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Abstract

In this paper we show that the maximum number of hyperedges in a 3-uniform
hypergraph on n vertices without a (Berge) cycle of length five is less than (0.254 +
o(1))n3/2, improving an estimate of Bollobás and Győri.

We obtain this result by showing that not many 3-paths can start from certain
subgraphs of the shadow.

Mathematics Subject Classifications: 05C65, 05D99

1 Introduction

A hypergraph H = (V,E) is a family E of distinct subsets of a finite set V . The members
of E are called hyperedges and the elements of V are called vertices. A hypergraph is
called 3-uniform if each member of E has size 3. A hypergraph H = (V,E) is called linear
if every two hyperedges have at most one vertex in common.

A Berge cycle of length k > 2, denoted Berge-Ck, is an alternating sequence of distinct
vertices and distinct edges of the form v1, h1, v2, h2, . . . , vk, hk where vi, vi+1 ∈ hi for each
i ∈ {1, 2, . . . , k−1} and vk, v1 ∈ hk. (Note that if a hypergraph does not contain a Berge-
C2, then it is linear.) This definition of a hypergraph cycle is the classical definition due
to Berge. More generally, if F = (V (F ), E(F )) is a graph and Q = (V (Q), E(Q)) is a
hypergraph, then we say Q is Berge-F if there is a bijection φ : E(F )→ E(Q) such that
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e ⊆ φ(e) for all e ∈ E(F ). In other words, given a graph F we can obtain a Berge-F by
replacing each edge of F with a hyperedge that contains it.

Given a family of graphs F , we say that a hypergraph H is Berge-F-free if for every
F ∈ F , the hypergraphH does not contain a Berge-F as a subhypergraph. The maximum
possible number of hyperedges in a Berge-F -free 3-uniform hypergraph on n vertices is
the Turán number of Berge-F , and is denoted by ex3(n,F). When F = {F} then we
simply write ex3(n, F ) instead of ex3(n, {F}).

Determining ex3(n, {C2, C3}) is basically equivalent to the famous (6, 3)-problem. This

was settled by Ruzsa and Szemerédi in their classical paper [23], showing that n
2− c√

logn <
ex3(n, {C2, C3}) = o(n2) for some constant c > 0. An important Turán-type extremal
result for Berge cycles is due to Lazebnik and Verstraëte [21], who studied the maximum
number of hyperedges in an r-uniform hypergraph containing no Berge cycle of length
less than five (i.e., girth five). They showed the following.

Theorem 1 (Lazebnik, Verstraëte [21]).

ex3(n, {C2, C3, C4}) =
1

6
n3/2 + o(n3/2).

The systematic study of the Turán number of Berge cycles started with the study
of Berge triangles by Győri [15], and continued with the study of Berge five cycles by
Bollobás and Győri [1] who showed the following.

Theorem 2 (Bollobás, Győri [1]).

(1 + o(1))
n3/2

3
√

3
6 ex3(n,C5) 6

√
2n3/2 + 4.5n.

The following example of Bollobás and Győri proves the lower bound in Theorem 2.
Bollobás-Győri Example. Take a C4-free bipartite graph G0 with n/3 vertices in each

part and (1 + o(1))(n/3)3/2 edges. In one part, replace each vertex u of G0 by a pair
of two new vertices u1 and u2, and add the triple u1u2v for each edge uv of G0. It is
easy to check that the resulting hypergraph H does not contain a Berge cycle of length 5.
Moreover, the number of hyperedges in H is the same as the number of edges in G0.

In this paper, we improve Theorem 2 as follows.

Theorem 3.
ex3(n,C5) < (1 + o(1)) 0.254n3/2.

Roughly speaking, our main idea in proving the above theorem is to analyze the
structure of a Berge-C5-free hypergraph, and use this structure to efficiently bound the
number of paths of length 3 that start from certain dense subgraphs (e.g., triangle, K4)
of the 2-shadow. This bound is then combined with the lower bound on the number of
paths of length 3 provided by the Blakley-Roy inequality [2]. We prove Theorem 3 in
Section 2.
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Ergemlidze, Győri and Methuku [3] considered the analogous question for linear hyper-
graphs and proved that ex3(n, {C2, C5}) = n3/2/3

√
3 + o(n3/2). Surprisingly, even though

their lower bound is the same as the lower bound in Theorem 2, the linear hypergraph
that they constructed in [3] is very different from the hypergraph used in the Bollobás-
Győri example discussed above – the latter is far from being linear. In [3], the authors
also strengthened Theorem 1 by showing that ex3(n, {C2, C3, C4}) ∼ ex3(n, {C2, C4}).
Recently, ex3(n,C4) was studied in [5]. See [6] for results on the maximum number of
hyperedges in an r-uniform hypergraph of girth six.

Győri and Lemons [16, 17] generalized Theorem 2 to Berge cycles of any given length
and proved bounds on exr(n,C2k+1) and exr(n,C2k). These bounds were improved by
Füredi and Özkahya [9], Jiang and Ma [19], Gerbner, Methuku and Vizer [11]. Recently
Füredi, Kostochka and Luo [7] started the study of the maximum size of an n-vertex
r-uniform hypergraph without any Berge cycle of length at least k. This study has been
continued in [8, 18, 20, 4].

General results for Berge-F -free hypergraphs have been obtained in [12, 13, 10] and
the Turán numbers of Berge-K2,t and Berge cliques, among others, were studied in [24,
22, 11, 14, 10].

