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Abstract

We extend classical results on simple varieties of trees (asymptotic enumeration,
average behavior of tree parameters) to trees counted by their number of leaves.
Motivated by genome comparison of related species, we then apply these results to
strong interval trees with a restriction on the arity of prime nodes. Doing so, we
describe a filtration of the set of permutations based on their strong interval trees.
This filtration is also studied from a purely analytical point of view, thus illustrating
the convergence of analytic series towards a non-analytic limit at the level of the
asymptotic behavior of their coefficients.

Mathematics Subject Classifications: 05A15, 05A16

1 Introduction

Permutations can be realized in many different forms using a variety of structures. The
idea of viewing permutations as enriched trees has been around for several decades in
different research communities. For example, in the foundational enumerative study [1] of
pattern-avoiding permutations, the properties of the corresponding decomposition trees
play a crucial role. Very classically in the complexity analysis of sorting algorithms,
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parameters of an increasing tree structure are linked to the complexity of the sorting
algorithm. Additionally, PQ-trees [6] appear in the context of graph algorithms and strong
interval trees arise in comparative genomics [7] (and references therein, for instance).

The focus of this article is the study of strong interval trees, and the average value of
certain parameters. The parameters are motivated by algorithm analysis in comparative
genomics. The expected shape of these trees under a uniform distribution of permutations
is described in [7]. They turn out to be extremely flat and rather degenerate, on average.
This fact impacts the companion algorithm analysis. In the particular context of genome
rearrangements, the permutations that arise in the biological data (for example in the
study of mammalian genomes) do not appear under a uniform distribution, and are rarely
flat in the same way. Consequently, Bouvel et al. [7] considered a subclass of strong interval
trees – selected because they represent what is known as commuting scenarios [3] – that
correspond to the class of separable permutations. This was framed a first step towards a
more relevant model of permutations which arise in genome comparison.

By studying asymptotic enumeration and parameter formulas for separable permuta-
tions, they proved that the complexity of the algorithm of [3] solving the perfect sorting by
reversals problem is polynomial-time on separable permutations, whereas this problem is
NP-complete in general. Thus, this subclass better mirrored experimental data. Further-
more, they determined some average-case properties of the perfect sorting scenarios for
separable permutations. We refer the reader to either of these sources for a more detailed
description of the biological problem considered, and the implication of the parameter
analysis.

Ideally, a clear understanding of the properties possessed by the strong interval trees
that represent the comparison of actual genomes might tell us something about the evo-
lutionary process. Bouvel et al. [7] conclude their study on separable permutations with
a suggestion for the next class to study: strong interval trees with degree restrictions
on certain internal nodes. These trees offer a very controlled way to introduce bias in
the distribution of strong interval trees. This is precisely what we do in this work: we
study strong interval trees where the so-called prime nodes (defined in Section 3) have a
bounded number of children. We give a complete analysis of these restricted sets of trees.
They can be completely understood combinatorially and analytically, and so we have ac-
cess to formulas for enumeration and the average values of some tree parameters that are
ultimately related to computing perfect sorting scenarios. These parameter values can
help tailor the next generation of genome comparison models.

Although our initial motivation comes from genomics, our study has ramifications
of independent interest in analytic combinatorics. Indeed, our work reveals a very lush
substructure of permutations whose study from an analytical point of view allows us to
formulate new questions on the convergence of sequences of combinatorial series.

Specifically, we define a sequence of families of trees (which are almost simple varieties
of trees) whose combinatorial limit is the set of all strong interval trees. Simple varieties
of trees are amenable to a standard set of tools for enumeration, parameter analysis, and
random generation. However, the complete class of strong interval trees is not a simple
variety of trees, so these techniques are not applicable to study the full class. Can we
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understand, at the analytical level, the convergence of the generating functions of these
sub-classes, which are all algebraic, towards the non-algebraic generating function of the
full class? As we explain in details in our work, this question is naturally asked for strong
interval trees, but it could also be considered for other classes such as k-regular graphs [13]
or λ-terms of bounded unary height [5].

The organization of this article is as follows. First, in Section 2 we present some
very general theorems for asymptotic enumeration and parameter analysis in families of
trees counted by leaves, that are widely applicable, and use standard results on analytic
inversion. In Section 3 we describe strong interval trees, a decomposable combinatorial
class of trees counted by leaves, in bijection with permutations. We introduce a filtration
of strong interval trees in Section 4 – the filtration is obtained by bounding the arity of
so-called prime nodes. This restriction is motivated by algorithmic problems in genome
rearrangements. Theorem 5 and Corollary 6 present asymptotic formulas for these trees.
They witness an intriguing analytic phenomenon: the convergence of a sequence of (well-
behaved and algebraic) families of trees towards the (transcendental and non-analytic)
class of permutations. Section 5 establishes some first results in the exploration of this
phenomenon.

