3-uniform hypergraphs without a cycle of length five

Beka Ergemlidze
Department of Mathematics and Statistics
University of South Florida
Tampa, Florida, U.S.A.
beka.ergemlidze@gmail.com

Ervin Györi
Alfréd Rényi Institute of Mathematics
Budapest, Hungary
gyori.ervin@renyi.mta.hu

Abhishek Methuku
School of Mathematics
University of Birmingham
Birmingham, U.K.
abhishekmethuku@gmail.com

Submitted: Jun 19, 2019; Accepted: Apr 15, 2020; Published: May 1, 2020
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In this paper we show that the maximum number of hyperedges in a 3-uniform hypergraph on \(n \) vertices without a (Berge) cycle of length five is less than \((0.254 + o(1))n^{3/2}\), improving an estimate of Bollobás and Győri.

We obtain this result by showing that not many 3-paths can start from certain subgraphs of the shadow.

Mathematics Subject Classifications: 05C65, 05D99

1 Introduction

A hypergraph \(H = (V,E) \) is a family \(E \) of distinct subsets of a finite set \(V \). The members of \(E \) are called hyperedges and the elements of \(V \) are called vertices. A hypergraph is called 3-uniform if each member of \(E \) has size 3. A hypergraph \(H = (V,E) \) is called linear if every two hyperedges have at most one vertex in common.

A Berge cycle of length \(k \geq 2 \), denoted Berge-\(C_k \), is an alternating sequence of distinct vertices and distinct edges of the form \(v_1, h_1, v_2, h_2, \ldots, v_k, h_k \) where \(v_i, v_{i+1} \in h_i \) for each \(i \in \{1, 2, \ldots, k-1\} \) and \(v_k, v_1 \in h_k \). (Note that if a hypergraph does not contain a Berge-\(C_2 \), then it is linear.) This definition of a hypergraph cycle is the classical definition due to Berge. More generally, if \(F = (V(F), E(F)) \) is a graph and \(Q = (V(Q), E(Q)) \) is a hypergraph, then we say \(Q \) is Berge-\(F \) if there is a bijection \(\phi : E(F) \rightarrow E(Q) \) such that
$e \subseteq \phi(e)$ for all $e \in E(F)$. In other words, given a graph F we can obtain a Berge-F by replacing each edge of F with a hyperedge that contains it.

Given a family of graphs \mathcal{F}, we say that a hypergraph \mathcal{H} is Berge-\mathcal{F}-free if for every $F \in \mathcal{F}$, the hypergraph \mathcal{H} does not contain a Berge-F as a subhypergraph. The maximum possible number of hyperedges in a Berge-\mathcal{F}-free 3-uniform hypergraph on n vertices is the Turán number of Berge-\mathcal{F}, and is denoted by $ex_3(n, \mathcal{F})$. When $\mathcal{F} = \{F\}$ then we simply write $ex_3(n, F)$ instead of $ex_3(n, \{F\})$.

Determining $ex_3(n, \{C_2, C_3\})$ is basically equivalent to the famous $(6, 3)$-problem. This was settled by Ruzsa and Szemerédi in their classical paper [23], showing that $n^{2 - \frac{1}{\sqrt{3}}} < ex_3(n, \{C_2, C_3\}) = o(n^2)$ for some constant $c > 0$. An important Turán-type extremal result for Berge cycles is due to Lazebnik and Verstraëte [21], who studied the maximum number of hyperedges in an r-uniform hypergraph containing no Berge cycle of length less than five (i.e., girth five). They showed the following.

Theorem 1 (Lazebnik, Verstraëte [21]).

$$ex_3(n, \{C_2, C_3, C_4\}) = \frac{1}{6} n^{3/2} + o(n^{3/2}).$$

The systematic study of the Turán number of Berge cycles started with the study of Berge triangles by Győri [15], and continued with the study of Berge five cycles by Bollobás and Győri [1] who showed the following.

Theorem 2 (Bollobás, Győri [1]).

$$(1 + o(1)) \frac{n^{3/2}}{3\sqrt{3}} \leq ex_3(n, C_5) \leq \sqrt{2} n^{3/2} + 4.5n.$$

The following example of Bollobás and Győri proves the lower bound in Theorem 2.

Bollobás-Győri Example. Take a C_4-free bipartite graph G_0 with $n/3$ vertices in each part and $(1 + o(1))(n/3)^{3/2}$ edges. In one part, replace each vertex u of G_0 by a pair of two new vertices u_1 and u_2, and add the triple u_1u_2v for each edge uv of G_0. It is easy to check that the resulting hypergraph H does not contain a Berge cycle of length 5. Moreover, the number of hyperedges in H is the same as the number of edges in G_0.

In this paper, we improve Theorem 2 as follows.

Theorem 3.

$$ex_3(n, C_5) < (1 + o(1)) 0.254n^{3/2}.$$
Ergemlidze, Győri and Methuku [3] considered the analogous question for linear hypergraphs and proved that \(\text{ex}_3(n, \{C_2, C_5\}) = n^{3/2}/3\sqrt{3} + o(n^{3/2}) \). Surprisingly, even though their lower bound is the same as the lower bound in Theorem 2, the linear hypergraph that they constructed in [3] is very different from the hypergraph used in the Bollobás-Győri example discussed above – the latter is far from being linear. In [3], the authors also strengthened Theorem 1 by showing that \(\text{ex}_3(n, \{C_2, C_3, C_4\}) \sim \text{ex}_3(n, \{C_2, C_4\}) \).

Recently, \(\text{ex}_3(n, C_4) \) was studied in [5]. See [6] for results on the maximum number of hyperedges in an \(r \)-uniform hypergraph of girth six.

Győri and Lemons [16, 17] generalized Theorem 2 to Berge cycles of any given length and proved bounds on \(\text{ex}_r(n, C_{2k+1}) \) and \(\text{ex}_r(n, C_{2k}) \). These bounds were improved by Füredi and Özkahya [9], Jiang and Ma [19], Gerbner, Methuku and Vizer [11]. Recently Füredi, Kostochka and Luo [7] started the study of the maximum size of an \(n \)-vertex \(r \)-uniform hypergraph without any Berge cycle of length at least \(k \). This study has been continued in [8, 18, 20, 4].

General results for Berge-\(F \)-free hypergraphs have been obtained in [12, 13, 10] and the Turán numbers of Berge-\(K_{2,t} \) and Berge cliques, among others, were studied in [24, 22, 11, 14, 10].

Notation

We introduce some important notations and definitions used throughout the paper.

