3-uniform hypergraphs without a cycle of length five
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Abstract

In this paper we show that the maximum number of hyperedges in a 3-uniform
hypergraph on n vertices without a (Berge) cycle of length five is less than (0.254 +
o(1))n?/2, improving an estimate of Bollobds and Gyéri.

We obtain this result by showing that not many 3-paths can start from certain
subgraphs of the shadow.

Mathematics Subject Classifications: 05C65, 05D99

1 Introduction

A hypergraph H = (V, E) is a family E of distinct subsets of a finite set V. The members
of E are called hyperedges and the elements of V are called vertices. A hypergraph is
called 3-uniform if each member of F has size 3. A hypergraph H = (V| E) is called linear
if every two hyperedges have at most one vertex in common.

A Berge cycle of length k > 2, denoted Berge-C}, is an alternating sequence of distinct
vertices and distinct edges of the form vy, hy, v, ho, ..., vk, hy where v;, v;11 € h; for each
ie{l,2,...,k—1} and vg,v; € hy. (Note that if a hypergraph does not contain a Berge-
(5, then it is linear.) This definition of a hypergraph cycle is the classical definition due
to Berge. More generally, if ' = (V(F), E(F)) is a graph and Q = (V(Q),E(Q)) is a
hypergraph, then we say Q is Berge-F if there is a bijection ¢ : E(F) — E(Q) such that
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e C ¢(e) for all e € E(F). In other words, given a graph F' we can obtain a Berge-F' by
replacing each edge of F' with a hyperedge that contains it.

Given a family of graphs F, we say that a hypergraph H is Berge-F-free if for every
F € F, the hypergraph H does not contain a Berge-F' as a subhypergraph. The maximum
possible number of hyperedges in a Berge-F-free 3-uniform hypergraph on n vertices is
the Turdan number of Berge-F, and is denoted by exs(n,F). When F = {F} then we
simply write exs(n, F) instead of exs(n, {F'}).

Determining exs(n, {Cs, C3}) is basically equivalent to the famous (6, 3)-problem. This
was settled by Ruzsa and Szemerédi in their classical paper [23], showing that n’" Visw <
exz(n, {Cy, C3}) = o(n?) for some constant ¢ > 0. An important Turdn-type extremal
result for Berge cycles is due to Lazebnik and Verstraéte [21], who studied the maximum
number of hyperedges in an r-uniform hypergraph containing no Berge cycle of length
less than five (i.e., girth five). They showed the following.

Theorem 1 (Lazebnik, Verstraéte [21]).
1
eX3(n, {Cg, 03, 04}) = ETLS/Q + 0(n3/2).

The systematic study of the Turan number of Berge cycles started with the study
of Berge triangles by Gyéri [15], and continued with the study of Berge five cycles by
Bollobés and Gy6ri [1] who showed the following.

Theorem 2 (Bollobés, Gydri [1]).

3/2
(1+ 0(1))5—\/3 < exs(n, C5) < V2n®/? 4 4.5n.

The following example of Bollobas and Gydéri proves the lower bound in Theorem 2.

Bollobds-Gydri Example. Take a Cy-free bipartite graph Gy with n/3 vertices in each
part and (1 + o(1))(n/3)%? edges. In one part, replace each vertex u of Gy by a pair
of two new vertices u; and uy, and add the triple ujusv for each edge uv of Gy. It is
easy to check that the resulting hypergraph H does not contain a Berge cycle of length 5.
Moreover, the number of hyperedges in H is the same as the number of edges in Gg.

In this paper, we improve Theorem 2 as follows.

Theorem 3.
exs(n, Cs) < (1 +0(1)) 0.254n>2.

Roughly speaking, our main idea in proving the above theorem is to analyze the
structure of a Berge-Cs-free hypergraph, and use this structure to efficiently bound the
number of paths of length 3 that start from certain dense subgraphs (e.g., triangle, Kj)
of the 2-shadow. This bound is then combined with the lower bound on the number of
paths of length 3 provided by the Blakley-Roy inequality [2]. We prove Theorem 3 in
Section 2.
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Ergemlidze, Gy6ri and Methuku [3] considered the analogous question for linear hyper-
graphs and proved that exs(n, {Cy, C5}) = n%?/3v/3 4+ o(n*/?). Surprisingly, even though
their lower bound is the same as the lower bound in Theorem 2, the linear hypergraph
that they constructed in [3] is very different from the hypergraph used in the Bollobés-
Gy6ri example discussed above — the latter is far from being linear. In [3], the authors
also strengthened Theorem 1 by showing that exs(n,{Cs, Cs,Cy}) ~ exs(n,{Cs, Cy}).
Recently, exs(n,Cy) was studied in [5]. See [6] for results on the maximum number of
hyperedges in an r-uniform hypergraph of girth six.