A preliminary version of this work appeared in the extended abstract [8].

2 When the size of a tree is the number of leaves

There are many works which study the average case behavior of tree parameters, where
the size of a tree is the number of internal nodes or of both internal nodes and leaves.
The generating functions of these trees satisfy a functional equation of the form T (z) =
z · Φ(T (z)). Such a class of trees is said to be a simple variety of trees. When Φ satisfies
certain conditions, such as analyticity, then there are formulas for inversion, resulting in
explicit enumerative results. The subject is exhaustively treated in Section VII.3 of [12],
and the references listed therein.

If, instead, we define the size of a tree as the number of leaves, the generating function
satisfies a relation of the form T (z) = z+ Λ(T (z)). The generating function equation is a
direct translation of a combinatorial decomposition according to the root node. The same
general theorems on inversion still work, and it suffices to apply them and unravel the
results. Even though they are less frequent, these have also been studied in the literature,
and the applicability of the inversion lemmas is noted in Example VII.13 of [12], and in
Theorem 2 of [15]. In this section we do this explicitly, to have the arguments easily at
hand. In this work, when referring to simple varieties of trees, we mean a family of trees
where the size is defined as the number of leaves, and whose study falls into the scope of
the results of the present section.

Table 1 summarizes the results of this section. We determine asymptotic formulas
for the number of trees, and several key parameters. The shape of the formulas are,
unsurprisingly, not unlike those that arise in the study of trees counted by internal nodes.
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Asymptotic number of trees with n leaves
√

ρ
2πΛ′′(τ)

· ρ−n
n3/2

The average number of nodes of arity κ in trees with n leaves λκτκ

ρ
· n

The average number of internal nodes in trees with n leaves Λ(τ)
ρ
· n = τ−ρ

ρ
· n

The average subtree size sum in trees with n leaves
√

π
2ρΛ′′(τ)

· n3/2

Table 1: A summary of parameters of trees given by T = z+ Λ(T ) for Λ as in Theorem 1.
The value τ is the unique solution to Λ′(τ) = 1 between 0 and RΛ < 1, and ρ = τ −Λ(τ).

2.1 Asymptotic number of trees

Our entire analysis is roughly a consequence of the Analytic Inversion Lemma and Transfer
Theorems. The version to which we appeal is given and proved in [12]. Citations to
original sources may be found therein. The following theorem is a slight adaptation
of Proposition IV.5 and Theorem VI.6 of [12] to combinatorial equations of the form
T = Z + Λ(T ) instead of T = Z × Φ(T ). Recall [12, p.266] that T (z) has span d if
T (z) = zrG(zd) for some r > 0. Its period is its largest span. If T (z) has period 1, then
it is aperiodic.

Theorem 1. Let Λ be a function analytic at 0, with the following series expansion

Λ(z) =
∑
n>2

λnz
n,

where the λn’s are non-negative real numbers. Let RΛ be the radius of convergence of this
series. Under the condition limx→R−Λ

Λ′(x) > 1, there exists a unique solution τ ∈ (0, RΛ)

of the equation Λ′(τ) = 1. Then, the formal solution T (z) of the equation

T (z) = z + Λ(T (z)) (1)

is analytic at 0, its unique positive, real valued dominant singularity is at ρ = τ − Λ(τ).
The function T (z) has a singular expansion valid for points near ρ in an appropriate
∆-domain given by

T (z) = τ −

√
2ρ

Λ′′(τ)

(
1− z

ρ

)1/2

+O
(

1− z

ρ

)
. (2)

Moreover, if gcd{n − 1 | λn 6= 0} = 1, then T is aperiodic, ρ is the only dominant
singularity and

[zn]T (z) ∼
√

ρ

2πΛ′′(τ)
· ρ
−n

n3/2
. (3)

If the value of gcd{n − 1 | λn 6= 0} = d 6= 1, then we can show that T (z) = zH(z)
with H d-periodic. In this case, T (z) will have d singularities on the circle of convergence,
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by the Daffodil lemma (see [12, Lemma IV.1] for a nice proof). In such a situation the
asymptotic formula is composed of a sum of terms, each resembling the right hand side
of Equation (3).