Notation

We introduce some important notations and definitions used throughout the paper.

• Length of a path is the number of edges in the path. We usually denote a path
v0, v1, . . . , vk, simply as v0v1 . . . vk.

• For convenience, an edge {a, b} of a graph or a pair of vertices a, b is referred to as
ab. A hyperedge {a, b, c} is written simply as abc.

• For a hypergraph H (or a graph G), for convenience, we sometimes use H (or G)
to denote the edge set of the hypergraph H (or G respectively). Thus the number
of edges in H is |H|.
• Given a graph G and a subset of its vertices S, let the subgraph of G induced by S

be denoted by G[S].

• For a hypergraph H, let ∂H = {ab | ab ⊂ e ∈ E(H)} denote its 2-shadow graph.

• For a hypergraph H, the neighborhood of v in H is defined as

N(v) = {x ∈ V (H) \ {v} | v, x ∈ h for some h ∈ E(H)}.

• For a hypergraph H and a pair of vertices u, v ∈ V (H), let codeg(v, u) denote the
number of hyperedges of H containing the pair {u, v}.

2 Proof of Theorem 3

Let H be a hypergraph on n vertices without a Berge 5-cycle and let G = ∂H be the
2-shadow of H. First we introduce some definitions.
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Definition 4. A pair xy ∈ ∂H is called thin if codeg(xy) = 1, otherwise it is called fat.
We say a hyperedge abc ∈ H is thin if at least two of the pairs ab, bc, ac are thin.

Definition 5. We say a set of hyperedges (or a hypergraph) is tightly-connected if it can
be obtained by starting with a hyperedge and adding hyperedges one by one, such that
every added hyperedge intersects with one of the previous hyperedges in 2 vertices.

Definition 6. A block in H is a maximal set of tightly-connected hyperedges.

Definition 7. For a block B, a maximal subhypergraph of B without containing thin
hyperedges is called the core of the block.

Let K3
4 denote the complete 3-uniform hypergraph on 4 vertices. A crown of size k

is a set of k > 1 hyperedges of the form abc1, abc2, . . . , abck. Below we define 2 specific
hypergraphs:

• Let F1 be a hypergraph consisting of exactly 3 hyperedges on 4 vertices (i.e., K3
4

minus an edge).

• For distinct vertices a, b, c, d and o, let F2 be the hypergraph consisting of hyperedges
oab, obc, ocd and oda.

Lemma 8. Let B be a block of H, and let B be a core of B. Then B is either ∅, K3
4 , F1, F2

or a crown of size k for some k > 1.

Proof. If B = ∅, we are done, so let us assume B 6= ∅. Since B is tightly-connected
and it can be obtained by adding thin hyperedges to B, it is easy to see that B is also
tightly-connected. Thus if B has at most two hyperedges, then it is a crown of size 1 or
2 and we are done. Therefore, in the rest of the proof we will assume that B contains at
least 3 hyperedges.

If B contains at most 4 vertices then it is easy to see that B is either K3
4 or F1. So

assume that B has at least 5 vertices (and at least 3 hyperedges). Since B is not a crown,
there exists a tight path of length 3, say abc, bcd, cde. Since abc is in the core, one of
the pairs ab or ac is fat, so there exists a hyperedge h 6= abc containing either ab or ac.
Similarly there exists a hyperedge f 6= cde and f contains ed or ec. If h = f then B ⊇ F2.
However, it is easy to see that F2 cannot be extended to a larger tightly-connected set of
hyperedges without creating a Berge 5-cycle, so in this case B = F2. If h 6= f then the
hyperedges h, abc, bcd, cde, f create a Berge 5-cycle in H, a contradiction. This completes
the proof of the lemma.

Observation 9. Let B be a block of H and let B be the core of B. If B = ∅ then the
block B is a crown, and if B 6= ∅ then every fat pair of B is contained in ∂B.

Edge Decomposition of G = ∂H. We define a decomposition D of the edges of
G into paths of length 2, triangles and K4’s such as follows:
Let B be a block of H and B be its core.
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If B = ∅, then B is a crown-block {abc1, abc2, . . . , abck} (for some k > 1); we partition
∂B into the triangle abc1 and paths acib where 2 6 i 6 k.

If B 6= ∅, then our plan is to first partition ∂B \∂B. If abc ∈ B \B, then abc is a thin
hyperedge, so it contains at least 2 thin pairs, say ab and bc. We claim that the pair
ac is in ∂B. Indeed, ac has to be a fat pair, otherwise the block B consists of only
one hyperedge abc, so B = ∅ contradicting the assumption. So by Observation 9, ac
has to be a pair in ∂B. For every abc ∈ B \ B such that ab and bc are thin pairs, add
the 2-path abc to the edge decomposition D. This partitions all the edges in ∂B \ ∂B
into paths of length 2. So all we have left is to partition the edges of ∂B.

• If B is a crown {abc1, abc2, . . . , abck} for some k > 1, then we partition ∂B into
the triangle abc1 and paths acib where 2 6 i 6 k.

• If B = F1 = {abc, bcd, acd} then we partition ∂B into 2-paths abc, bdc and cad.

• If B = F2 = {oab, obc, ocd, oda} then we partition ∂B into 2-paths abo, bco, cdo
and dao.

• Finally, if B = K3
4 = {abc, abd, acd, bcd} then we partition ∂B as K4, i.e., we

add ∂B = K4 as an element of D.