- Length of a path is the number of edges in the path. We usually denote a path \(v_0, v_1, \ldots, v_k \), simply as \(v_0v_1 \ldots v_k \).
- For convenience, an edge \(\{a, b\} \) of a graph or a pair of vertices \(a, b \) is referred to as \(ab \). A hyperedge \(\{a, b, c\} \) is written simply as \(abc \).
- For a hypergraph \(H \) (or a graph \(G \)), for convenience, we sometimes use \(H \) (or \(G \)) to denote the edge set of the hypergraph \(H \) (or \(G \) respectively). Thus the number of edges in \(H \) is \(|H| \).
- Given a graph \(G \) and a subset of its vertices \(S \), let the subgraph of \(G \) induced by \(S \) be denoted by \(G[S] \).
- For a hypergraph \(H \), let \(\partial H = \{ab \mid ab \subset e \in E(H)\} \) denote its 2-shadow graph.
- For a hypergraph \(H \), the neighborhood of \(v \) in \(H \) is defined as
 \[
 N(v) = \{x \in V(H) \setminus \{v\} \mid v, x \in h \text{ for some } h \in E(H)\}.
 \]
- For a hypergraph \(H \) and a pair of vertices \(u, v \in V(H) \), let \(\text{codeg}(v, u) \) denote the number of hyperedges of \(H \) containing the pair \(\{u, v\} \).

2 Proof of Theorem 3

Let \(H \) be a hypergraph on \(n \) vertices without a Berge 5-cycle and let \(G = \partial H \) be the 2-shadow of \(H \). First we introduce some definitions.
Definition 4. A pair $xy \in \partial H$ is called thin if $\text{codeg}(xy) = 1$, otherwise it is called fat.

We say a hyperedge $abc \in H$ is thin if at least two of the pairs ab, bc, ac are thin.

Definition 5. We say a set of hyperedges (or a hypergraph) is tightly-connected if it can be obtained by starting with a hyperedge and adding hyperedges one by one, such that every added hyperedge intersects with one of the previous hyperedges in 2 vertices.

Definition 6. A block in H is a maximal set of tightly-connected hyperedges.

Definition 7. For a block B, a maximal subhypergraph of B without containing thin hyperedges is called the core of the block.

Let K_3^4 denote the complete 3-uniform hypergraph on 4 vertices. A crown of size k is a set of $k \geq 1$ hyperedges of the form $abc_1, abc_2, \ldots, abc_k$. Below we define 2 specific hypergraphs:

- Let F_1 be a hypergraph consisting of exactly 3 hyperedges on 4 vertices (i.e., K_3^4 minus an edge).
- For distinct vertices a, b, c, d and o, let F_2 be the hypergraph consisting of hyperedges oab, obc, ocd and oda.

Lemma 8. Let B be a block of H, and let B be a core of B. Then B is either $\emptyset, K_3^4, F_1, F_2$ or a crown of size k for some $k \geq 1$.

Proof. If $B = \emptyset$, we are done, so let us assume $B \neq \emptyset$. Since B is tightly-connected and it can be obtained by adding thin hyperedges to B, it is easy to see that B is also tightly-connected. Thus if B has at most two hyperedges, then it is a crown of size 1 or 2 and we are done. Therefore, in the rest of the proof we will assume that B contains at least 3 hyperedges.

If B contains at most 4 vertices then it is easy to see that B is either K_3^4 or F_1. So assume that B has at least 5 vertices (and at least 3 hyperedges). Since B is not a crown, there exists a tight path of length 3, say abc, bcd, cde. Since abc is in the core, one of the pairs ab or ac is fat, so there exists a hyperedge $h \neq abc$ containing either ab or ac. Similarly there exists a hyperedge $f \neq cde$ and f contains ed or ec. If $h = f$ then $B \supseteq F_2$. However, it is easy to see that F_2 cannot be extended to a larger tightly-connected set of hyperedges without creating a Berge 5-cycle, so in this case $B = F_2$. If $h \neq f$ then the hyperedges h, abc, bcd, cde, f create a Berge 5-cycle in H, a contradiction. This completes the proof of the lemma.

Observation 9. Let B be a block of H and let B be the core of B. If $B = \emptyset$ then the block B is a crown, and if $B \neq \emptyset$ then every fat pair of B is contained in ∂B.

Edge Decomposition of $G = \partial H$. We define a decomposition D of the edges of G into paths of length 2, triangles and K_4's such as follows:

Let B be a block of H and B be its core.
If $B = \emptyset$, then B is a crown-block $\{abc_1, abc_2, \ldots, abc_k\}$ (for some $k \geq 1$); we partition ∂B into the triangle abc_1 and paths ac_b where $2 \leq i \leq k$.

If $B \neq \emptyset$, then our plan is to first partition $\partial B \setminus \partial B$. If $abc \in B \setminus B$, then abc is a thin hyperedge, so it contains at least 2 thin pairs, say ab and bc. We claim that the pair ac is in ∂B. Indeed, ac has to be a fat pair, otherwise the block B consists of only one hyperedge abc, so $B = \emptyset$ contradicting the assumption. So by Observation 9, ac has to be a pair in ∂B. For every $abc \in B \setminus B$ such that ab and bc are thin pairs, add the 2-path abc to the edge decomposition D. This partitions all the edges in $\partial B \setminus \partial B$ into paths of length 2. So all we have left is to partition the edges of ∂B.

- If B is a crown $\{abc_1, abc_2, \ldots, abc_k\}$ for some $k \geq 1$, then we partition ∂B into the triangle abc_1 and paths ac_b where $2 \leq i \leq k$.
- If $B = F_1 = \{abc, bcd, acd\}$ then we partition ∂B into 2-paths abc, bcd and cad.
- If $B = F_2 = \{oab, obc, ocd, oda\}$ then we partition ∂B into 2-paths obo, bco, cdo and daa.
- Finally, if $B = K_4^3 = \{abc, abd, acd, bcd\}$ then we partition ∂B as K_4, i.e., we add $\partial B = K_4$ as an element of D.

Clearly, by Lemma 8 we have no other cases left. Thus all of the edges of the graph G are partitioned into paths of length 2, triangles and K_4's.

Observation 10.

(a) If D is a triangle that belongs to D, then there is a hyperedge $h \in H$ such that $D = \partial h$.

(b) If abc is a 2-path that belongs to D, then $abc \in H$. Moreover ac is a fat pair.

(c) If D is a K_4 that belongs to D, then there exists $F = K_4^3 \subseteq H$ such that $D = \partial F$.

Let $\alpha_1 |G|$ and $\alpha_2 |G|$ be the number of edges of G that are contained in triangles and 2-paths of the edge-decomposition D of G, respectively. So $(1 - \alpha_1 - \alpha_2) |G|$ edges of G belong to the K_4’s in D.