Proof. The conditions on Λ imply that both Λ(x) and Λ′(x) are increasing continuous
functions for x in the real interval (0, RΛ). Since Λ′(0) = 0 and since limx→R−Λ

Λ′(x) > 1,

there exists R′ ∈ (0, RΛ) such that Λ′(R′) > 1. Hence there exists a unique τ ∈ (0, R′),
and thus on (0, RΛ), such that Λ′(τ) = 1.

Now observe that Equation (1) admits a unique formal power series solution T (z),
which has non-negative coefficients, by bootstrapping the coefficients. By Analytic Inver-
sion [12, Lemma IV.2], this solution is analytic at z = 0 and with T (0) = 0: Equation (1)
can be rewritten Ψ(T (z)) = z, with Ψ(x) = x− Λ(x), and Ψ′(0) 6= 0.

Let r be the radius of convergence of T (z). As T (z) is analytic, we have that r > 0.
We can justify that r is finite as follows. Let T (r) ∈ (0,+∞] be defined by T (r) =
limx→r− T (x). Following almost exactly the proof of Proposition IV.5 in [12, p. 278],
we deduce that T (r) = τ . As τ is finite, this implies in particular that r is finite. By
Pringsheim’s Theorem r is a dominant singularity of T (z). Moreover, since T and Ψ
are inverse functions, we can determine a form for this dominant singularity, which we
henceforth refer to as ρ: ρ = τ − Λ(τ).

The remainder of the proof closely follows the proof Theorem VI.6 in [12, p. 405],
using our specific equations to obtain Equation (2). In the aperiodic case, the Daffodil
Lemma and the Analytic Inversion Lemma ensure that there is no other singularity than
ρ on the circle of radius ρ, and that T (z) can be analytically continued in a ∆-domain at
ρ. Applying the Transfer Theorem yields Equation (3), concluding the proof.

2.2 Parameter Analysis

In the case of trees counted by internal nodes, the study of recursively defined parame-
ters is very straightforward, starting from generating function equations. We can describe
analogous versions for trees counted by leaves. In particular, we consider additive parame-
ters, and describe a modified iteration lemma, adapted to our notion of size. We illustrate
the lemma on the number of internal nodes, the subtree size sum and the number of nodes
of a given arity.

2.2.1 General additive parameters

Our focus is on tree parameters that can be computed additively by parameters of sub-
trees. More precisely, we consider a parameter ξ(t) for trees t ∈ T which satisfies the
relation

ξ(t) = η(t) +

deg(t)∑
j=1

σ(tj),

where deg(t) is the arity of the root, tj are its children sub-trees, η is a simpler tree
parameter, and σ is either ξ or a simpler tree parameter. Let Ξ(z), H(z) and Σ(z) be the
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associated cumulative generating functions of ξ, η and σ. That is,

Ξ(z) =
∑
t∈T

ξ(t)z|t|, H(z) =
∑
t∈T

η(t)z|t| and Σ(z) =
∑
t∈T

σ(t)z|t|.

Lemma VII.1 in [12] has an analogue for trees counted by their leaves, and it is proved
in a very similar way.

Lemma 2 (Iteration Lemma for trees counted by their leaves). Let Λ(T ) =
∑
λkT

k and
let T be a class of trees satisfying T = Z + Λ(T ). The cumulative generating functions
are related by the equation

Ξ(z) = H(z) + Λ′(T (z)) Σ(z).

In particular, if σ ≡ ξ, one has Ξ(z) = H(z)
1−Λ′(T (z))

= H(z) · T ′(z).

Proof. Unraveling the definition of ξ(t), we have

Ξ(z) = H(z) + Ξ̃(z) with Ξ̃(z) =
∑
t∈T

z|t|
deg(t)∑
j=1

σ(tj).

Splitting the sum defining Ξ̃(z) according to the value r of the degree of the root of t, we
get:

Ξ̃(z) =
∑
r>1

∑
t1,...,tr∈T

λrz
|t1|+···+|tr|(σ(t1) + · · ·+ σ(tr))

=
∑
r>1

∑
t1,...,tr∈T

λr
(
σ(t1)z|t1|z|t2|+···+|tr| + · · ·+ σ(tr)z

|tr|z|t1|+···+|tr−1|
)

=
∑
r>1

λr × r × Σ(z)T (z)r−1 = Λ′(T (z)) Σ(z).