Clearly, by Lemma 8 we have no other cases left. Thus all of the edges of the graph
G are partitioned into paths of length 2, triangles and K4’s.

Observation 10.

(a) If D is a triangle that belongs to D, then there is a hyperedge h ∈ H such that
D = ∂h.

(b) If abc is a 2-path that belongs to D, then abc ∈ H. Moreover ac is a fat pair.

(c) If D is a K4 that belongs to D, then there exists F = K3
4 ⊆ H such that D = ∂F .

Let α1 |G| and α2 |G| be the number of edges of G that are contained in triangles and
2-paths of the edge-decomposition D of G, respectively. So (1 − α1 − α2) |G| edges of G
belong to the K4’s in D.

Claim 11. We have,

|H| =
(
α1

3
+
α2

2
+

2(1− α1 − α2)

3

)
|G| .

Proof. Let B be a block with the core B. Recall that for each hyperedge h ∈ B \ B, we
have added exactly one 2-path or a triangle to D.

Moreover, because of the way we partitioned ∂B, it is easy to check that in all of the
cases except when B = K3

4 , the number of hyperedges of B is the same as the number of
elements of D that ∂B is partitioned into; these elements being 2-paths and triangles. On
the other hand, if B = K3

4 , then the number of hyperedges of B is 4 but we added only
one element to D (namely K4).

the electronic journal of combinatorics 27(2) (2020), #P2.16 5



This shows that the number of hyperedges of H is equal to the number of elements of
D that are 2-paths or triangles plus the number of hyperedges which are in copies of K3

4

in H, i.e., 4 times the number of K4’s in D. Since α1 |G| edges of G are in 2-paths, the
number of elements of D that are 2-paths is α1 |G| /2. Similarly, the number of elements
of D that are triangles is α2 |G| /3, and the number of K4’s in D is (1 − α1 − α2) |G| /6.
Combining this with the discussion above finishes the proof of the claim.

The link of a vertex v is the graph consisting of the edges {uw | uvw ∈ H} and is
denoted by Lv.

Claim 12. |Lv| 6 2 |N(v)|.

Proof. First let us notice that there is no path of length 5 in Lv. Indeed, otherwise, there
exist vertices v0, v1, . . . , v5 such that vvi−1vi ∈ H for each 1 6 i 6 5 which means there is a
Berge 5-cycle in H formed by the hyperedges containing the pairs vv1, v1v2, v2v3, v3v4, v4v,
a contradiction. So by the Erdős-Gallai theorem |Lv| 6 5−1

2
|N(v)|, proving the claim.

Lemma 13. Let v ∈ V (H) be an arbitrary vertex, then the number of edges in G[N(v)]
is less than 8 |N(v)|.

Proof. Let Gv be a subgraph of G on a vertex set N(v), such that xy ∈ Gv if and only
if there exists a vertex z 6= v such that xyz ∈ H. Then each edge of G[N(v)] belongs
to either Lv or Gv, so |G[N(v)]| 6 |Lv| + |Gv|. Combining this with Claim 12, we get
|G[N(v)]| 6 |Gv|+ 2 |N(v)|. So it suffices to prove that |Gv| < 6 |N(v)|.

First we will prove that there is no path of length 12 in Gv. Let us assume by
contradiction that P = v0, v1, . . . , v12 is a path in Gv. Since for each pair of vertices
vi, vi+1, there is a hyperedge vivi+1x in H where x 6= v, we can conclude that there
is a subsequence u0, u1, . . . , u6 of v0, v1, . . . , v12 and a sequence of distinct hyperedges
h1, h2, . . . , h6, such that ui−1ui ⊂ hi and v /∈ hi for each 1 6 i 6 6. Since u0, u3, u6 ∈ N(v)
there exist hyperedges f1, f2, f3 ∈ H such that vu0 ⊂ f1, vu3 ⊂ f2 and vu6 ⊂ f3. Clearly,
either f1 6= f2 or f2 6= f3. In the first case the hyperedges f1, h1, h2, h3, f2, and in the
second case the hyperedges f2, h4, h5, h6, f3 form a Berge 5-cycle in H, a contradiction.

Therefore, there is no path of length 12 in Gv, so by the Erdős-Gallai theorem, the
number of edges in Gv is at most 12−1

2
|N(v)| < 6 |N(v)|, as required.

2.1 Relating the hypergraph degree to the degree in the shadow

For a vertex v ∈ V (H) = V (G), let d(v) denote the degree of v in H and let dG(v) denote
the degree of v in G (i.e., dG(v) is the degree in the shadow).

Clearly dG(v) 6 2d(v). Moreover, d(v) = |Lv| and dG(v) = |N(v)|. So by Claim 12,
we have

dG(v)

2
6 d(v) 6 2dG(v). (1)

Let d and dG be the average degrees of H and G respectively.
Suppose there is a vertex v of H, such that d(v) < d/3. Then we may delete v and all

the edges incident to v from H to obtain a graph H ′ whose average degree is more than
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3(nd/3− d/3)/(n− 1) = d. Then it is easy to see that if the theorem holds for H ′, then
it holds for H as well. Repeating this procedure, we may assume that for every vertex v
of H, d(v) > d/3. Therefore, by (1), we may assume that the degree of every vertex of G
is at least d/6.

2.2 Counting paths of length 3

Definition 14. A 2-path in ∂H is called bad if both of its edges are contained in a triangle
of ∂H, otherwise it is called good.