Claim 11. We have,

$$|H| = \left(\frac{\alpha_1}{3} + \frac{\alpha_2}{2} + \frac{2(1 - \alpha_1 - \alpha_2)}{3}\right) |G|.$$

Proof. Let B be a block with the core B. Recall that for each hyperedge $h \in B \setminus B$, we have added exactly one 2-path or a triangle to D.

Moreover, because of the way we partitioned ∂B, it is easy to check that in all of the cases except when $B = K_4^3$, the number of hyperedges of B is the same as the number of elements of D that ∂B is partitioned into; these elements being 2-paths and triangles. On the other hand, if $B = K_4^3$, then the number of hyperedges of B is 4 but we added only one element to D (namely K_4).
This shows that the number of hyperedges of \(H \) is equal to the number of elements of \(\mathcal{D} \) that are 2-paths or triangles plus the number of hyperedges which are in copies of \(K^3_3 \) in \(H \), i.e., 4 times the number of \(K^3_3 \)'s in \(\mathcal{D} \). Since \(\alpha_1 |G| \) edges of \(G \) are in 2-paths, the number of elements of \(\mathcal{D} \) that are 2-paths is \(\alpha_1 |G|/2 \). Similarly, the number of elements of \(\mathcal{D} \) that are triangles is \(\alpha_2 |G|/3 \), and the number of \(K^3_3 \)'s in \(\mathcal{D} \) is \((1 - \alpha_1 - \alpha_2) |G|/6 \). Combining this with the discussion above finishes the proof of the claim. \(\square \)

The link of a vertex \(v \) is the graph consisting of the edges \(\{uv | uvw \in E\} \) and is denoted by \(L_v \).

Claim 12. \(|L_v| \leq 2|N(v)| \).

Proof. First let us notice that there is no path of length 5 in \(L_v \). Indeed, otherwise, there exist vertices \(v_0, v_1, \ldots, v_5 \) such that \(vv_{i-1}v_i \in E \) for each \(1 \leq i \leq 5 \) which means there is a Berge 5-cycle in \(H \) formed by the hyperedges containing the pairs \(v_0v_1, v_1v_2, v_2v_3, v_3v_4, v_4v_5 \), a contradiction. So by the Erdős-Gallai theorem \(|L_v| \leq \frac{d-2}{2} |N(v)| \), proving the claim. \(\square \)

Lemma 13. Let \(v \in V(H) \) be an arbitrary vertex, then the number of edges in \(G[N(v)] \) is less than \(8|N(v)| \).

Proof. Let \(G_v \) be a subgraph of \(G \) on a vertex set \(N(v) \), such that \(xy \in G_v \) if and only if there exists a vertex \(z \neq v \) such that \(xyz \in E \). Then each edge of \(G[N(v)] \) belongs to either \(L_v \) or \(G_v \), so \(|G[N(v)]| \leq |L_v| + |G_v| \). Combining this with Claim 12, we get \(|G[N(v)]| \leq |G_v| + 2|N(v)| \). So it suffices to prove that \(|G_v| < 6|N(v)| \).

First we will prove that there is no path of length 12 in \(G_v \). Let us assume by contradiction that \(P = v_0, v_1, \ldots, v_5 \) is a path in \(G_v \). Since for each pair of vertices \(v_i, v_{i+1} \), there is a hyperedge \(v_iv_i+1 \) in \(H \) where \(x \neq v \), we can conclude that there is a subsequence \(u_0, u_1, \ldots, u_6 \) of \(v_0, v_1, \ldots, v_{12} \) and a sequence of distinct hyperedges \(h_1, h_2, \ldots, h_6 \) such that \(u_{i-1}u_i \subset h_i \) and \(v \notin h_i \) for each \(1 \leq i \leq 6 \). Since \(u_0, u_3, u_6 \in N(v) \) there exist hyperedges \(f_1, f_2, f_3 \in H \) such that \(vu_0 \subset f_1, vu_3 \subset f_2 \) and \(uu_6 \subset f_3 \). Clearly, either \(f_1 \neq f_2 \) or \(f_2 \neq f_3 \). In the first case the hyperedges \(f_1, h_1, h_2, h_3, f_2 \), and in the second case the hyperedges \(f_2, h_4, h_5, h_6, f_3 \) form a Berge 5-cycle in \(H \), a contradiction.

Therefore, there is no path of length 12 in \(G_v \), so by the Erdős-Gallai theorem, the number of edges in \(G_v \) is at most \(\frac{12-1}{2} |N(v)| < 6|N(v)| \), as required. \(\square \)

2.1 Relating the hypergraph degree to the degree in the shadow

For a vertex \(v \in V(H) = V(G) \), let \(d(v) \) denote the degree of \(v \) in \(H \) and let \(d_G(v) \) denote the degree of \(v \) in \(G \) (i.e., \(d_G(v) = \) the degree in the shadow).

Clearly \(d_G(v) \leq 2d(v) \). Moreover, \(d(v) = |L_v| \) and \(d_G(v) = |N(v)| \). So by Claim 12, we have

\[
\frac{d_G(v)}{2} \leq d(v) \leq 2d_G(v).
\] (1)

Let \(\overline{d} \) and \(\overline{d}_G \) be the average degrees of \(H \) and \(G \) respectively.

Suppose there is a vertex \(v \) of \(H \), such that \(d(v) < \overline{d}/3 \). Then we may delete \(v \) and all the edges incident to \(v \) from \(H \) to obtain a graph \(H' \) whose average degree is more than
Lemma 15. For any vertex \(v \in V(G) \) and a set \(M \subseteq N(v) \), let \(\mathcal{P} \) be the set of the good 2-paths \(vxy \) such that \(x \in M \). Let \(M' = \{ y \mid vxy \in \mathcal{P} \} \) then \(|\mathcal{P}| < 2|M'| + 48d_G(v)\).

Proof. Let \(B_\mathcal{P} = \{xy \mid x \in M, y \in M', xy \in G\} \) be a bipartite graph, clearly \(|B_\mathcal{P}| = |\mathcal{P}|\). Let \(E = \{xyz \in H \mid x, y \in N(v), \text{codeg}(x, y) \leq 2\} \). By Lemma 13, \(|E| \leq 2 \cdot 8|N(v)|\) so the number of edges of 2-shadow of \(E \) is \(|\partial E| \leq 48|N(v)|\). Let \(B = \{xy \in B_\mathcal{P} \mid \exists z \in V(H), xyz \in H \setminus E\} \). Then clearly,

\[
|B| \geq |B_\mathcal{P}|-|\partial E| \geq |\mathcal{P}|-48|N(v)| = |\mathcal{P}|-48d_G(v). \tag{2}
\]

Let \(d_B(x) \) denote the degree of a vertex \(x \) in the graph \(B \).