Gyéri and Lemons [16, 17] generalized Theorem 2 to Berge cycles of any given length
and proved bounds on ex,(n,Co1) and ex,.(n,Co). These bounds were improved by
Fiiredi and Ozkahya [9], Jiang and Ma [19], Gerbner, Methuku and Vizer [11]. Recently
Fiiredi, Kostochka and Luo [7] started the study of the maximum size of an n-vertex
r-uniform hypergraph without any Berge cycle of length at least k. This study has been
continued in [8, 18, 20, 4].

General results for Berge-F-free hypergraphs have been obtained in [12, 13, 10] and
the Turdn numbers of Berge-K»; and Berge cliques, among others, were studied in [24,
22, 11, 14, 10].

Notation
We introduce some important notations and definitions used throughout the paper.

e Length of a path is the number of edges in the path. We usually denote a path
Vg, U1, - - - , Uk, SIMply as vovy . .. vg.

e For convenience, an edge {a, b} of a graph or a pair of vertices a, b is referred to as
ab. A hyperedge {a,b,c} is written simply as abe.

e For a hypergraph H (or a graph G), for convenience, we sometimes use H (or G)
to denote the edge set of the hypergraph H (or G respectively). Thus the number
of edges in H is |H|.

e Given a graph GG and a subset of its vertices S, let the subgraph of GG induced by S
be denoted by G[S].

e For a hypergraph H, let 0H = {ab | ab C e € E(H)} denote its 2-shadow graph.
e For a hypergraph H, the neighborhood of v in H is defined as

N@w)={z e V(H)\ {v} | v,z € h for some h € E(H)}.

e For a hypergraph H and a pair of vertices u,v € V(H), let codeg(v,u) denote the
number of hyperedges of H containing the pair {u, v}.

2 Proof of Theorem 3

Let H be a hypergraph on n vertices without a Berge 5-cycle and let G = dH be the
2-shadow of H. First we introduce some definitions.
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Definition 4. A pair zy € 0H is called thin if codeg(zy) = 1, otherwise it is called fat.
We say a hyperedge abc € H is thin if at least two of the pairs ab, bc, ac are thin.

Definition 5. We say a set of hyperedges (or a hypergraph) is tightly-connected if it can
be obtained by starting with a hyperedge and adding hyperedges one by one, such that
every added hyperedge intersects with one of the previous hyperedges in 2 vertices.

Definition 6. A block in H is a maximal set of tightly-connected hyperedges.

Definition 7. For a block B, a maximal subhypergraph of B without containing thin
hyperedges is called the core of the block.

Let K3 denote the complete 3-uniform hypergraph on 4 vertices. A crown of size k
is a set of k£ > 1 hyperedges of the form abcy, abcs, . . ., abcy. Below we define 2 specific
hypergraphs:

e Let I} be a hypergraph consisting of exactly 3 hyperedges on 4 vertices (i.e., K}
minus an edge).

e For distinct vertices a, b, ¢, d and o, let F;, be the hypergraph consisting of hyperedges
oab, obc, ocd and oda.

Lemma 8. Let B be a block of H, and let B be a core of B. Then B is either 0, K3, Fy, Fy
or a crown of size k for some k > 1.

Proof. It B = (), we are done, so let us assume B # (). Since B is tightly-connected
and it can be obtained by adding thin hyperedges to B, it is easy to see that B is also
tightly-connected. Thus if B has at most two hyperedges, then it is a crown of size 1 or
2 and we are done. Therefore, in the rest of the proof we will assume that B contains at
least 3 hyperedges.

If B contains at most 4 vertices then it is easy to see that B is either K} or Fy. So
assume that B has at least 5 vertices (and at least 3 hyperedges). Since B is not a crown,
there exists a tight path of length 3, say abc, bed, cde. Since abe is in the core, one of
the pairs ab or ac is fat, so there exists a hyperedge h # abc containing either ab or ac.
Similarly there exists a hyperedge f # cde and f contains ed or ec. If h = f then B D F5.
However, it is easy to see that F, cannot be extended to a larger tightly-connected set of
hyperedges without creating a Berge 5-cycle, so in this case B = F,. If h # f then the
hyperedges h, abc, bed, cde, f create a Berge 5-cycle in H, a contradiction. This completes
the proof of the lemma. O

Observation 9. Let B be a block of H and let B be the core of B. If B = () then the
block B is a crown, and if B # () then every fat pair of B is contained in OB.

Edge Decomposition of G = 0H. We define a decomposition D of the edges of
G into paths of length 2, triangles and K,’s such as follows:
Let B be a block of H and B be its core.
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If B =0, then B is a crown-block {abcy, abey, . .., abeg} (for some k > 1); we partition
0B into the triangle abc; and paths ac;b where 2 <7 < k.