Lemma 15. For any vertex v ∈ V (G) and a set M ⊆ N(v), let P be the set of the good
2-paths vxy such that x ∈M . Let M ′ = {y | vxy ∈ P} then |P| < 2 |M ′|+ 48dG(v).

Proof. Let BP = {xy | x ∈ M, y ∈ M ′, xy ∈ G} be a bipartite graph, clearly |BP | = |P|.
Let E = {xyz ∈ H | x, y ∈ N(v), codeg(x, y) 6 2}. By Lemma 13, |E| 6 2 · 8 |N(v)| so
the number of edges of 2-shadow of E is |∂E| 6 48 |N(v)|. Let B = {xy ∈ BP | ∃z ∈
V (H), xyz ∈ H \ E}. Then clearly,

|B| > |BP | − |∂E| > |P| − 48 |N(v)| = |P| − 48dG(v). (2)

Let dB(x) denote the degree of a vertex x in the graph B.

Claim 16. For every y ∈M ′ such that dB(y) = k > 3, there exists a set of k− 2 vertices
Sy ⊆M ′ such that ∀w ∈ Sy we have dB(w) = 1. Moreover, Sy∩Sz = ∅ for any y 6= z ∈M ′

(with dB(y), dB(z) > 3).

Proof. Let yx1, yx2, . . . , yxk ∈ B be the edges of B incident to y. For each 1 6 j 6 k let
fj ∈ H be a hyperedge such that vxj ⊂ fj. For each yxi ∈ B clearly there is a hyperedge
yxiwi ∈ H \ E.

We claim that for each 1 6 i 6 k, wi ∈ M ′. It is easy to see that wi ∈ N(v) or
wi ∈ M ′ (because vxiwi is a 2-path in G). Assume for a contradiction that wi ∈ N(v),
then since yxiwi /∈ E we have, codeg(xi, wi) > 3. Let f ∈ H be a hyperedge such that
vwi ⊂ f . Now take j 6= i such that xj 6= wi. If fj 6= f then since codeg(xi, wi) > 3
there exists a hyperedge h ⊃ xiwi such that h 6= f and h 6= xiwiy, then the hyperedges
f, h, xiwiy, yxjwj, fj form a Berge 5-cycle. So fj = f , therefore fj 6= fi. Similarly in this
case, there exists a hyperedge h ⊃ xiwi such that h 6= fi and h 6= xiwiy, therefore the
hyperedges fi, h, xiwiy, yxjwj, fj form a Berge 5-cycle, a contradiction. So we proved that
wi ∈M ′ for each 1 6 i 6 k.

Claim 17. For all but at most 2 of the wi’s (where 1 6 i 6 k), we have dB(wi) = 1.

Proof. If dB(wi) = 1 for all 1 6 i 6 k then we are done, so we may assume that there is
1 6 i 6 k such that dB(wi) 6= 1.

For each 1 6 i 6 k, wi ∈ M ′ and xiwi ∈ ∂(H \ E) (because xiwiy ∈ H \ E), so it
is clear that dB(wi) > 1. So dB(wi) > 1. Then there is a vertex x ∈ M \ {xi} such
that wix ∈ B. Let f, h ∈ H be hyperedges with wix ∈ h and xv ∈ f . If there are
j, l ∈ {1, 2, . . . , k} \ {i} such that x, xj and xl are all different from each other, then
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clearly, either f 6= fj or f 6= fl, so without loss of generality we may assume f 6= fj. Then
the hyperedges f, h, wixiy, ywjxj, fj create a Berge cycle of length 5, a contradiction. So
there are no j, l ∈ {1, 2, . . . , k} \ {i} such that x, xj and xl are all different from each
other. Clearly this is only possible when k < 4 and there is a j ∈ {1, 2, 3} \ {i} such that
x = xj. Let l ∈ {1, 2, 3} \ {i, j}. If fj 6= fl then the hyperedges fj, h, wixiy, ywlxl, fl form
a Berge 5-cycle. Therefore fj = fl. So we proved that dB(wi) 6= 1 implies that k = 3 and
for {j, l} = {1, 2, 3} \ {i}, we have fj = fl. So if dB(wi) 6= 1 and dB(wj) 6= 1 we have
fj = fl and fi = fl, which is impossible. So dB(wj) = 1. So we proved that if for any
1 6 i 6 k, dB(wi) 6= 1 then k = 3 and all but at most 2 of the vertices in {w1, w2, w3}
have degree 1 in the graph B, as desired.

We claim that for any i 6= j where dB(wi) = dB(wj) = 1 we have wi 6= wj. Indeed, if
there exists i 6= j such that wi = wj then wixj and wixi are both adjacent to wi in the
graph B which contradicts to dB(wi) = 1. So using the above claim, we conclude that the
set {w1, w2, . . . , wk} contains at least k− 2 distinct elements with each having degree one
in the graph B, so we can set Sy to be the set of these k − 2 elements. (Then of course
∀wi ∈ Sy we have dB(wi) = 1.)