Claim 16. For every \(y \in M' \) such that \(d_B(y) = k \geq 3 \), there exists a set of \(k - 2 \) vertices \(S_y \subseteq M' \) such that \(\forall w \in S_y \), we have \(d_B(w) = 1 \). Moreover, \(S_y \cap S_z = \emptyset \) for any \(y \neq z \in M' \) (with \(d_B(y), d_B(z) \geq 3 \)).

Proof. Let \(yx_1, yx_2, \ldots, yx_k \in B \) be the edges of \(B \) incident to \(y \). For each \(1 \leq j \leq k \) let \(f_j \in H \) be a hyperedge such that \(vx_j \in f_j \). For each \(yx_i \in B \) clearly there is a hyperedge \(yx_iw_i \in H \setminus E \).

We claim that for each \(1 \leq i \leq k \), \(w_i \in M' \). It is easy to see that \(w_i \in N(v) \) or \(w_i \in M' \) (because \(vx_iw_i \) is a 2-path in \(G \)). Assume for a contradiction that \(w_i \in N(v) \), then since \(yx_iw_i \notin E \) we have, \(\text{codeg}(x_i, w_i) \geq 3 \). Let \(f \in H \) be a hyperedge such that \(vv_i \subset f \). Now take \(j \neq i \) such that \(x_j \neq w_i \). If \(f_j \neq f \) then since \(\text{codeg}(x_i, w_i) \geq 3 \) there exists a hyperedge \(h \supset x_iw_i \) such that \(h \neq f \) and \(h \neq x_iw_iy \), then the hyperedges \(f, f_h, x_iw_iy, yx_jw_j, f_j \) form a Berge 5-cycle. So \(f_j = f \), therefore \(f_j \neq f_i \). Similarly in this case, there exists a hyperedge \(h \supset x_iw_i \) such that \(h \neq f_i \) and \(h \neq x_iw_iy \), therefore the hyperedges \(f_i, f_h, x_iw_iy, yx_jw_j, f_j \) form a Berge 5-cycle, a contradiction. So we proved that \(w_i \in M' \) for each \(1 \leq i \leq k \).

Claim 17. For all but at most 2 of the \(w_i \)'s (where \(1 \leq i \leq k \)), we have \(d_B(w_i) = 1 \).

Proof. If \(d_B(w_i) = 1 \) for all \(1 \leq i \leq k \) then we are done, so we may assume that there is \(1 \leq i \leq k \) such that \(d_B(w_i) \neq 1 \).

For each \(1 \leq i \leq k \), \(w_i \in M' \) and \(x_iw_i \in \partial(H \setminus E) \) (because \(x_iw_iy \in H \setminus E \)), so it is clear that \(d_B(w_i) \geq 1 \). So \(d_B(w_i) > 1 \). Then there is a vertex \(x \in M \setminus \{x_i\} \) such that \(w_ix \in B \). Let \(f, h \in H \) be hyperedges with \(w_ix \in h \) and \(xv \in f \). If there are \(j, l \in \{1, 2, \ldots, k\} \setminus \{i\} \) such that \(x, x_j \) and \(x_l \) are all different from each other, then
clearly, either \(f \neq f_j \) or \(f \neq f_l \), so without loss of generality we may assume \(f \neq f_j \). Then the hyperedges \(f, h, w_i x_j y, y w_j x_i, f_j \) create a Berge cycle of length 5, a contradiction. So there are no \(j, l \in \{1, 2, \ldots, k\} \setminus \{i\} \) such that \(x, x_j \) and \(x_l \) are all different from each other. Clearly this is only possible when \(k < 4 \) and there is a \(j \in \{1, 2, 3\} \setminus \{i\} \) such that \(x = x_j \). Let \(l \in \{1, 2, 3\} \setminus \{i, j\} \). If \(f_j \neq f_l \) then the hyperedges \(f_j, h, w_i x_j y, y w_j x_i, f_l \) form a Berge 5-cycle. Therefore \(f_j = f_l \). So we proved that \(d_B(w_i) \neq 1 \) implies that \(k = 3 \) and for \(\{j, l\} = \{1, 2, 3\} \setminus \{i\} \), we have \(f_j = f_l \). So if \(d_B(w_i) \neq 1 \) and \(d_B(w_j) \neq 1 \) we have \(f_j = f_l \) and \(f_i = f_l \), which is impossible. So \(d_B(w_j) = 1 \). So we proved that if for any \(1 \leq i \leq k, \) \(d_B(w_i) \neq 1 \) then \(k = 3 \) and all but at most 2 of the vertices in \(\{w_1, w_2, w_3\} \) have degree 1 in the graph \(B \), as desired.

We claim that for any \(i \neq j \) where \(d_B(w_i) = d_B(w_j) = 1 \) we have \(w_i \neq w_j \). Indeed, if there exists \(i \neq j \) such that \(w_i = w_j \) then \(w_i x_j \) and \(w_i x_i \) are both adjacent to \(w_i \) in the graph \(B \) which contradicts to \(d_B(w_i) = 1 \). So using the above claim, we conclude that the set \(\{w_1, w_2, \ldots, w_k\} \) contains at least \(k - 2 \) distinct elements with each having degree one in the graph \(B \), so we can set \(S_y \) to be the set of these \(k - 2 \) elements. (Then of course \(\forall w_i \in S_y \) we have \(d_B(w_i) = 1 \).

Now we have to prove that for each \(z \neq y \) we have \(S_y \cap S_z = \emptyset \). Assume by contradiction that \(w_i \in S_z \cap S_y \) for some \(z \neq y \). That is, there is some hyperedge \(u w_i z \in H \setminus E \) where \(u \in M \), moreover \(u = x_i \) otherwise \(d_B(w_i) > 1 \). So we have a hyperedge \(x_i w_i z \in H \setminus E \) for some \(z \in M \setminus \{y\} \). Let \(j, l \in \{1, 2, \ldots, k\} \setminus \{i\} \) such that \(j \neq l \). Recall that \(x_j v \subset f_j \) and \(x_l v \subset f_l \). Clearly either \(f_j \neq f_l \) or \(f_l \neq f_i \) so without loss of generality we can assume \(f_j \neq f_l \). Then it is easy to see that the hyperedges \(f_j, x_j y, x_j y, x_j w_l z, x_j w_l x_i, f_i \) are all different and they create a Berge 5-cycle \((x_j y, y, x_j w_l z, x_j w_l x_i \because x_j \neq w_i) \).