If B # (), then our plan is to first partition 9B\ 9B. If abc € B\ B, then abc is a thin
hyperedge, so it contains at least 2 thin pairs, say ab and be. We claim that the pair
ac is in 0B. Indeed, ac has to be a fat pair, otherwise the block B consists of only
one hyperedge abc, so B = () contradicting the assumption. So by Observation 9, ac
has to be a pair in 9B. For every abc € B\ B such that ab and bc are thin pairs, add
the 2-path abc to the edge decomposition D. This partitions all the edges in 9B\ 0B
into paths of length 2. So all we have left is to partition the edges of 0B.

e If Bis a crown {abcy, abey, . .., abeg} for some k > 1, then we partition 9B into
the triangle abc; and paths ac;b where 2 <7 < k.
o If B=F, = {abc,bcd, acd} then we partition OB into 2-paths abc, bde and cad.

o If B = Fy = {oab, obc, ocd, oda} then we partition 9B into 2-paths abo, beo, cdo
and dao.

e Finally, if B = K} = {abc, abd, acd, bed} then we partition OB as Ky, i.e., we
add OB = K, as an element of D.

Clearly, by Lemma 8 we have no other cases left. Thus all of the edges of the graph
G are partitioned into paths of length 2, triangles and K,’s.

Observation 10.

(a) If D is a triangle that belongs to D, then there is a hyperedge h € H such that
D = 0h.

(b) If abe is a 2-path that belongs to D, then abc € H. Moreover ac is a fat pair.
(¢) If D is a K4 that belongs to D, then there exists F = K} C H such that D = OF.

Let i |G| and s |G| be the number of edges of G that are contained in triangles and
2-paths of the edge-decomposition D of G, respectively. So (1 — a3 — az) |G| edges of G
belong to the K,’s in D.

Claim 11. We have,

ap | ay | 2(1—a; —a)
H=|—+— G|.
H= (5 + %+ 5= 6

Proof. Let B be a block with the core B. Recall that for each hyperedge h € B\ B, we
have added exactly one 2-path or a triangle to D.

Moreover, because of the way we partitioned 0B, it is easy to check that in all of the
cases except when B = K3, the number of hyperedges of B is the same as the number of
elements of D that 0B is partitioned into; these elements being 2-paths and triangles. On
the other hand, if B = K3, then the number of hyperedges of B is 4 but we added only
one element to D (namely Ky).
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This shows that the number of hyperedges of H is equal to the number of elements of
D that are 2-paths or triangles plus the number of hyperedges which are in copies of K3
in H, i.e., 4 times the number of K4’s in D. Since oy |G| edges of G are in 2-paths, the
number of elements of D that are 2-paths is «; |G| /2. Similarly, the number of elements
of D that are triangles is ay |G| /3, and the number of K,’s in D is (1 — a; — a2) |G| /6.
Combining this with the discussion above finishes the proof of the claim. O]

The link of a vertex v is the graph consisting of the edges {uw | uvw € H} and is
denoted by L,.

Claim 12. |L,| < 2|N(v)|.

Proof. First let us notice that there is no path of length 5 in L,. Indeed, otherwise, there
exist vertices vy, vy, .. ., vs such that vv;_jv; € H for each 1 < i < 5 which means there is a
Berge 5-cycle in H formed by the hyperedges containing the pairs vy, v1v9, Vo3, V304, V4V,
a contradiction. So by the Erd8s-Gallai theorem |L,| < 25 [N (v)|, proving the claim. [J

Lemma 13. Let v € V(H) be an arbitrary vertex, then the number of edges in G[N (v)]
is less than 8 |N(v)|.

Proof. Let G, be a subgraph of G on a vertex set N(v), such that zy € G, if and only
if there exists a vertex z # v such that xyz € H. Then each edge of G[N(v)] belongs
to either L, or G,, so |G[N(v)]| < |L,| + |Gy|. Combining this with Claim 12, we get
|G[N (v)]| < |Gy|+2|N(v)|. So it suffices to prove that |G,| < 6|N(v)].

First we will prove that there is no path of length 12 in G,. Let us assume by
contradiction that P = wvg,vq,...,v12 is a path in GG,,. Since for each pair of vertices
Vi, Vi1, there is a hyperedge v;v; 12 in H where x # v, we can conclude that there
is a subsequence ug,u,...,us of vg,vy,...,v12 and a sequence of distinct hyperedges
hi, ha, ..., hg, such that u; qu; C h; and v ¢ h; for each 1 < i < 6. Since ug, us, ug € N(v)
there exist hyperedges f1, fa2, f3 € H such that vug C f1, vuz C fy and vug C f3. Clearly,
either f; # fy or fo # f5. In the first case the hyperedges fi, hi, ho, hs, fo, and in the
second case the hyperedges fs, hy, hs, hg, f3 form a Berge 5-cycle in H, a contradiction.