In the case σ ≡ ξ, Ξ(z) = H(z)
1−Λ′(T (z))

is derived immediately. The last equality is

a consequence of T ′(z)(1 − Λ′(T (z))) = 1, which is obtained by differentiating T (z) =
z + Λ(T (z)) with respect to z.

Note that if σ ≡ ξ, the parameter is said to be recursive. Most basic parameters are
recursive, and in what follows we shall use this case only.

Note also that when analytic treatment applies, T (z) has a square-root singularity (see
Theorem 1), so that T ′(z) has an inverse1 square-root singularity (by analytic derivation,
as we shall see). Therefore, whenever H(z) tends to a positive real when z → ρ (under
some analytic conditions), then the Transfer Theorem yields an asymptotic equivalent of
the mean value of the parameter of the form c · n. The scenario is rather classic, and the
hypotheses about the domain follow in a straightforward way. This situation is the case
for the number of nodes of fixed arity and the number of internal nodes, as shown below.

1A multiplicative inverse, not functional inverse.
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2.2.2 Three applications

Number of nodes with exactly κ children. We “mark” nodes of arity κ by setting

η(t) =

{
1 if the root of t is of arity κ,

0 otherwise.

Hence if κ > 2, H(z) =
∑
t∈T

η(t)z|t| =
∑

t1,...,tκ∈T
λκz

|t1|+|t2|+···+|tκ| so that H(z) = λκ T (z)κ.

There can be no unary nodes in a proper specification, so κ 6= 1. If κ = 0, then H(z) = z
which is not interesting since it is simply counting the number of leaves i.e. the size of
the tree.
By Lemma 2, for any κ > 2 one has Ξ(z) = λκT (z)κ · T ′(z). Since the singular expansion
of T (z) near ρ is

T (z) = τ − γ
√

1− z/ρ+ o
(√

1− z/ρ
)
,with γ =

√
2ρ

Λ′′(τ)
(4)

then near ρ, one has T (z)κ = τκ + O
(√

1− z/ρ
)
. Using the Singular Differentiation

Theorem [12, Theorem VI.8, p. 419] we have

T ′(z) =
γ

2ρ
√

1− z/ρ
+ o

(
1√

1− z/ρ

)
, so that Ξ(z) =

λκγτ
κ

2ρ
√

1− z/ρ
+ o

(
1√

1− z/ρ

)
,

from which we get the asymptotics of the coefficients of the cumulative generating function

[zn]Ξ(z) ∼ λκγτ
κρ−n−1

2
√
πn

.

The asymptotics of the average value across all trees of size n is then (by the Transfer
theorem)

[zn]Ξ(z)

[zn]T (z)
∼ λκγτ

κρ−n−1

2
√
πn

·

√
2πΛ′′(τ)

ρ

n3/2

ρ−n
∼ λκτ

κ

ρ
· n,

as reported in Table 1.

Number of internal nodes. For this parameter, just take the following definition for
η:

η(t) =

{
0 if t is just one leaf,

1 otherwise.

One has H(z) =
∑
t∈T

η(t)z|t| = T (z)− z, and therefore (with the γ of Equation (4))

Ξ(z) = (T (z)− z) T ′(z) =
γ(τ − ρ)

2ρ
√

1− z/ρ
+ o

(
1√

1− z/ρ

)
.

It follows that

[zn]Ξ(z) ∼ γ(τ − ρ)ρ−n−1

2
√
πn

and
[zn]Ξ(z)

[zn]T (z)
∼ τ − ρ

ρ
· n.
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Subtree size sum. We are interested in the subtree size sum parameter, defined by
η(t) = |t|. This implies that H(z) = zT ′(z), so that

Ξ(z) = zT ′(z)2 =
γ2

4ρ(1− z/ρ)
+ o

(
1

1− z/ρ

)
and [zn]Ξ(z) ∼ γ2

4ρ
· ρ−n.

Unlike the two previous examples, this is not an inverse of square-root singularity. In this
case, for the average value of the subtree size sum, we find

[zn]Ξ(z)

[zn]T (z)
∼ γ2

4ρ
ρ−n ·

√
2πΛ′′(τ)

ρ

n3/2

ρ−n
∼
√

π

2ρΛ′′(τ)
· n3/2,

that is, an asymptotic equivalent in n3/2. This behavior is typical for such path length
related parameters.

There are many other tree parameters that we could consider in a similar fashion,
particularly additive parameters, as the generating function manipulations are similar.
Pitman and Rizzolo find the distribution of the height of a random leaf [15]. This is a
parameter that we might consider. Although we are illustrating only average case compu-
tations here, we could also obtain information about higher moments upon consideration
of higher derivatives.