Now we have to prove that for each z 6= y we have Sy∩Sz = ∅. Assume by contradiction
that wi ∈ Sz ∩ Sy for some z 6= y. That is, there is some hyperedge uwiz ∈ H \ E where
u ∈ M , moreover u = xi otherwise dB(wi) > 1. So we have a hyperedge xiwiz ∈ H \ E
for some z ∈M ′ \ {y}. Let j, l ∈ {1, 2, . . . , k} \ {i} such that j 6= l. Recall that xjv ⊂ fj
and xlv ⊂ fl. Clearly either fj 6= fi or fl 6= fi so without loss of generality we can
assume fj 6= fi. Then it is easy to see that the hyperedges fj, xjwjy, yxiwi, wizxi, fi are
all different and they create a Berge 5-cycle (xjwjy 6= yxiwi because xj 6= wi).

For each x ∈ M ′ with dB(x) = k > 3, let Sx be defined as in Claim 16. Then the
average of the degrees of the vertices in Sx∪{x} in B is (k+|Sx|)/(k−1) = (2k−2)(k−1) =
2. Since the sets Sx ∪ x (with x ∈ M ′, dB(x) > 3) are disjoint, we can conclude that
average degree of the set M ′ is at most 2. Therefore 2 |M ′| > |B|. So by (2) we have
2 |M ′| > |B| > |P| − 48dG(V ), which completes the proof of the lemma.

Claim 18. We may assume that the maximum degree in the graph G is less than 160
√
n

when n is large enough.

Proof. Let v be an arbitrary vertex with dG(v) = Cd for some constant C > 0. Let P be
the set of the good 2-paths starting from the vertex v. Then applying Lemma 15 with
M = N(v) and M ′ = {y | vxy ∈ P}, we have |P| < 2 |M ′| + 48dG(v) < 2n + 48 · Cd.
Since the minimum degree in G is at least d/6, the number of (ordered) 2-paths starting
from v is at least d(v) · (d/6− 1) = Cd · (d/6− 1). Notice that the number of (ordered)
bad 2-paths starting at v is the number of 2-paths vxy such that x, y ∈ N(v). So by
Lemma 13, this is at most 2 · 8 |N(v)| = 16Cd, so the number of good 2-paths is at least
Cd · (d/6− 17). So |P| > Cd · (d/6− 17). Thus we have

Cd · (d/6− 17) 6 |P| < 2n+ 48Cd.
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So Cd(d/6 − 65) < 2n. Therefore, 6C(d/6 − 65)2 < 2n, i.e., d < 6
√
n/3C + 390, so

|H| = nd/3 6 2n
√
n/3C + 130n. If C > 36 we get that |H| 6 n3/2

3
√
3

+ 130n = n3/2

3
√
3

+O(n),
proving Theorem 3. So we may assume C < 36.

Theorem 2 implies that

|H| = nd/3 6
√

2n3/2 + 4.5n, (3)

so d 6 3
√

2
√
n + 13.5. So combining this with the fact that C < 36, we have dG(v) =

Cd < 108
√

2
√
n+ 486 < 160

√
n for large enough n.

Combining Lemma 15 and Claim 18, we obtain the following.

Lemma 19. For any vertex v ∈ V (G) and a set M ⊆ N(v), let P be the set of good
2-paths vxy such that x ∈M . Let M ′ = {y | vxy ∈ P} then |P| < 2 |M ′|+ 7680

√
n when

n is large enough.

Definition 20. A 3-path x0, x1, x2, x3 is called good if both 2-paths x0, x1, x2 and x1, x2, x3
are good 2-paths.

Claim 21. The number of (ordered) good 3-paths in G is at least nd
3

G − C0n
3/2dG for

some constant C0 > 0 (for large enough n).

Proof. First we will prove that the number of (ordered) 3-walks that are not good 3-paths
is at most 5440n3/2dG.

For any vertex x ∈ V (H) if a path yxz is a bad 2-path then zy is an edge of G, so
the number of (ordered) bad 2-paths whose middle vertex is x, is at most 2 times the
number of edges in G[N(x)], which is less than 2 · 8 |N(x)| = 16dG(x) by Lemma 13.
The number of 2-walks which are not 2-paths and whose middle vertex is x is exactly
dG(x). So the total number of (ordered) 2-walks that are not good 2-paths is at most∑

x∈V (H) 17dG(x) = 17ndG.

Notice that, by definition, any (ordered) 3-walk that is not a good 3-path must contain
a 2-walk that is not a good 2-path. Moreover, if xyz is a 2-walk that is not a good 2-path,
then the number of 3-walks in G containing it is at most dG(x) + dG(z) < 320

√
n (for

large enough n) by Claim 18. Therefore, the total number of (ordered) 3-walks that are
not good 3-paths is at most 17ndG · 320

√
n = 5440n3/2dG.

By the Blakley-Roy inequality, the total number of (ordered) 3-walks in G is at least

nd
3

G. By the above discussion, all but at most 5440n3/2dG of them are good 3-paths, so
letting C0 = 5440 completes the proof of the claim.

Claim 22. Let {a, b, c} be the vertex set of a triangle that belongs to D. (By Observation
10 (a) abc ∈ H.) Then the number of good 3-paths whose first edge is ab, bc or ca is at
most 8n+ C1

√
n for some constant C1 and for large enough n.

Proof. For each {x, y} ⊂ {a, b, c}, let Sxy = N(x)∩N(y) \ {a, b, c}. For each x ∈ {a, b, c},
let Sx = N(x) \ (N(y) ∪N(z) ∪ {a, b, c}) where {y, z} = {a, b, c} \ {x}.
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For each x ∈ {a, b, c}, let Px be the set of good 2-paths xuv where u ∈ Sx. Let
S ′x = {v | xuv ∈ Px}. For each {x, y} ⊂ {a, b, c}, let Pxy be the set of good 2-paths xuv
and yuv where u ∈ Sxy. Let S ′xy = {v | xuv ∈ Pxy}.

