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Abstract

A family F of k-element subsets of the n-element set [n] is called intersecting if
FNF' %0 forall F,F’ € F. In 1961 Erdés, Ko and Rado showed that |F| < (}_})
if n > 2k. Since then a large number of results providing best possible upper
bounds on |F| under further restraints were proved. The paper of Li et al. is one of
them. We consider the restricted universe W = {F € ([Z]) SFNm]| > E}, n > 2k,

m > 2¢ and determine max |F| for intersecting families 7 C WW. Then we use this
result to solve completely the problem considered by Li et al.

Mathematics Subject Classifications: 05D05

1 Introduction

Let n, k be positive integers, n > 2k. Let [n] = {1,2,...,n} be the standard n-element set
and ([Z}) the collection of all its k-element subsets. Subsets F of ([z}) are called k-uniform
families.

A family F is called intersecting if F N F’ # () holds for all F, F’ € F. The simplest
example of a large intersecting family is the star:

s {re()aer).

Obviously, |S| = (}_;). The classical Erdés-Ko-Rado Theorem [EKR] states that no

k-uniform intersecting family can surpass |S]|.

*This research was done while the author was visiting the National Chung Hsing University in
Taichung, Taiwan.
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Hilton and Milner [HM] showed that for n > 2k up to isomorphism the star is the
unique maximal family. The Erdés—-Ko-Rado Theorem was the origin of a lot of research,
there are many papers strengthening, generalizing or extending it. We refer the interested
reader to the recent monograph by Gerbner and Patkos [GP].

Motivated by a paper of Li, Chen, Huang and Li [LCHL] we consider the following
problem.

Let (m,¢) be a pair of integers, m > 2¢ > 0. Let us consider

»vz{Ge<T>memm>e}

In order to guarantee that WV is not empty, we suppose that k > ¢. Since increasing m
beyond n does not change W, we suppose n > m as well. Whenever we need to stress the
parameters, we write W(n, k, m, {) instead of the short form W. We call W the restricted
unverse.

Definition 1. Let g(n, k,m, ) denote the maximum of |F| where F C W(n, k,m,() is
intersecting. Let us define the restricted star R = R(n,k,m,f) by R =S NW, that is,

R:{Re(ﬁb:1eR¢Rmmm>e}

For the case m > k + ¢ we are going to show that
(1) g9(n,k,m, ) = |R].

In the case m < k+ ¢ — 1 one can add further sets to R. Define t = m + 1 — ¢ and note
¢ <t < k (the first part follows from m > 2¢). Define

P={PeW:|Pnm]|>t}, Py={PeP:1¢P}.

Then [RUP| = |R|+ |Po| and R U P is still intersecting. Indeed, if R € R, P € P, then
(+t > m implies RN PN[m] # (. For P, P’' € P the same follows from t+¢ > (+1 > m.

Our main result is the following

Theorem 2. Let n,k,m, ¢ satisfy n = 2k, m > 20, n > m, k > ¢ > 1. Then either
m = k+{ and (1) holds or m < k +{ and

(2) g(n,k,m,l) =R UPy.

We prove Theorem 2 in Section 2. In Section 3 we use it for the complete solution of
the following problem that was raised in [LCHL].
Definition 3. Let n,m, k be positive integers, n > 2k > m > k. A family F C ([Z])
is called m-complete if ([’g}) C F. Let h(n,m,k) denote max{|F| : F C ([Z]), F is
intersecting and m—complete}. For m = k and k£ + 1 the Erdés-Ko-Rado Theorem and
the Hilton—Milner Theorem, respectively, give the answer:

1 1 k-1
h@jﬁﬁz(?_&, Mmk+Lm:%ﬁ_l>—(”k_l)+4.
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Theorem 4. Ifn > 2k >m > k, then

o ene-()e T ()6

m—k+1<i<k—1

We should mention that Li, Chen, Huang and Li [LCHL] determined h(n,m, k) for
n > ng(k) and also for m = 2k — 1,2k — 2,2k — 3. Their construction corresponding to
(3) is
[m]

memk%:(k>U{H€<zD:16Hﬂn—k+1<ﬁﬂﬂmﬂgk—1}

2 The proof of Theorem 2

We are going to apply induction on n. The base of the induction is the case n = 2k.

In the non-restricted universe, ([Qkk}) the Erdés-Ko-Rado Theorem gives the upper

bound (2:__11) = (2:) / 2. The proof is very easy. Partition ([2:]) into (2:__11) complemen-
tary pairs (U, V), that is |U| = |V| = k and U = [2k] \ V. Note that at most one of the
two sets can be a member of an intersecting family.

Since the upper bound (2::11) is still valid in the restricted universe, we just have to
show that our constructions match this bound. That is, for every complementary pair
(U, V) one of the sets is in our family. By symmetry assume 1 € U. If m > k + ¢, then

UUV =[2k] D [m] and |V| = k imply
UNm]|=m—k=>¢( ie, U€eR.