Therefore, there is no path of length 12 in G,, so by the Erdés-Gallai theorem, the
number of edges in G,, is at most =+ |N(v)| < 6|N(v)|, as required. O

2.1 Relating the hypergraph degree to the degree in the shadow

For a vertex v € V(H) = V(G), let d(v) denote the degree of v in H and let de(v) denote
the degree of v in G (i.e., dg(v) is the degree in the shadow).
Clearly dg(v) < 2d(v). Moreover, d(v) = |L,| and dg(v) = |N(v)|. So by Claim 12,
we have
dg(v)

2

Let d and dg be the average degrees of H and G respectively.
Suppose there is a vertex v of H, such that d(v) < d/3. Then we may delete v and all
the edges incident to v from H to obtain a graph H’ whose average degree is more than

< d(v) < 2dg(v). (1)
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3(nd/3 —d/3)/(n — 1) = d. Then it is easy to see that if the theorem holds for H’, then
it holds for H as well. Repeating this procedure, we may assume that for every vertex v
of H, d(v) > d/3. Therefore, by (1), we may assume that the degree of every vertex of G
is at least d/6.

2.2 Counting paths of length 3

Definition 14. A 2-path in 0H is called bad if both of its edges are contained in a triangle
of OH, otherwise it is called good.

Lemma 15. For any vertex v € V(G) and a set M C N(v), let P be the set of the good
2-paths vay such that x € M. Let M' = {y | vey € P} then |P| < 2|M'| + 48ds(v).

Proof. Let Bp ={xy |z € M,y € M',xzy € G} be a bipartite graph, clearly |Bp| = |P)|.
Let £ = {xyz € H | z,y € N(v),codeg(z,y) < 2}. By Lemma 13, |E| < 2-8|N(v)| so
the number of edges of 2-shadow of E is |0F| < 48|N(v)|. Let B = {ay € Bp | 3z €
V(H),zyz € H\ E}. Then clearly,

|B| = |Bp| — |0E| = [P| — 48|N(v)| = |P| — 48dg(v). (2)

Let dg(x) denote the degree of a vertex x in the graph B.

Claim 16. For everyy € M’ such that dg(y) = k > 3, there ezists a set of k — 2 vertices
Sy C M’ such thatVw € S, we have dg(w) = 1. Moreover, SyNS, =0 for anyy # z € M’

(with dp(y), dp(z) > 3).

Proof. Let yxi,yxs,...,yzi € B be the edges of B incident to y. For each 1 < 5 < k let
fj € H be a hyperedge such that vx; C f;. For each yz; € B clearly there is a hyperedge
yryw; € H\ E.

We claim that for each 1 < i < k, w; € M'. Tt is easy to see that w; € N(v) or
w; € M’ (because vz;w; is a 2-path in G). Assume for a contradiction that w; € N(v),
then since yxr;w; ¢ E we have, codeg(z;,w;) > 3. Let f € H be a hyperedge such that
vw; C f. Now take j # ¢ such that z; # w,. If f; # f then since codeg(x;, w;) > 3
there exists a hyperedge h O x;w; such that h # f and h # x;w;y, then the hyperedges
[, h, xowy, yxjw;, f; form a Berge 5-cycle. So f; = f, therefore f; # f;. Similarly in this
case, there exists a hyperedge h O x;w; such that h # f; and h # z;w;y, therefore the
hyperedges f;, h, v;w;y, yz;w;, f; form a Berge 5-cycle, a contradiction. So we proved that
w; € M’ for each 1 < i < k.

Claim 17. For all but at most 2 of the w;’s (where 1 < i < k), we have dg(w;) = 1.

Proof. If dg(w;) =1 for all 1 < i < k then we are done, so we may assume that there is
1 <@ < k such that dg(w;) # 1.

For each 1 < i < k, w; € M" and z;w; € O(H \ E) (because z;w;y € H \ E), so it
is clear that dg(w;) > 1. So dp(w;) > 1. Then there is a vertex x € M \ {x;} such
that w,xz € B. Let f,h € H be hyperedges with w;x € h and xv € f. If there are
J.l e {1,2,...,k} \ {¢} such that z,z; and x; are all different from each other, then
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clearly, either f # f; or f # fi, so without loss of generality we may assume f # f;. Then
the hyperedges f, h, w;z;y, yw;x;, f; create a Berge cycle of length 5, a contradiction. So
there are no j,l € {1,2,...,k} \ {i} such that z,z; and x; are all different from each
other. Clearly this is only possible when k < 4 and there is a j € {1,2,3} \ {¢} such that
x=u;. Let 1 € {1,2,3}\ {4,j}. If f; # f; then the hyperedges f;, h, w;z;y, yw,x;, f; form
a Berge 5-cycle. Therefore f; = f;. So we proved that dp(w;) # 1 implies that kK = 3 and
for {j,i} = {1,2,3} \ {i}, we have f; = f;. So if dg(w;) # 1 and dg(w;) # 1 we have
f; = fi and f; = fi, which is impossible. So dg(w;) = 1. So we proved that if for any
1 <i <k, dg(w;) # 1 then k = 3 and all but at most 2 of the vertices in {wy, ws, w3}
have degree 1 in the graph B, as desired. O]