Let {x, y} ⊂ {a, b, c} and z = {a, b, c} \ {x, y}. Notice that each 2-path yuv ∈ Pxy

(xuv ∈ Pxy), is contained in at most one good 3-path zyuv (respectively zxuv) whose first
edge is in the triangle abc. Indeed, since u ∈ Sxy, xyuv (respectively yxuv) is not a good
3-path. Therefore, the number of good 3-paths whose first edge is in the triangle abc,
and whose third vertex is in Sxy is at most |Pxy|. The number of paths in Pxy that start
with the vertex x is less than 2

∣∣S ′xy∣∣ + 7680
√
n, by Lemma 19. Similarly, the number of

paths in Pxy that start with the vertex y is less than 2
∣∣S ′xy∣∣+ 7680

√
n. Since every path

in Pxy starts with either x or y, we have |Pxy| < 4
∣∣S ′xy∣∣ + 15360

√
n. Therefore, for any

{x, y} ⊂ {a, b, c}, the number of good 3-paths whose first edge is in the triangle abc, and
whose third vertex is in Sxy is less than 4

∣∣S ′xy∣∣+ 15360
√
n.

In total, the number of good 3-paths whose first edge is in the triangle abc and whose
third vertex is in Sab ∪ Sbc ∪ Sac is at most

4(|S ′ab|+ |S ′bc|+ |S ′ac|) + 46080
√
n. (4)

Let x ∈ {a, b, c} and {y, z} = {a, b, c} \ {x}. For any 2-path xuv ∈ Px there are 2
good 3-paths with the first edge in the triangle abc, namely yxuv and zxuv. So the total
number of 3-paths whose first edge is in the triangle abc and whose third vertex is in
Sa ∪ Sb ∪ Sc is 2(|Pa|+ |Pb|+ |Pc|), which is at most

4(|S ′a|+ |S ′b|+ |S ′c|) + 46080
√
n, (5)

by Lemma 19.
Now we will prove that every vertex is in at most 2 of the sets S ′a, S

′
b, S

′
c, S

′
ab, S

′
bc, S

′
ac.

Let us assume by contradiction that a vertex v ∈ V (G) \ {a, b, c} is in at least 3 of
them. We claim that there do not exist 3 vertices ua ∈ N(a) \ {b, c}, ub ∈ N(b) \ {a, c}
and uc ∈ N(c) \ {a, b} such that xuxv is a good 3-path for each x ∈ {a, b, c}. Indeed,
otherwise, consider hyperedges ha, h

′
a containing the pairs aua and uav respectively (since

auav is a good 2-path, note that ha 6= h′a), and hyperedges hb, h
′
b, hc, h

′
c containing the

pairs bub, ubv, cuc, ucv respectively. Then either h′a 6= h′b or h′a 6= h′c, say h′a 6= h′b without
loss of generality. Then the hyperedges ha, h

′
a, h

′
b, hb, abc create a Berge 5-cycle in H, a

contradiction, proving that it is impossible to have 3 vertices ua ∈ N(a) \ {b, c}, ub ∈
N(b) \ {a, c} and uc ∈ N(c) \ {a, b} with the above mentioned property. Without loss
of generality let us assume that there is no vertex ua ∈ N(a) \ {b, c} such that auav is
a good 2-path – in other words, v /∈ S ′a ∪ S ′ab ∪ S ′ac. However, since we assumed that
v is contained in at least 3 of the sets S ′a, S

′
b, S

′
c, S

′
ab, S

′
bc, S

′
ac, we can conclude that v is

contained in all 3 of the sets S ′b, S
′
c, S

′
bc, i.e., there are vertices ub ∈ Sb, uc ∈ Sc, u ∈ Sbc

such that vubb, vucc, vub, vuc are good 2-paths. Using a similar argument as before, if
vu ∈ h, vub ∈ hb and vuc ∈ hc, without loss of generality we can assume that h 6= hb,
so the hyperedges abc,h,hb together with hyperedges containing uc and ubb form a Berge
5-cycle in H, a contradiction.
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So we proved that

2 |S ′a ∪ S ′b ∪ S ′c ∪ S ′ab ∪ S ′bc ∪ S ′ac| > |S ′a|+ |S ′b|+ |S ′c|+ |S ′ab|+ |S ′bc|+ |S ′ac|

This together with (4) and (5), we get that the number of good 3-paths whose first edge
is in the triangle abc is at most

8 |S ′a ∪ S ′b ∪ S ′c ∪ S ′ab ∪ S ′bc ∪ S ′ac|+ 92160
√
n < 8n+ C1

√
n

for C1 = 92160 and large enough n, finishing the proof of the claim.

Claim 23. Let P = abc be a 2-path and P ∈ D. (By Observation 10 (b) abc ∈ H.) Then
the number of good 3-paths whose first edge is ab or bc is at most 4n + C2

√
n for some

constant C2 > 0 and large enough n.

Proof. First we bound the number of 3-paths whose first edge is ab. Let Sab = N(a)∩N(b).
Let Sa = N(a) \ (N(b) ∪ {b}) and Sb = N(b) \ (N(a) ∪ {a}). For each x ∈ {a, b}, let Px

be the set of good 2-paths xuv where u ∈ Sx, and let S ′x = {v | xuv ∈ Px}. The set of
good 3-paths whose first edge is ab is Pa ∪ Pb, because the third vertex of a good 3-path
starting with an edge ab can not belong to N(a)∩N(b) by the definition of a good 3-path.

