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Abstract

A family F of k-element subsets of the n-element set [n] is called intersecting if
F ∩F ′ 6= ∅ for all F, F ′ ∈ F . In 1961 Erdős, Ko and Rado showed that |F| 6

(
n−1
k−1
)

if n > 2k. Since then a large number of results providing best possible upper
bounds on |F| under further restraints were proved. The paper of Li et al. is one of

them. We consider the restricted universeW =
{
F ∈

([n]
k

)
: |F ∩ [m]| > `

}
, n > 2k,

m > 2` and determine max |F| for intersecting families F ⊂ W. Then we use this
result to solve completely the problem considered by Li et al.

Mathematics Subject Classifications: 05D05

1 Introduction

Let n, k be positive integers, n > 2k. Let [n] = {1, 2, . . . , n} be the standard n-element set
and

(
[n]
k

)
the collection of all its k-element subsets. Subsets F of

(
[n]
k

)
are called k-uniform

families.
A family F is called intersecting if F ∩ F ′ 6= ∅ holds for all F, F ′ ∈ F . The simplest

example of a large intersecting family is the star:

S =

{
F ∈

(
[n]

k

)
: 1 ∈ F

}
.

Obviously, |S| =
(
n−1
k−1

)
. The classical Erdős–Ko–Rado Theorem [EKR] states that no

k-uniform intersecting family can surpass |S|.
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Hilton and Milner [HM] showed that for n > 2k up to isomorphism the star is the
unique maximal family. The Erdős–Ko–Rado Theorem was the origin of a lot of research,
there are many papers strengthening, generalizing or extending it. We refer the interested
reader to the recent monograph by Gerbner and Patkos [GP].

Motivated by a paper of Li, Chen, Huang and Li [LCHL] we consider the following
problem.

Let (m, `) be a pair of integers, m > 2` > 0. Let us consider

W =

{
G ∈

(
[n]

k

)
: |G ∩ [m]| > `

}
.

In order to guarantee that W is not empty, we suppose that k > `. Since increasing m
beyond n does not changeW , we suppose n > m as well. Whenever we need to stress the
parameters, we writeW(n, k,m, `) instead of the short formW . We callW the restricted
universe.

Definition 1. Let g(n, k,m, `) denote the maximum of |F| where F ⊂ W(n, k,m, `) is
intersecting. Let us define the restricted star R = R(n, k,m, `) by R = S ∩W , that is,

R =

{
R ∈

(
[n]

k

)
: 1 ∈ R, |R ∩ [m]| > `

}
.

For the case m > k + ` we are going to show that

(1) g(n, k,m, `) = |R|.

In the case m 6 k + `− 1 one can add further sets to R. Define t = m + 1− ` and note
` < t 6 k (the first part follows from m > 2`). Define

P =
{
P ∈ W : |P ∩ [m]| > t

}
, P0 =

{
P ∈ P : 1 /∈ P

}
.

Then |R ∪P| = |R|+ |P0| and R∪P is still intersecting. Indeed, if R ∈ R, P ∈ P , then
`+ t > m implies R∩P ∩ [m] 6= ∅. For P, P ′ ∈ P the same follows from t+ t > `+ t > m.

Our main result is the following

Theorem 2. Let n, k,m, ` satisfy n > 2k, m > 2`, n > m, k > ` > 1. Then either
m > k + ` and (1) holds or m < k + ` and

(2) g(n, k,m, `) = |R ∪ P0|.

We prove Theorem 2 in Section 2. In Section 3 we use it for the complete solution of
the following problem that was raised in [LCHL].

Definition 3. Let n,m, k be positive integers, n > 2k > m > k. A family F ⊂
(
[n]
k

)
is called m-complete if

(
[m]
k

)
⊂ F . Let h(n,m, k) denote max

{
|F| : F ⊂

(
[n]
k

)
, F is

intersecting and m-complete
}

. For m = k and k + 1 the Erdős–Ko–Rado Theorem and
the Hilton–Milner Theorem, respectively, give the answer:

h(n, k, k) =

(
n− 1

k − 1

)
, h(n, k + 1, k) =

(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1.
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Theorem 4. If n > 2k > m > k, then

(3) h(n,m, k) =

(
m

k

)
+

∑
m−k+16i6k−1

(
m− 1

i− 1

)(
n−m

k − i

)
.

We should mention that Li, Chen, Huang and Li [LCHL] determined h(n,m, k) for
n > n0(k) and also for m = 2k − 1, 2k − 2, 2k − 3. Their construction corresponding to
(3) is

H(n,m, k) =

(
[m]

k

)
∪
{
H∈

(
[n]

k

)
: 1 ∈ H, m− k + 1 6 |H ∩ [m]| 6 k − 1

}
.

2 The proof of Theorem 2

We are going to apply induction on n. The base of the induction is the case n = 2k.
In the non-restricted universe,

(
[2k]
k

)
the Erdős–Ko–Rado Theorem gives the upper

bound
(
2k−1
k−1

)
=
(
2k
k

) /
2. The proof is very easy. Partition

(
[2k]
k

)
into

(
2k−1
k−1

)
complemen-

tary pairs (U, V ), that is |U | = |V | = k and U = [2k] \ V . Note that at most one of the
two sets can be a member of an intersecting family.

Since the upper bound
(
2k−1
k−1

)
is still valid in the restricted universe, we just have to

show that our constructions match this bound. That is, for every complementary pair
(U, V ) one of the sets is in our family. By symmetry assume 1 ∈ U . If m > k + `, then
U ∪ V = [2k] ⊃ [m] and |V | = k imply

|U ∩ [m]| > m− k > `, i.e., U ∈ R.