For each \(x \in M' \) with \(d_B(x) = k \geq 3 \), let \(S_x \) be defined as in Claim 16. Then the average of the degrees of the vertices in \(S_y \cup \{x\} \) in \(B \) is \((k + |S_x|)/(k - 1) = (2k - 2)(k - 1) = 2 \). Since the sets \(S_x \cup x \) (with \(x \in M' \), \(d_B(x) \geq 3 \)) are disjoint, we can conclude that average degree of the set \(M' \) is at most \(2 \). Therefore \(2 |M'| \geq |B| \). So by (2) we have \(|M'| \geq |B| > |P| - 48d_G(V) \), which completes the proof of the lemma.

Claim 18. We may assume that the maximum degree in the graph \(G \) is less than \(160\sqrt{n} \) when \(n \) is large enough.

Proof. Let \(v \) be an arbitrary vertex with \(d_G(v) = C \bar{d} \) for some constant \(C > 0 \). Let \(P \) be the set of the good 2-paths starting from the vertex \(v \). Then applying Lemma 15 with \(M = N(v) \) and \(M' = \{y \mid vxy \in P\} \), we have \(|P| < 2 |M'| + 48d_G(v) < 2n + 48 \cdot C \bar{d} \). Since the minimum degree \(\delta(G) \) is at least \(\bar{d}/6 \), the number of (ordered) 2-paths starting from \(v \) is at least \(d(v) \cdot (\bar{d}/6 - 1) = C \bar{d} \cdot (\bar{d}/6 - 1) \). Notice that the number of (ordered) bad 2-paths starting at \(v \) is the number of 2-paths \(vxy \) such that \(x, y \in N(v) \). So by Lemma 13, this is at most \(2 \cdot 8 |N(v)| = 16C \bar{d} \), so the number of good 2-paths is at least \(C \bar{d} \cdot (\bar{d}/6 - 17) \). So \(|P| \geq C \bar{d} \cdot (\bar{d}/6 - 17) \). Thus we have

\[
C \bar{d} \cdot (\bar{d}/6 - 17) \leq |P| < 2n + 48C \bar{d}.
\]
So $C\bar{d}/6 - 65 < 2n$. Therefore, $6C(\bar{d}/6 - 65)^2 < 2n$, i.e., $\bar{d} < 6n/\sqrt{3C} + 390$, so $|H| = n\bar{d}/3 \leq 2n\sqrt{n/3C} + 130n$. If $C \geq 36$ we get that $|H| \leq \frac{2n^{3/2}}{\sqrt{3}} + 130n = \frac{n^{3/2}}{\sqrt{3}} + O(n)$, proving Theorem 3. So we may assume $C < 36$.

Theorem 2 implies that

$$|H| = n\bar{d}/3 \leq \sqrt{2}n^{3/2} + 4.5n,$$

so $\bar{d} \leq 3\sqrt{2}/\sqrt{n} + 13.5$. So combining this with the fact that $C < 36$, we have $d_G(v) = C\bar{d}/3 < 108\sqrt{2}/\sqrt{n} + 486 < 160\sqrt{n}$ for large enough n.

Combining Lemma 15 and Claim 18, we obtain the following.

Lemma 19. For any vertex $v \in V(G)$ and a set $M \subseteq N(v)$, let P be the set of good 2-paths vxy such that $x \in M$. Let $M' = \{y \mid vxy \in P\}$ then $|P| < 2|M'| + 7680\sqrt{n}$ when n is large enough.

Definition 20. A 3-path x_0, x_1, x_2, x_3 is called good if both 2-paths x_0, x_1, x_2 and x_1, x_2, x_3 are good 2-paths.

Claim 21. The number of (ordered) good 3-paths in G is at least $n\bar{d}_G^3 - C_0n^{3/2}\bar{d}_G$ for some constant $C_0 > 0$ (for large enough n).

Proof. First we will prove that the number of (ordered) 3-walks that are not good 3-paths is at most $5440n^{3/2}\bar{d}_G$.

For any vertex $x \in V(H)$ if a path yxz is a bad 2-path then zy is an edge of G, so the number of (ordered) bad 2-paths whose middle vertex is x, is at most 2 times the number of edges in $G[N(x)]$, which is less than $2 \cdot 8|N(x)| = 16d_G(x)$ by Lemma 13. The number of 2-walks which are not 2-paths and whose middle vertex is x is exactly $d_G(x)$. So the total number of (ordered) 2-walks that are not good 2-paths is at most $\sum_{x \in V(H)}17d_G(x) = 17n\bar{d}_G$.

Notice that, by definition, any (ordered) 3-walk that is not a good 3-path must contain a 2-walk that is not a good 2-path. Moreover, if yxz is a 2-walk that is not a good 2-path, then the number of 3-walks in G containing it is at most $d_G(x) + d_G(z) < 320\sqrt{n}$ (for large enough n) by Claim 18. Therefore, the total number of (ordered) 3-walks that are not good 3-paths is at most $17n\bar{d}_G \cdot 320\sqrt{n} = 5440n^{3/2}\bar{d}_G$.

By the Blakley-Roy inequality, the total number of (ordered) 3-walks in G is at least $n\bar{d}_G^3$. By the above discussion, all but at most $5440n^{3/2}\bar{d}_G$ of them are good 3-paths, so letting $C_0 = 5440$ proves the proof of the claim.

Claim 22. Let $\{a, b, c\}$ be the vertex set of a triangle that belongs to D. (By Observation 10 (a) $abc \in H$.) Then the number of good 3-paths whose first edge is ab, bc or ca is at most $8n + C_1\sqrt{n}$ for some constant C_1 and for large enough n.

Proof. For each $\{x, y\} \subset \{a, b, c\}$, let $S_{xy} = N(x) \cap N(y) \setminus \{a, b, c\}$. For each $x \in \{a, b, c\}$, let $S_x = N(x) \setminus (N(y) \cup N(z) \cup \{a, b, c\})$ where $\{y, z\} = \{a, b, c\} \setminus \{x\}$.
For each $x \in \{a, b, c\}$, let \mathcal{P}_x be the set of good 2-paths xuv where $u \in S_x$. Let $S'_x = \{v \mid xuv \in \mathcal{P}_x\}$. For each $\{x, y\} \subset \{a, b, c\}$, let \mathcal{P}_{xy} be the set of good 2-paths xuv and yuv where $u \in S_{xy}$. Let $S'_{xy} = \{v \mid xuv \in \mathcal{P}_{xy}\}$.