We claim that |S ′a ∩ S ′b| 6 160
√
n. Let us assume by contradiction that v0, v1, . . . vk ∈

S ′a ∩S ′b for k > 160
√
n. For each vertex vi where 0 6 i 6 k, there are vertices ai ∈ Sa and

bi ∈ Sb such that aaivi, bbivi are good 2-paths. For each 0 6 i 6 k, the hyperedge aivibi is
in H, otherwise we can find distinct hyperedges containing the pairs aai, aivi, vibi, bib and
these hyperedges together with abc, would form a Berge 5-cycle in H, a contradiction.
We claim that there are j, l ∈ {0, 1, . . . , k} such that aj 6= al, otherwise there is a vertex
x such that x = ai for each 0 6 i 6 k. Then xvi ∈ G for each 0 6 i 6 k, so we get that
dG(x) > k > 160

√
n which contradicts Claim 18.

So there are j, l ∈ {0, 1, . . . , k} such that aj 6= al and ajvjbj, alvlbl ∈ H. By observation
10 (b), there is a hyperedge h 6= abc such that ac ⊂ h. Clearly either aj /∈ h or al /∈ h.
Without loss of generality let aj /∈ h, so there is a hyperedge ha with aaj ⊂ ha 6= h. Let
hb ⊃ bjb, then the hyperedges abc, h, ha, ajvjbj, hb form a Berge 5-cycle, a contradiction,
proving that |S ′a ∩ S ′b| 6 160

√
n.

Notice that |S ′a|+ |S ′b| = |S ′a ∪ S ′b|+ |S ′a ∩ S ′b| 6 n+ 160
√
n. So by Lemma 19, we have

|Pa|+ |Pb| 6 2(|S ′a|+ |S ′b|) + 2 · 7680
√
n 6 2(n+ 160

√
n) + 2 · 7680

√
n = 2n+ 15680

√
n

for large enough n. So the number of good 3-paths whose first edge is ab is at most
2n + 15680

√
n. By the same argument, the number of good 3-paths whose first edge is

bc is at most 2n + 15680
√
n. Their sum is at most 4n + C2

√
n for C2 = 31360 and large

enough n, as desired.

Claim 24. Let {a, b, c, d} be the vertex set of a K4 that belongs to D. Let F = K3
4 be

a hypergraph on the vertex set {a, b, c, d}. (By Observation 10 (c) F ⊆ H.) Then the
number of good 3-paths whose first edge belongs to ∂F is at most 6n + C3

√
n for some

constant C3 > 0 and large enough n.
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Proof. First, let us observe that there is no Berge path of length 2, 3 or 4 between distinct
vertices x, y ∈ {a, b, c, d} in the hypergraph H \ F , because otherwise this Berge path
together with some edges of F will form a Berge 5-cycle in H. This implies, that there is
no path of length 3 or 4 between x and y in G \ ∂F , because otherwise we would find a
Berge path of length 2, 3 or 4 between x and y in H \ F .

Let S = {u ∈ V (H) \ {a, b, c, d} | ∃{x, y} ⊂ {a, b, c, d}, u ∈ N(x) ∩ N(y)}. For each
x ∈ {a, b, c, d}, let Sx = N(x) \ (S ∪ {a, b, c, d}). Let PS be the set of good 2-paths xuv
where x ∈ {a, b, c, d} and u ∈ S. Let S ′ = {v | xuv ∈ PS}. For each x ∈ {a, b, c, d}, let
Px be the set of good 2-paths xuv where u ∈ Sx, and let S ′x = {v | xuv ∈ Px}.

Let v ∈ S ′. By definition, there exists a pair of vertices {x, y} ⊂ {a, b, c, d} and a
vertex u, such that xuv and yuv are good 2-paths.

Suppose that zu′v is a 2-path different from xuv and yuv where z ∈ {a, b, c, d}. If
u′ = u then z /∈ {x, y} so there is a Berge 2-path between x and y or between x and z in
H \ F , which is impossible. So u 6= u′. Either z 6= x or z 6= y, without loss of generality
let us assume that z 6= x. Then zu′vux is a path of length 4 in G \ ∂F , a contradiction.
So for any v ∈ S ′ there are only 2 paths of Pa ∪ Pb ∪ Pc ∪ Pd ∪ PS that contain v as
an end vertex – both of which are in PS – which means that v /∈ S ′a ∪ S ′b ∪ S ′c ∪ S ′d, so
S ′ ∩ (S ′a ∪ S ′b ∪ S ′c ∪ S ′d) = ∅. Moreover,

|PS| 6 2 |S ′| . (6)

We claim that S ′a and S ′b are disjoint. Indeed, otherwise, if v ∈ S ′a ∩ S ′b there exists
x ∈ Sa and y ∈ Sb such that vxa and vyb are paths in G, so there is a 4-path axvyb
between vertices of F in G \ ∂F , a contradiction. Similarly we can prove that S ′a, S

′
b, S

′
c

and S ′d are pairwise disjoint. This shows that the sets S ′, S ′a, S
′
b, S

′
c and S ′d are pairwise

disjoint. So we have

|S ′ ∪ S ′a ∪ S ′b ∪ S ′c ∪ S ′d| = |S ′|+ |S ′a|+ |S ′b|+ |S ′c|+ |S ′d| . (7)

By Lemma 19, we have |Pa|+ |Pb|+ |Pc|+ |Pd| 6 2(|S ′a|+ |S ′b|+ |S ′c|+ |S ′d|)+4 ·7680
√
n.