Let m 6 k + `− 1. If |U ∩ [m]| > `, then U ∈ R. If |U ∩ [m]| 6 `− 1, then [m] ⊂ U ∪ V
implies |V ∩ [m]| > m − ` + 1 = t, i.e., V ∈ P . This concludes the proof of (1) and (2)
for the case n = 2k.

In the induction step we are going to prove (1) and (2) for the pair (n+1, k) assuming
its validity for the pairs (n, k) and (n, k − 1). Formally there could be a problem in the
case k = `, because k − 1 is no longer greater or equal to `. However, if k = `, then
our restricted universe is simply

(
[m]
k

)
and (1) directly follows from the Erdős–Ko–Rado

Theorem. Thus we assume k > ` in the sequel.
The inductive step is fairly simple, however it relies on shifting, an operation on

families that was introduced by Erdős, Ko and Rado [EKR]. To keep this paper short let
us refer to [F87] for the details concerning shifting. The point is that this operation does
not destroy the intersecting property and it maintains the property |F ∩ [m]| > ` as well.
Applying it repeatedly eventually produces a family F with the following property.

Whenever F ∈ F , 1 6 i < j 6 n and F ∩ {i, j} = {j},(4)

then the set (F \ {j}) ∪ {i} is also in F .

Families satisfying (4) are called shifted. In view of the above discussion, in proving
Theorem 2 we may assume that the intersecting family F ⊂ W is shifted. Shifted families
have many useful properties but we only need one, namely Claim 5 below.
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Recall the standard definitions

F(i) = {F \ {i} : i ∈ F ∈ F}, F(i) = {F ∈ F : i /∈ F}.
The equality

|F| = |F(i)|+ |F(i)|
should be obvious. Since F(i) ⊂ F , F(i) is intersecting.

Claim 5 ([EKR]). If F ⊂
(
[n+1]

k

)
is shifted and intersecting, n + 1 > 2k, then F(n + 1)

is intersecting as well.

Proof. Let G,G′ ∈ F(n + 1). Since |G|+ |G′| = 2(k − 1) < n, we can choose i ∈ [n] such
that i /∈ G ∪ G′. Set F = G ∪ {n + 1}, F ′ = G′ ∪ {i}. Now F ∈ F by definition and
F ′ ∈ F by (4). Noting F ∩ F ′ = G ∩G′, the statement follows.

Now we are ready to prove the induction step.

Lemma 6. If n > m, then

(5) |F| 6 g(n, k,m, `) + g(n, k − 1,m, `).

Proof. Let F ⊂ W(n + 1, k,m, `) be intersecting. Because of n > m both F(n + 1) ⊂
W(n, k,m, `) and F(n + 1) ⊂ W(n, k − 1,m, `) hold. In view of Claim 5 they are both
intersecting. Consequently,

|F(n + 1)| 6 g(n, k,m, `), |F(n + 1)| 6 g(n, k − 1,m, `).

These two inequalities imply (5).

What about the case n + 1 = m? Fortunately, in this case k > ` implies W(n +
1, k, n + 1, `) =

(
[n+1]

k

)
and the statement of Theorem 2 follows directly from the Erdős–

Ko–Rado Theorem. Thus we may assume both n > m and k > `. By Lemma 6, to
conclude the proof in these cases the only thing that we have to show is that for the
families F = R(n + 1, k,m, `) or F = R(n + 1, k,m, `) ∪ P0(n + 1, k,m, `)

|F(n + 1)| = g(n, k,m, `) and

|F(n + 1)| = g(n, k − 1,m, `).

However, both these facts are immediate from the definitions of R and P0. The only
case that needs a slight verification is P0 = P0(n + 1, k,m, `). Recall that t = m + 1− `
is independent of k and

P0 =

{
P ∈

(
[n + 1]

k

)
: 1 /∈ P, |P ∩ [m]| > t

}
.

Consequently,

P0(n + 1) =

{
P ∈

(
[n]

k

)
: 1 /∈ P, |P ∩ [m]| > t

}
= P0(n, k,m, `) and

P0(n + 1) =

{
P ∈

(
[n]

k − 1

)
: 1 /∈ P, |P ∩ [m]| > t

}
= P0(n, k − 1,m, `),

where in the second inequality we used k − 1 > ` also.
The proof of Theorem 2 is complete. �
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3 The proof of Theorem 4

Let F ⊂
(
[n]
k

)
be m-complete and intersecting. Set ` = m − k + 1. Note that ` 6 k is

equivalent to m 6 2k − 1.
If m = 2k−1, then

(
[2k−1]

k

)
⊂ F . Since no more k-set can be added to

(
[2k−1]

k

)
without

destroying the intersecting property, |F| =
(
2k−1
k

)
and R(n, 2k − 1, k) =

(
2k−1
k

)
follow.

Thus we may assume that m 6 2k − 2 whence ` = m− k + 1 6 k − 1. Adding ` we infer

2` 6 ` + k − 1 = m.

Since F is intersecting and
(
[m]
k

)
⊂ F we infer |F ∩ [m]| > ` for all F ∈ F . That is,

F ⊂ W(n, k,m, `) and F is intersecting. Consequently we may apply Theorem 2 to F .
Since k + ` = k + (m− k + 1) = m + 1, we use (2) and conclude

(6) |F| 6
∣∣R(n, k,m, `)

∣∣+
∣∣P0(n, k,m, `)

∣∣.
Using the corresponding formulae (and t = m + 1− ` = k):∣∣R(n, k,m, `)

∣∣ =
∑
`6i6k

(
m− 1

i− 1

)(
n−m

k − i

)
,

∣∣P0(n, k,m, `)
∣∣ =

(
m− 1

k

)
.

These and (6) yield

|F| 6
(
m

k

)
+

∑
`6i6k−1

(
m− 1

i− 1

)(
n−m

k − i

)
as desired. �
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