We claim that for any ¢ # j where dg(w;) = dg(w;) = 1 we have w; # w,. Indeed, if
there exists ¢ # j such that w; = w; then w;x; and w;z; are both adjacent to w; in the
graph B which contradicts to dg(w;) = 1. So using the above claim, we conclude that the
set {wq, wo, ..., wy} contains at least k — 2 distinct elements with each having degree one
in the graph B, so we can set S, to be the set of these k — 2 elements. (Then of course
Yw; € S, we have dp(w;) = 1.)

Now we have to prove that for each z # y we have S,NS, = ). Assume by contradiction
that w; € S, NS, for some z # y. That is, there is some hyperedge vw;z € H \ E where
u € M, moreover u = x; otherwise dg(w;) > 1. So we have a hyperedge x;w;z € H\ E
for some z € M’ \ {y}. Let j,l € {1,2,...,k}\ {i} such that j # [. Recall that z;v C f;
and zjv C f;. Clearly either f; # f; or fi # f; so without loss of generality we can
assume f; # f;. Then it is easy to see that the hyperedges f;, z,w;y, yz,w;, w;zx;, f; are
all different and they create a Berge 5-cycle (zjw;y # yx;w; because z; # w;). O

For each x € M’ with dg(z) = k > 3, let S, be defined as in Claim 16. Then the
average of the degrees of the vertices in S,U{z} in B is (k+|S;|)/(k—1) = (2k—2)(k—1) =
2. Since the sets S, Uz (with € M', dg(z) > 3) are disjoint, we can conclude that
average degree of the set M’ is at most 2. Therefore 2 |M’| > |B|. So by (2) we have
2|M'| > |B| > |P| — 48d(V'), which completes the proof of the lemma. O

Claim 18. We may assume that the maximum degree in the graph G is less than 160~/n
when n s large enough.

Proof. Let v be an arbitrary vertex with dg(v) = Cd for some constant C' > 0. Let P be
the set of the good 2-paths starting from the vertex v. Then applying Lemma 15 with
M = N(v) and M’ = {y | voy € P}, we have |P| < 2|M'| 4+ 48dg(v) < 2n + 48 - Cd.
Since the minimum degree in G is at least d/6, the number of (ordered) 2-paths starting
from v is at least d(v) - (d/6 — 1) = Cd - (d/6 — 1). Notice that the number of (ordered)
bad 2-paths starting at v is the number of 2-paths vxy such that x,y € N(v). So by
Lemma 13, this is at most 2 - 8 |N(v)| = 16Cd, so the number of good 2-paths is at least
Cd-(d/6 —17). So |P| > Cd - (d/6 — 17). Thus we have

Cd-(d/6 —17) < |P| < 2n + 48C4d.
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So Cd(d/6 — 65) < 2n. Therefore, 6C(d/6 — 65)2 < 2n, i.e., d < 6/n/3C + 390, so
|[H| = nd/3 < 2n\/n/3C +130n. If C' > 36 we get that |H| < 22 +130n = 222 + O(n),
proving Theorem 3. So we may assume C' < 36.

Theorem 2 implies that

|H| = nd/3 < V2n*? + 4.5n, (3)

so_c_l < 3v2y/n + 13.5. So combining this with the fact that C' < 36, we have dg(v) =
Cd < 108v/2y/n + 486 < 160+/n for large enough n. O

Combining Lemma 15 and Claim 18, we obtain the following.

Lemma 19. For any vertezx v € V(G) and a set M C N(v), let P be the set of good
2-paths vy such that x € M. Let M' = {y | vey € P} then |P| < 2|M’| + 7680/n when
n 1s large enough.

Definition 20. A 3-path xg, x1, x2, x3 is called good if both 2-paths xq, x1, x5 and x1, 29, 3
are good 2-paths.

Claim 21. The number of (ordered) good 3-paths in G is at least nESG — Con®?dg for
some constant Co > 0 (for large enough n).

Proof. First we will prove that the number of (ordered) 3-walks that are not good 3-paths
is at most 5440n%/2d.