Let $\{x, y\} \subset \{a, b, c\}$ and $z = \{a, b, c\} \setminus \{x, y\}$. Notice that each 2-path $yuv \in \mathcal{P}_{xy}$ ($xuv \in \mathcal{P}_{xy}$), is contained in at most one good 3-path zuv (respectively zxu) whose first edge is in the triangle abc. Indeed, since $u \in S_{xy}$, $xyuv$ (respectively $yxuv$) is not a good 3-path. Therefore, the number of good 3-paths whose first edge is in the triangle abc, and whose third vertex is in S_{xy} is at most $|\mathcal{P}_{xy}|$. The number of paths in \mathcal{P}_{xy} that start with the vertex x is less than $2|S'_{xy}| + 7680\sqrt{n}$, by Lemma 19. Similarly, the number of paths in \mathcal{P}_{xy} that start with the vertex y is less than $2|S'_{xy}| + 7680\sqrt{n}$. Since every path in \mathcal{P}_{xy} starts with either x or y, we have $|\mathcal{P}_{xy}| < 4|S'_{xy}| + 15360\sqrt{n}$. Therefore, for any $\{x, y\} \subset \{a, b, c\}$, the number of good 3-paths whose first edge is in the triangle abc and whose third vertex is in S_{xy} is less than $4|S'_{xy}| + 15360\sqrt{n}$.

In total, the number of good 3-paths whose first edge is in the triangle abc and whose third vertex is in $S_{ab} \cup S_{bc} \cup S_{ac}$ is at most

$$4(|S'_{ab}| + |S'_{bc}| + |S'_{ac}|) + 46080\sqrt{n}. \quad (4)$$

Let $x \in \{a, b, c\}$ and $\{y, z\} = \{a, b, c\} \setminus \{x\}$. For any 2-path $xuv \in \mathcal{P}_x$ there are 2 good 3-paths with the first edge in the triangle abc, namely $yxuv$ and $zxuv$. So the total number of 3-paths whose first edge is in the triangle abc and whose third vertex is in $S_a \cup S_b \cup S_c$ is $2(|\mathcal{P}_a| + |\mathcal{P}_b| + |\mathcal{P}_c|)$, which is at most

$$4(|S'_{a}| + |S'_{b}| + |S'_{c}|) + 46080\sqrt{n}, \quad (5)$$

by Lemma 19.

Now we will prove that every vertex is in at most 2 of the sets $S'_a, S'_b, S'_c, S'_{ab}, S'_{bc}, S'_{ac}$. Let us assume by contradiction that a vertex $v \in V(G) \setminus \{a, b, c\}$ is in at least 3 of them. We claim that there do not exist 3 vertices $u_a \in N(a) \setminus \{b, c\}$, $u_b \in N(b) \setminus \{a, c\}$ and $u_c \in N(c) \setminus \{a, b\}$ such that xuv is a good 3-path for each $x \in \{a, b, c\}$. Indeed, otherwise, consider hyperedges h_a, h'_a containing the pairs au_a and a_v respectively (since au_a is a good 2-path, note that $h_a \neq h'_a$), and hyperedges $h_b, h'_b, h'_c, h_c, h'_c$ containing the pairs $bu_b, cu_c, u_c v$ respectively. Then either $h'_a \neq h'_b$ or $h'_b \neq h'_c$, say $h'_a \neq h'_b$ without loss of generality. Then the hyperedges $h_a, h'_a, h'_b, h'_c, abc$ create a Berge 5-cycle in H, a contradiction, proving that it is impossible to have 3 vertices $u_a \in N(a) \setminus \{b, c\}$, $u_b \in N(b) \setminus \{a, b\}$ and $u_c \in N(c) \setminus \{a, b\}$ with the above mentioned property. Without loss of generality let us assume that there is no vertex $u_a \in N(a) \setminus \{b, c\}$ such that $au_a v$ is a good 2-path – in other words, $v \notin S'_a \cup S'_{ab} \cup S'_{ac}$. However, since we assumed that v is contained in at least 3 of the sets $S'_a, S'_b, S'_c, S'_{ab}, S'_{bc}, S'_{ac}$, we can conclude that v is contained in all 3 of the sets S'_b, S'_c, S'_{bc}, i.e., there are vertices $u_b \in S_b, u_c \in S_c, u \in S_{bc}$ such that uvu_b, vu_c, vuv, vuc are good 2-paths. Using a similar argument as before, if $vu \in h$, $vu_b \in h_b$ and $vu_c \in h_c$, without loss of generality we can assume that $h \neq h_b$, so the hyperedges abc, h, h_b together with hyperedges containing uc and ub form a Berge 5-cycle in H, a contradiction.
So we proved that
\[2|S'_a \cup S'_b \cup S'_c \cup S'_{ab} \cup S'_{bc} \cup S'_{ac}| \geq |S'_a| + |S'_b| + |S'_c| + |S'_{ab}| + |S'_{bc}| + |S'_{ac}|\]

This together with (4) and (5), we get that the number of good 3-paths whose first edge is in the triangle abc is at most
\[8|S'_a \cup S'_b \cup S'_c \cup S'_{ab} \cup S'_{bc} \cup S'_{ac}| + 92160\sqrt{n} < 8n + C_1\sqrt{n}\]

for \(C_1 = 92160\) and large enough \(n\), finishing the proof of the claim. \(\square\)

Claim 23. Let \(P = abc\) be a 2-path and \(P \in D\). (By Observation 10 (b) \(abc \in H\).) Then the number of good 3-paths whose first edge is \(ab\) or \(bc\) is at most \(4n + C_2\sqrt{n}\) for some constant \(C_2 > 0\) and large enough \(n\).

Proof. First we bound the number of 3-paths whose first edge is \(ab\). Let \(S_{ab} = N(a) \cap N(b)\). Let \(S_a = N(a) \setminus (N(b) \cup \{b\})\) and \(S_b = N(b) \setminus (N(a) \cup \{a\})\). For each \(x \in \{a, b\}\), let \(P_x\) be the set of good 2-paths \(xu\) where \(u \in S_x\), and let \(S'_x = \{v \mid xv \in P_x\}\). The set of good 3-paths whose first edge is \(ab\) is \(P_a \cup P_b\), because the third vertex of a good 3-path starting with an edge \(ab\) can not belong to \(N(a) \cap N(b)\) by the definition of a good 3-path.