Let m<k+(—1. If|UN[m|| > ¢, then U e R. If [UN[m]| <{—1, then [m| CUUV
implies [V N [m]| > m —{¢+1=1t,1ie.,V € P. This concludes the proof of (1) and (2)
for the case n = 2k.

In the induction step we are going to prove (1) and (2) for the pair (n+1, k) assuming
its validity for the pairs (n,k) and (n,k — 1). Formally there could be a problem in the
case k = {, because k — 1 is no longer greater or equal to /. However, if £k = ¢, then
our restricted universe is simply ([’IZ]) and (1) directly follows from the Erdés—Ko-Rado
Theorem. Thus we assume k > ¢ in the sequel.

The inductive step is fairly simple, however it relies on shifting, an operation on
families that was introduced by Erdés, Ko and Rado [EKR]. To keep this paper short let
us refer to [F'87] for the details concerning shifting. The point is that this operation does
not destroy the intersecting property and it maintains the property |F N [m]| > ¢ as well.
Applying it repeatedly eventually produces a family F with the following property.

(4) Whenever F e F, 1<i<j<n and FN{i,j}=1{j},
then the set (F'\ {j}) U {i} is also in F.

Families satisfying (4) are called shifted. In view of the above discussion, in proving
Theorem 2 we may assume that the intersecting family F C W is shifted. Shifted families
have many useful properties but we only need one, namely Claim 5 below.
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Recall the standard definitions
F@i)={F\{i}: ie FeF}, Fi)={FeF: i¢F}.
The equality B
[ = 1F )]+ [F@)]

should be obvious. Since F(i) C F, F(i) is intersecting.
Claim 5 ([EKR)). If F C ([nzl]) is shifted and intersecting, n + 1 > 2k, then F(n + 1)
15 intersecting as well.
Proof. Let G,G" € F(n+1). Since |G|+ |G'| = 2(k — 1) < n, we can choose i € [n] such
that i ¢ GUG'. Set F = GU{n+ 1}, F' = G'U{i}. Now F € F by definition and
F’" € F by (4). Noting FNF'= G NG, the statement follows. O

Now we are ready to prove the induction step.
Lemma 6. Ifn > m, then
Proof. Let F C W(n + 1,k,m,{) be intersecting. Because of n > m both F(n+ 1) C
W(n,k,m,¢) and F(n+ 1) C W(n,k — 1,m,¥) hold. In view of Claim 5 they are both
intersecting. Consequently,

[F(n+ 1) <gn k,ml), |Fln+1)| <glnk—1m,1).

These two inequalities imply (5). ]

What about the case n + 1 = m? Fortunately, in this case k > ¢ implies W(n +
Lk,n+1,0) = (["Zl]) and the statement of Theorem 2 follows directly from the Erdds—
Ko—Rado Theorem. Thus we may assume both n > m and £ > ¢. By Lemma 6, to
conclude the proof in these cases the only thing that we have to show is that for the
families F = R(n+ 1,k,m,¢) or F = R(n+ 1,k,m,0) UPy(n+ 1,k ,m,¥)

|F(n+ 1) =g(n,k,m,¢) and
[F(n+ 1) =g(n k—1,m,10).
However, both these facts are immediate from the definitions of R and Py. The only

case that needs a slight verification is Py = Po(n + 1, k,m, ). Recall that t =m +1—/¢
is independent of k and

m={re("T0) e pom =,

Consequently,

Poln+1) = {P e ([Z]) L 1¢ P |PN[m)| > t} = Po(n, k,m,0) and

-1
where in the second inequality we used £ — 1 > /¢ also.
The proof of Theorem 2 is complete. U

Poln+1) = {Pe (k[”] ) . 1¢ P, |PNm| >t} = Po(n, k —1,m, 0),
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3 The proof of Theorem 4

Let F C ([Z]) be m-complete and intersecting. Set £ = m — k + 1. Note that ¢ < k is
equivalent to m < 2k — 1.

If m =2k —1, then ([%k_l]) C F. Since no more k-set can be added to ([Qkk_l]) without

destroying the intersecting property, |F| = (Qkk_ 1) and R(n,2k — 1,k) = (Qkk_ 1) follow.

Thus we may assume that m < 2k — 2 whence { =m — k+ 1 < k — 1. Adding ¢ we infer
WLl+k—-1=m.

Since F is intersecting and ([ZL}) C F we infer |F N [m]| > ¢ for all F € F. That is,
F C W(n,k,m, ) and F is intersecting. Consequently we may apply Theorem 2 to F.
Since k+¢=k+ (m—k+1) =m+ 1, we use (2) and conclude

Using the corresponding formulae (and t = m+ 1 —{ = k):

[R(n,k,m, 0)] = ) (?:11) <nk_—n;)

I<i<k

‘PO(n7kum7£>‘ = <mkj 1)

These and (6) yield

m m—1\[(n—m
< ired. O
|F| <k;)+ Z (i—l)(k—i) as desired

<i<k—1
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