For any vertex x € V(H) if a path yxz is a bad 2-path then zy is an edge of G, so
the number of (ordered) bad 2-paths whose middle vertex is x, is at most 2 times the
number of edges in G[N(z)], which is less than 2 - 8| N(z)| = 16dg(z) by Lemma 13.
The number of 2-walks which are not 2-paths and whose middle vertex is = is exactly
dg(x). So the total number of (ordered) 2-walks that are not good 2-paths is at most
ZxGV(H) 17dg(l’) = 177’LdG

Notice that, by definition, any (ordered) 3-walk that is not a good 3-path must contain
a 2-walk that is not a good 2-path. Moreover, if xyz is a 2-walk that is not a good 2-path,
then the number of 3-walks in G containing it is at most dg(z) + da(z) < 3204/n (for
large enough n) by Claim 18. Therefore, the total number of (ordered) 3-walks that are
not good 3-paths is at most 17ndg - 3204/n = 5440n3/%d.

By the Blakley-Roy inequality, the total number of (ordered) 3-walks in G is at least
nEZ. By the above discussion, all but at most 5440n*2d; of them are good 3-paths, so
letting Cy = 5440 completes the proof of the claim. n

Claim 22. Let {a,b,c} be the vertex set of a triangle that belongs to D. (By Observation
10 (a) abc € H.) Then the number of good 3-paths whose first edge is ab,bc or ca is at
most 8n + C1/n for some constant Cy and for large enough n.

Proof. For each {z,y} C {a,b,c}, let S,y = N(z)NN(y)\ {a,b,c}. For each x € {a,b,c},
let S, = N(z)\ (N(y) UN(2)U{a,b,c}) where {y, 2z} = {a,b,c} \ {z}.
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For each x € {a,b,c}, let P, be the set of good 2-paths xuv where u € S,. Let
S! = {v | zuv € P,}. For each {z,y} C {a,b,c}, let P,, be the set of good 2-paths zuv
and yuv where u € Sgy. Let S, = {v | zuv € Py }.

Let {z,y} C {a,b,c} and z = {a,b,c} \ {z,y}. Notice that each 2-path yuv € P,
(zuv € Pyy), is contained in at most one good 3-path zyuv (respectively zzuv) whose first
edge is in the triangle abc. Indeed, since u € Sy, xyuv (respectively yzuv) is not a good
3-path. Therefore, the number of good 3-paths whose first edge is in the triangle abc,
and whose third vertex is in Sy, is at most |P,,|. The number of paths in P,, that start
with the vertex x is less than 2 |S;y| + 7680+/n, by Lemma 19. Similarly, the number of
paths in P, that start with the vertex y is less than 2 ‘S;y} + 76804/n. Since every path
in P,, starts with either x or y, we have |P,,| < 4 }S;y| + 15360+/n. Therefore, for any
{z,y} C {a,b,c}, the number of good 3-paths whose first edge is in the triangle abe, and
whose third vertex is in S, is less than 4 ‘Sg’cy‘ + 15360+/n.

In total, the number of good 3-paths whose first edge is in the triangle abc and whose
third vertex is in Sy, U Spe U S, 1S at most

4185 | + [9el + [S5el) + 46080/n. (4)

Let = € {a,b,c} and {y, 2z} = {a,b,c} \ {z}. For any 2-path xuv € P, there are 2
good 3-paths with the first edge in the triangle abc, namely yzuv and zzuv. So the total
number of 3-paths whose first edge is in the triangle abc and whose third vertex is in
Sa U S, U S, is 2(|Py| + |Py| + |Pe|), which is at most

4(|SG] + |S5] + [Se]) + 46080v/n, (5)

by Lemma 19.

Now we will prove that every vertex is in at most 2 of the sets S, S}, 5., S%,, S;., S
Let us assume by contradiction that a vertex v € V(G) \ {a,b,c} is in at least 3 of
them. We claim that there do not exist 3 vertices u, € N(a) \ {b,c}, u, € N(b) \ {a,c}
and u., € N(c) \ {a,b} such that ru,v is a good 3-path for each x € {a,b,c}. Indeed,
otherwise, consider hyperedges h,, h!, containing the pairs au, and u,v respectively (since
au,v is a good 2-path, note that h, # h!), and hyperedges hy, hy, he, h.. containing the
pairs buy, upv, cu., u.v respectively. Then either h! # hj or hl, # h., say h, # h; without
loss of generality. Then the hyperedges hq, h,, hy, hy, abc create a Berge 5-cycle in H, a
contradiction, proving that it is impossible to have 3 vertices u, € N(a) \ {b,c}, u, €
N(b) \ {a,c} and u. € N(c) \ {a,b} with the above mentioned property. Without loss
of generality let us assume that there is no vertex u, € N(a) \ {b,c} such that au,v is
a good 2-path — in other words, v ¢ S/ U S/, U S/ .. However, since we assumed that
v is contained in at least 3 of the sets S.,S;,S.,S.,, ;.. See, We can conclude that v is
contained in all 3 of the sets S}, S., S}, i.e., there are vertices u, € Sy, u. € Se,u € Spe

!

ac)
c?