We claim that \(|S'_a \cap S'_b| \leq 160\sqrt{n}\). Let us assume by contradiction that \(v_0, v_1, \ldots, v_k \in S'_a \cap S'_b\) for \(k > 160\sqrt{n}\). For each vertex \(v_i\) where \(0 \leq i \leq k\), there are vertices \(a_i \in S_a\) and \(b_i \in S_b\) such that \(aa_i v_i, bb_i v_i\) are good 2-paths. For each \(0 \leq i \leq k\), the hyperedge \(a_i v_i b_i\) is in \(H\), otherwise we can find distinct hyperedges containing the pairs \(aa_i, a_i v_i, v_i b_i, b_i b\) and these hyperedges together with \(abc\), would form a Berge 5-cycle in \(H\), a contradiction. We claim that there are \(j, l \in \{0, 1, \ldots, k\}\) such that \(a_j \neq a_l\), otherwise there is a vertex \(x\) such that \(a_i = x\) for each \(0 \leq i < k\). Then \(xv_i \in G\) for each \(0 \leq i \leq k\), so we get that \(d_G(x) > k > 160\sqrt{n}\) which contradicts Claim 18.

So there are \(j, l \in \{0, 1, \ldots, k\}\) such that \(a_j \neq a_l\) and \(a_j v_j b_j, a_l v_l b_l \in H\). By observation 10 (b), there is a hyperedge \(h \neq abc\) such that \(ac \subset h\). Clearly either \(a_j \notin h\) or \(a_l \notin h\). Without loss of generality let \(a_j \notin h\), so there is a hyperedge \(h_a\) with \(aa_j \subset h_a \neq h\). Let \(h_a \supset b_b\), then the hyperedges \(abc, h, h_a, a_j v_j b_j, h_b\) form a Berge 5-cycle, a contradiction, proving that \(|S'_a \cap S'_b| \leq 160\sqrt{n}\).

Notice that \(|S'_a| + |S'_b| = |S'_a \cup S'_b| + |S'_a \cap S'_b| \leq n + 160\sqrt{n}\). So by Lemma 19, we have
\[|P_a| + |P_b| \leq 2(|S'_a| + |S'_b|) + 2 \cdot 7680\sqrt{n} \leq 2(n + 160\sqrt{n}) + 2 \cdot 7680\sqrt{n} = 2n + 15680\sqrt{n}\]

for large enough \(n\). So the number of good 3-paths whose first edge is \(ab\) is at most \(2n + 15680\sqrt{n}\). By the same argument, the number of good 3-paths whose first edge is \(bc\) is at most \(2n + 15680\sqrt{n}\). Their sum is at most \(4n + C_2\sqrt{n}\) for \(C_2 = 31360\) and large enough \(n\), as desired. \(\square\)

Claim 24. Let \(\{a, b, c, d\}\) be the vertex set of a \(K_4\) that belongs to \(D\). Let \(F = K_4^3\) be a hypergraph on the vertex set \(\{a, b, c, d\}\). (By Observation 10 (c) \(F \subseteq H\).) Then the number of good 3-paths whose first edge belongs to \(\partial F\) is at most \(6n + C_3\sqrt{n}\) for some constant \(C_3 > 0\) and large enough \(n\).
Proof. First, let us observe that there is no Berge path of length 2, 3 or 4 between distinct vertices \(x, y \in \{a, b, c, d\} \) in the hypergraph \(H \setminus F \), because otherwise this Berge path together with some edges of \(F \) will form a Berge 5-cycle in \(H \). This implies, that there is no path of length 3 or 4 between \(x \) and \(y \) in \(G \setminus \partial F \), because otherwise we would find a Berge path of length 2, 3 or 4 between \(x \) and \(y \) in \(H \setminus F \).

Let \(S = \{ v \in V(H) \setminus \{a, b, c, d\} \mid \exists (x, y) \subseteq \{a, b, c, d\}, v \in N(x) \cap N(y) \} \). For each \(x \in \{a, b, c, d\} \), let \(S_x = N(x) \setminus \{S \cup \{a, b, c, d\}\} \). Let \(\mathcal{P}_S \) be the set of good 2-paths \(xuv \) where \(x \in \{a, b, c, d\} \) and \(u \in S \). Let \(S' = \{ v \mid xuv \in \mathcal{P}_S \} \). For each \(x \in \{a, b, c, d\} \), let \(\mathcal{P}_x \) be the set of good 2-paths \(xuv \) where \(u \in S_x \), and let \(S_x' = \{ v \mid xuv \in \mathcal{P}_x \} \).

Let \(v \in S' \). By definition, there exists a pair of vertices \(\{x, y\} \subseteq \{a, b, c, d\} \) and a vertex \(u \), such that \(xuv \) and \(yuv \) are good 2-paths.

Suppose that \(zuv' \) is a 2-path different from \(xuv \) and \(yuv \), where \(z \in \{a, b, c, d\} \). If \(u' = u \) then \(z \notin \{x, y\} \) so there is a Berge 2-path between \(x \) and \(y \) or between \(x \) and \(z \) in \(H \setminus F \), which is impossible. So \(u \neq u' \). Either \(z \neq x \) or \(z \neq y \), without loss of generality let us assume that \(z \neq x \). Then \(zuvx \) is a path of length 4 in \(G \setminus \partial F \), a contradiction.

So for any \(v \in S' \) there are only 2 paths of \(\mathcal{P}_a \cup \mathcal{P}_b \cup \mathcal{P}_c \cup \mathcal{P}_d \cup \mathcal{P}_S \) that contain \(v \) as an end vertex – both of which are in \(\mathcal{P}_S \) – which means that \(v \notin S_a' \cup S_b' \cup S_c' \cup S_d' \), so \(S' \cap (S_a' \cup S_b' \cup S_c' \cup S_d') = \emptyset \). Moreover,

\[
|\mathcal{P}_S| \leq 2|S'|. \tag{6}
\]

We claim that \(S_a' \) and \(S_b' \) are disjoint. Indeed, otherwise, if \(v \in S_a' \cap S_b' \) there exists \(x \in S_a \) and \(y \in S_b \) such that \(vxa \) and \(vyb \) are paths in \(G \), so there is a 4-path \(axvyb \) between vertices of \(F \) in \(G \setminus \partial F \), a contradiction. Similarly we can prove that \(S_a', S_b', S_c', S_d' \) are pairwise disjoint. This shows that the sets \(S', S_a', S_b', S_c' \) and \(S_d' \) are pairwise disjoint. So we have

\[
|S' \cup S_a' \cup S_b' \cup S_c' \cup S_d'| = |S'| + |S_a'| + |S_b'| + |S_c'| + |S_d'|. \tag{7}
\]

By Lemma 19, we have \(|\mathcal{P}_a| + |\mathcal{P}_b| + |\mathcal{P}_c| + |\mathcal{P}_d| \leq 2(|S_a'| + |S_b'| + |S_c'| + |S_d'|) + 4 \cdot 7680 \sqrt{n}\). Combining this inequality with (6), we get

\[
|\mathcal{P}_S| + |\mathcal{P}_a| + |\mathcal{P}_b| + |\mathcal{P}_c| + |\mathcal{P}_d| \leq 2|S'| + 2(|S_a'| + |S_b'| + |S_c'| + |S_d'|) + 4 \cdot 7680 \sqrt{n}. \tag{8}
\]

Combining (7) with (8) we get

\[
|\mathcal{P}_S| + |\mathcal{P}_a| + |\mathcal{P}_b| + |\mathcal{P}_c| + |\mathcal{P}_d| \leq 2|S' \cup S_a' \cup S_b' \cup S_c' \cup S_d'| + 30720 \sqrt{n} < 2n + 30720 \sqrt{n}, \tag{9}
\]

for large enough \(n \).