Combining this inequality with (6), we get

|PS|+ |Pa|+ |Pb|+ |Pc|+ |Pd| 6 2 |S ′|+ 2(|S ′a|+ |S ′b|+ |S ′c|+ |S ′d|) + 4 · 7680
√
n. (8)

Combining (7) with (8) we get

|PS|+|Pa|+|Pb|+|Pc|+|Pd| 6 2 |S ′ ∪ S ′a ∪ S ′b ∪ S ′c ∪ S ′d|+30720
√
n < 2n+30720

√
n, (9)

for large enough n.
Each 2-path in PS ∪Pa ∪Pb ∪Pc ∪Pd can be extended to at most three good 3-paths

whose first edge is in ∂F . (For example, auv ∈ Pa can be extended to bauv, cauv and
dauv.) On the other hand, every good 3-path whose first edge is in ∂F must contain a
2-path of Pa ∪Pb ∪Pc ∪Pd ∪PS as a subpath. So the number of good 3-paths whose first
edge is in ∂F is at most 3 |Pa ∪ Pb ∪ Pc ∪ Pd ∪ PS| = 3(|PS| + |Pa| + |Pb| + |Pc| + |Pd|)
which is at most 6n + C3

√
n by (9), for C3 = 92160 and large enough n, proving the

desired claim.
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2.3 Combining bounds on the number of 3-paths

Recall that α1 |G|, α2 |G|, (1−α1−α2) |G| are the number of edges of G that are contained
in triangles, 2-paths and K4’s of the edge-decomposition D of G, respectively. Then the
number of triangles, 2-paths and K4’s in D is α1 |G| /3, α2 |G| /2 and (1−α1−α2) |G| /6
respectively. Therefore, using Claim 22, Claim 23 and Claim 24, the total number of
(ordered) good 3-paths in G is at most

α1

3
|G| (8n+ C1

√
n) +

α2

2
|G| (4n+ C2

√
n) +

(1− α1 − α2)

6
|G| (6n+ C3

√
n) 6

6 |G|n
(

8α1

3
+ 2α2 + (1− α1 − α2)

)
+ (C1 + C2 + C3)

√
n |G| =

=
n2dG

2

(
5α1 + 3α2 + 3

3

)
+ (C1 + C2 + C3)

n3/2dG
2

.

Combining this with the fact that the number of good 3-paths is at least nd
3

G−C0n
3/2dG

(see Claim 21), we get

nd
3

G − C0n
3/2dG 6

n2dG
2

(
5α1 + 3α2 + 3

3

)
+ (C1 + C2 + C3)

n3/2dG
2

.

Rearranging and dividing by ndG on both sides, we get

d
2

G 6

(
5α1 + 3α2 + 3

6

)
n+

1

2

√
n((C1 + C2 + C3) + 2C0).

Since (5α1 +3α2 +3)/6 > 1/2, we may replace 1/2 with (5α1 +3α2 +3)/6 in the above
inequality to obtain

d
2

G 6

(
5α1 + 3α2 + 3

6

)
n

(
1 +

(C1 + C2 + C3) + 2C0√
n

)
.

So letting C4 = (C1 + C2 + C3) + 2C0 we have,

dG 6

√
1 +

C4√
n

√
5α1 + 3α2 + 3

6

√
n <

(
1 +

C4

2
√
n

)√
5α1 + 3α2 + 3

6

√
n, (10)

for large enough n. By Claim 11, we have

|H| 6 α1

3
|G|+ α2

2
|G|+ 2(1− α1 − α2)

3
|G| = 4− 2α1 − α2

6

ndG
2
.

Combining this with (10) we get

|H| 6
(

1 +
C4

2
√
n

)
(4− 2α1 − α2)

12

√
5α1 + 3α2 + 3

6
n3/2,
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for sufficiently large n. So we have

ex3(n,C5) 6 (1 + o(1))
(4− 2α1 − α2)

12

√
5α1 + 3α2 + 3

6
n3/2.

The right hand side is maximized when α1 = 0 and α2 = 2/3, so we have

ex3(n,C5) 6 (1 + o(1))
4− 2/3

12

√
5

6
n1.5 < (1 + o(1))0.2536n3/2.

This finishes the proof.
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[9] Z. Füredi and L. Özkahya. “On 3-uniform hypergraphs without a cycle of a given
length.” Discrete Applied Mathematics, 216 (2017), 582–588.

the electronic journal of combinatorics 27(2) (2020), #P2.16 14

https://arxiv.org/abs/1811.11873
https://arxiv.org/abs/1805.04195
https://arxiv.org/abs/1807.06119


[10] D. Gerbner, A. Methuku and C. Palmer. “General lemmas for Berge-Turán hyper-
graph problems.” European Journal of Combinatorics 86 (2020): 103082.

[11] D. Gerbner, A. Methuku and M. Vizer. “Asymptotics for the Turán number of Berge-
K2,t.” Journal of Combinatorial Theory, Series B (2019).

[12] D. Gerbner and C. Palmer. “Extremal results for Berge-hypergraphs.” SIAM Journal
on Discrete Mathematics, 31.4 (2017), 2314–2327.
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