue with the minimum cardinality of the support is the difference of the
characteristic functions of two completely regular codes of covering radius 1.

7 Concluding remarks

The initial problem of finding (n− 2)-eigenfunctions of Sn with the minimum size of the
support is formulated for arbitrary real-valued functions from corresponding eigenspace.
Surprisingly, Theorem 20 implies that such functions take only three distinct values. It
is interesting that the same fact holds for the Doob graph, for the Hamming graph and
for the Johnson graph (see [3, 20, 22]). But, in general case it is not true. For example,
in the Petersen and Desargues graphs there are (−2)-eigenfunctions with the minimum
sizes of the supports that take five distinct values (see [16], Figure 3 and 9).

We note that the restrictions for n in Theorem 20 (n > 8 or n = 3) arise from the
proofs of Lemmas 12, 15 and 16.
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Corrigendum – Added November 19, 2020

The mention of SB RAS N I.5.1, project No.0314-2019-0016 on page 1 was added in
error.
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