Each 2-path in \(\mathcal{P}_S \cup \mathcal{P}_a \cup \mathcal{P}_b \cup \mathcal{P}_c \cup \mathcal{P}_d \) can be extended to at most three good 3-paths whose first edge is in \(\partial F \). (For example, \(awu \in \mathcal{P}_a \) can be extended to \(bawu, cawu \) and \(dauv \).) On the other hand, every good 3-path whose first edge is in \(\partial F \) must contain a 2-path of \(\mathcal{P}_a \cup \mathcal{P}_b \cup \mathcal{P}_c \cup \mathcal{P}_d \cup \mathcal{P}_S \) as a subpath. So the number of good 3-paths whose first edge is in \(\partial F \) is at most \(|\mathcal{P}_a \cup \mathcal{P}_b \cup \mathcal{P}_c \cup \mathcal{P}_d \cup \mathcal{P}_S| = 3(|\mathcal{P}_S| + |\mathcal{P}_a| + |\mathcal{P}_b| + |\mathcal{P}_c| + |\mathcal{P}_d|) \) which is at most \(6n + C_3 \sqrt{n} \) by (9), for \(C_3 = 92160 \) and large enough \(n \), proving the desired claim.

\[\square\]
2.3 Combining bounds on the number of 3-paths

Recall that $\alpha_1 |G|$, $\alpha_2 |G|$, $(1-\alpha_1-\alpha_2) |G|$ are the number of edges of G that are contained in triangles, 2-paths and K_4’s of the edge-decomposition D of G, respectively. Then the number of triangles, 2-paths and K_4’s in D is $\alpha_1 |G|/3$, $\alpha_2 |G|/2$ and $(1-\alpha_1-\alpha_2) |G|/6$ respectively. Therefore, using Claim 22, Claim 23 and Claim 24, the total number of (ordered) good 3-paths in G is at most

$$\frac{\alpha_1}{3} |G| (8n + C_1 \sqrt{n}) + \frac{\alpha_2}{2} |G| (4n + C_2 \sqrt{n}) + \frac{(1-\alpha_1-\alpha_2)}{6} |G| (6n + C_3 \sqrt{n}) \leq$$

$$\leq |G| n \left(\frac{8\alpha_1}{3} + 2\alpha_2 + (1 - \alpha_1 - \alpha_2) \right) + (C_1 + C_2 + C_3) \sqrt{n} |G| =$$

$$= \frac{n^2 \overline{d}_G}{2} \left(\frac{5\alpha_1 + 3\alpha_2 + 3}{3} \right) + (C_1 + C_2 + C_3) \frac{n^{3/2} \overline{d}_G}{2}.$$

Combining this with the fact that the number of good 3-paths is at least $n \overline{d}_G^3 - C_0 n^{3/2} \overline{d}_G$ (see Claim 21), we get

$$n \overline{d}_G^3 - C_0 n^{3/2} \overline{d}_G \leq \frac{n^2 \overline{d}_G}{2} \left(\frac{5\alpha_1 + 3\alpha_2 + 3}{3} \right) + (C_1 + C_2 + C_3) \frac{n^{3/2} \overline{d}_G}{2}.$$

Rearranging and dividing by $n \overline{d}_G$ on both sides, we get

$$\overline{d}_G^2 \leq \left(\frac{5\alpha_1 + 3\alpha_2 + 3}{3} \right) n + \frac{1}{2} \sqrt{n}((C_1 + C_2 + C_3) + 2C_0).$$

Since $(5\alpha_1 + 3\alpha_2 + 3)/6 \geq 1/2$, we may replace $1/2$ with $(5\alpha_1 + 3\alpha_2 + 3)/6$ in the above inequality to obtain

$$\overline{d}_G^2 \leq \left(\frac{5\alpha_1 + 3\alpha_2 + 3}{6} \right) n \left(1 + \frac{(C_1 + C_2 + C_3) + 2C_0}{\sqrt{n}} \right).$$

So letting $C_4 = (C_1 + C_2 + C_3) + 2C_0$ we have,

$$\overline{d}_G \leq \sqrt{1 + \frac{C_4}{\sqrt{n}} \sqrt{\frac{5\alpha_1 + 3\alpha_2 + 3}{6}} \sqrt{n} < \left(1 + \frac{C_4}{2\sqrt{n}} \right) \sqrt{\frac{5\alpha_1 + 3\alpha_2 + 3}{6}} \sqrt{n}, \quad (10)$$

for large enough n. By Claim 11, we have

$$|H| \leq \frac{\alpha_1}{3} |G| + \frac{\alpha_2}{2} |G| + \frac{2(1-\alpha_1-\alpha_2)}{3} |G| = \frac{4 - 2\alpha_1 - \alpha_2}{6} n \overline{d}_G.$$

Combining this with (10) we get

$$|H| \leq \left(1 + \frac{C_4}{2\sqrt{n}} \right) \frac{4 - 2\alpha_1 - \alpha_2}{12} \sqrt{\frac{5\alpha_1 + 3\alpha_2 + 3}{6}} n^{3/2},$$
for sufficiently large n. So we have

$$\text{ex}_3(n, C_5) \leq (1 + o(1)) \frac{4 - 2\alpha_1 - \alpha_2}{12} \sqrt{\frac{5\alpha_1 + 3\alpha_2 + 3}{6} n^{3/2}}.$$

The right hand side is maximized when $\alpha_1 = 0$ and $\alpha_2 = 2/3$, so we have

$$\text{ex}_3(n, C_5) \leq (1 + o(1)) \frac{4 - 2/3}{12} \sqrt{\frac{5}{6} n^{1.5}} < (1 + o(1)) 0.2536 n^{3/2}.$$

This finishes the proof.

Acknowledgements

We are grateful to the two anonymous referees for their valuable comments. The research of the authors is partially supported by the National Research, Development and Innovation Office – NKFIH, grants K116769, SNN117879, KH126853. The research of the third author is also supported by IBS-R029-C1.

References