such that vuyb, vu.c, vub, vuc are good 2-paths. Using a similar argument as before, if
vu € h, vu, € hy and vu,. € h., without loss of generality we can assume that h # hy,
so the hyperedges abc,h,h;, together with hyperedges containing uc and u,b form a Berge
5-cycle in H, a contradiction.
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So we proved that
215, U S, USLU Sgp U Sy U Sgel 2 [Sa] + [Sp] + |52 + [Sap] + [Shel + 15|

This together with (4) and (5), we get that the number of good 3-paths whose first edge
is in the triangle abc is at most

8|S/ US,US US,US,. US| +92160v/n < 8n + Civ/n
for €} = 92160 and large enough n, finishing the proof of the claim. O

Claim 23. Let P = abc be a 2-path and P € D. (By Observation 10 (b) abc € H.) Then
the number of good 3-paths whose first edge is ab or be is at most 4n + Ca/n for some
constant Cy > 0 and large enough n.

Proof. First we bound the number of 3-paths whose first edge is ab. Let Sy, = N(a)NN(b).
Let S, = N(a) \ (N(b) U{b}) and S, = N(b) \ (N(a) U{a}). For each z € {a,b}, let P,
be the set of good 2-paths xuv where u € S, and let S, = {v | zuv € P,}. The set of
good 3-paths whose first edge is ab is P, U P, because the third vertex of a good 3-path
starting with an edge ab can not belong to N(a) N N (b) by the definition of a good 3-path.

We claim that S, NS;| < 160y/n. Let us assume by contradiction that vy, vq, ... v, €
S! NS} for k > 160/n. For each vertex v; where 0 < ¢ < k, there are vertices a; € S, and
b; € Sy such that aa,;v;, bb;v; are good 2-paths. For each 0 < i < k, the hyperedge a;v;b; is
in H, otherwise we can find distinct hyperedges containing the pairs aa;, a;v;, v;b;, b;b and
these hyperedges together with abc, would form a Berge 5-cycle in H, a contradiction.
We claim that there are j,1 € {0,1,...,k} such that a; # a;, otherwise there is a vertex
x such that © = a; for each 0 < i < k. Then xv; € G for each 0 < 7 < k, so we get that
dg(x) > k > 1604/n which contradicts Claim 18.

So there are j,1 € {0,1, ..., k} such that a; # a; and a;v;b;, qyu;b; € H. By observation
10 (b), there is a hyperedge h # abc such that ac C h. Clearly either a; ¢ h or a; ¢ h.
Without loss of generality let a; ¢ h, so there is a hyperedge h, with aa; C h, # h. Let
hy O b;b, then the hyperedges abc, h, hy, a;jv;b;, by form a Berge 5-cycle, a contradiction,
proving that S/, N Sj| < 1604/n.

Notice that | S|+ |S;| =[S, U S;| + S, N S;| < n+1604/n. So by Lemma 19, we have

Pal + |Po] < 2(/S%| + |S)]) + 2 - 7680v/n < 2(n + 160v/n) + 2 - 7680v/n = 2n + 15680/

for large enough n. So the number of good 3-paths whose first edge is ab is at most
2n + 15680y/n. By the same argument, the number of good 3-paths whose first edge is
be is at most 2n + 156804/n. Their sum is at most 4n + Coy/n for Cy = 31360 and large
enough n, as desired. O]

Claim 24. Let {a,b,c,d} be the vertex set of a K, that belongs to D. Let F = K3 be
a hypergraph on the vertex set {a,b,c,d}. (By Observation 10 (¢) FF C H.) Then the
number of good 3-paths whose first edge belongs to OF is at most 6n + C3+/n for some
constant C3 > 0 and large enough n.

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(2) (2020), #P2.16 11



Proof. First, let us observe that there is no Berge path of length 2, 3 or 4 between distinct
vertices z,y € {a,b,c,d} in the hypergraph H \ F, because otherwise this Berge path
together with some edges of F' will form a Berge 5-cycle in H. This implies, that there is
no path of length 3 or 4 between = and y in G \ JF, because otherwise we would find a
Berge path of length 2,3 or 4 between x and y in H \ F.

Let S ={u € V(H)\ {a,b,c,d} | Hz,y} C {a,b,c,d},u € N(z)N N(y)}. For each
x € {a,b,c,d}, let S, = N(x)\ (SU{a,b,c,d}). Let Pg be the set of good 2-paths zuv
where = € {a,b,c,d} and u € S. Let S" = {v | zuv € Ps}. For each x € {a,b,c,d}, let
P. be the set of good 2-paths xuv where u € S,, and let S, = {v | zuv € P, }.

Let v € S’. By definition, there exists a pair of vertices {z,y} C {a,b,c,d} and a
vertex u, such that zuv and yuv are good 2-paths.

Suppose that zu'v is a 2-path different from zuv and yuv where z € {a,b,c,d}. If
u' = wu then z ¢ {x,y} so there is a Berge 2-path between x and y or between z and z in
H \ F, which is impossible. So u # «’. Either z # x or z # y, without loss of generality
let us assume that z # x. Then zu'vuzx is a path of length 4 in G \ OF, a contradiction.
So for any v € S’ there are only 2 paths of P, U P, U P, U Py U Pg that contain v as
an end vertex — both of which are in Pg — which means that v ¢ S, U S; U S. U S, so
S'N (S, usS,USsius)) = 0. Moreover,

Psl < 2|97 (6)

We claim that S) and S; are disjoint. Indeed, otherwise, if v € S/, N S} there exists
xr € S, and y € S such that vxa and vyb are paths in G, so there is a 4-path axvyd
between vertices of F' in G\ OF, a contradiction. Similarly we can prove that S/, S}, S!
and S/, are pairwise disjoint. This shows that the sets S’, 5,5}, S. and S, are pairwise
disjoint. So we have

5705, U S, UScU Sy = |5+ 5] + [Sp] + [Sel + 53l - (7)

By Lemma 19, we have | Py |+ |Ps| +|Pe| + |Pal < 2(15%]+[Sh]| + | SE|+155]) +4-7680+/n.
Combining this inequality with (6), we get

[Ps| + [Pal + [Po] + [Pel + [Pal < 21| +2(18,] + |S] + |Se] + |S4]) + 4 - 7680v/n. (8)
Combining (7) with (8) we get
| Ps|4|Pa|+|Ps|+|Pe|+|Pal < 215" U S, US,US.US,+30720/n < 2n+30720y/n, (9)

for large enough n.

Each 2-path in Ps U P, UP, UP.UPy can be extended to at most three good 3-paths
whose first edge is in 0F. (For example, auv € P, can be extended to bauv,cauv and
dauv.) On the other hand, every good 3-path whose first edge is in JF must contain a
2-path of P, UP,UP.UP,;UPgs as a subpath. So the number of good 3-paths whose first
edge is in OF is at most 3 |P, U P, UP.U Py UPs| = 3(|Ps| + |Pal + |Ps| + |Pe| + |Pal)
which is at most 6n + C3y/n by (9), for C3 = 92160 and large enough n, proving the
desired claim. O
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2.3 Combining bounds on the number of 3-paths

Recall that oy |G|, ay |G|, (1—a; —ay) |G| are the number of edges of G that are contained
in triangles, 2-paths and K,’s of the edge-decomposition D of G, respectively. Then the
number of triangles, 2-paths and K,’s in D is a; |G| /3, a2 |G| /2 and (1 — oy — o) |G| /6
respectively. Therefore, using Claim 22, Claim 23 and Claim 24, the total number of
(ordered) good 3-paths in G is at most

— Qg —042)

G |G| (6n + Cs5v/n) <

1
16 (s + Cov/) + 2216 (4n + o) +

8
< |G|n(%+2a2+<1—a1—a2>) L (CL+ o + GV |G =

3/2
)+@+@+@W2@

. TLQEG 5061 + 30&2 + 3
2 3

Combining this with the fact that the number of good 3-paths is at least nEé—C’Dn?’/ 2de
(see Claim 21), we get

n3/2d,

>+(Cl+02+(]3) 5

naz — Con®?dg <

n2EG S5a1 + 3ag + 3
2 3

Rearranging and dividing by ndg on both sides, we get

32 < (5a1+3a2+3

1
G X 6 >n+§\/ﬁ((01+02+03)+200).

Since (bay 43 +3)/6 > 1/2, we may replace 1/2 with (5a; 432 +3)/6 in the above
inequality to obtain

32G< <5Oz1+§012+3>n(1+(Cl—l—ng}ﬁC%)—f-QCo)

So letting Cy = (Cy + Cy + C3) + 2C, we have,

— C4\/50é1+36¥2+3 04 \/50&1+30&2+3
do < 414+ —2, /22T 2 1 . (10
a1+ ’ \/ﬁ<< +2ﬁ) RN

for large enough n. By Claim 11, we have

—a; — ay) ’G‘:4—2a1—a2nag
3 6 2

o « 2(1
< 2161+ 216+ 2
3 2
Combining this with (10) we get

|H| < 1+ 04 (4—2041—042)\/5011+3042+3n3/2
b 2\/n 12 6 ’
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for sufficiently large n. So we have

exg(n, Cs) < (14 0o(1))

(4 — 20, — ag) \/5a1 +3a 43 4
12 6 ’

The right hand side is maximized when o7 = 0 and ay = 2/3, so we have

4-2/3
12

exz(n,Cs) < (1+o(1)) \/gn” < (14 0(1))0.2536n°/2.

This finishes the proof.
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