3 Strong Interval Trees

Our main application is the study of parameters of strong interval trees which encode
permutations. They have been introduced in the early 2000’s in a bioinformatics con-
text [14, 4], as they are a very effective data structure for algorithms in reconstruction
of genome evolution scenarios, as we briefly mentioned in the introduction. Under a dif-
ferent name, and roughly at the same time, these objects also made their appearance in
combinatorics, in the study of permutation patterns: strong interval trees (rather called
(substitution) decomposition trees) are a tree representation of the block decomposition
of permutations described by Albert and Atkinson [1]. Although the proper definition of
strong interval trees is relatively recent, it can be traced to older notions of decomposi-
tion (of graphs in particular): it is a close relative of the modular decomposition trees of
permutation graphs [4] and even has origins in the PQ-trees of Booth and Lueker [6].

In this section, we review the definition of strong interval trees and the bijection
with permutations. Then, we turn to a presentation of these objects as a constructible
combinatorial class, in the flavor of what is done in Section 2.

3.1 Definition and bijection with permutations

Strong interval trees are most often defined via the bijection that relates them to per-
mutations. Different presentations of this bijection can be found for instance in [1, 4, 7].
For the reader who is not familiar with these objects, we review the definition of strong
interval trees, and the correspondence with permutations below.
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Here, we consider the one-line notation of permutations, and hence we view a permu-
tation of size n as a word containing exactly once each symbol in {1, 2, . . . , n}.

An interval of a permutation σ is a factor of σ, such that the underlying set of symbols
is an interval of integers. For instance, 7 9 10 11 13 8 12 and 3 1 5 4 2 are intervals of
the permutation

6 7 9 10 11 13 8 12 3 1 5 4 2,

but 10 11 13 is not (12 is missing). For every permutation σ of size n, the singletons i
(for 1 6 i 6 n) and σ itself are intervals of σ. They are called trivial intervals of σ.

A permutation is said to be simple when its only intervals are the trivial ones. Note
that our convention will be that 1, 1 2 and 2 1 are not simple permutations, although they
satisfy the above definition. It is immediate to check that there is no simple permutation
of size 3 (each permutation of size 3 contains an interval of size 2), and that there are 2
simple permutations of size 4, namely 2 4 1 3 and 3 1 4 2. A larger simple permutation
is for instance 3 5 7 1 4 2 6. We will go back to the enumeration of simple permutations
in the next subsection.

Two intervals of σ overlap when their intersection is neither empty nor equal to one
of them. Returning to our example of 6 7 9 10 11 13 8 12 3 1 5 4 2, the intervals 6 7 and
7 9 10 11 13 8 12 overlap (their intersection is 7), but 10 11 and 5 4 do not. A strong
interval of σ is an interval that does not overlap any other interval of σ. The trivial
intervals are obviously strong. On our running example, the non-trivial strong intervals
are

5 4 ; 3 1 5 4 2 ; 9 10 11 ; 9 10 11 13 8 12 and 6 7 9 10 11 13 8 12.

From their definition, it follows immediately that the inclusion order on the set of
strong intervals of a permutation σ induces a tree structure, where the leaves are the
singletons, and the root is the σ itself. This is the strong interval tree of σ.

From there, and depending on the context, the definition of the strong interval tree may
vary. For us, these trees are embedded in the plane, by imposing the order of the leaves.
Namely, from left to right, the leaves (corresponding to singletons of σ) are required to
appear in the same order as in σ. The strong interval tree of our running example would
then be:

6 7 9 10 11 13 8 12 3 1 5 4 2

6 7 9 10 11 13 8 12

6 7 9 10 11 13 8 12

9 10 11

9 10 11

13 8 12

3 1 5 4 2

3 1 5 4

5 4

2

From this tree, there is a last step that we perform before obtaining what we refer
to as the strong interval tree in our work. It relies on an important remark, proved for
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−
+

2413
+

3142
−

(a) σ1 = 6 7 9 10 11 13 8 12 3 1 5 4 2

3 5 7 1 4 2 6

(b) σ2 = 3 5 7 1 4 2 6

Figure 1: Two permutations and their associated strong interval trees

instance in [9]. To state it, we first need to describe how to associate a permutation of
size k to each node of the strong interval tree with k children.

Note first that given several disjoint strong intervals, the natural order on integers
induces an order among them: the smaller the elements contained in the interval, the
smaller the interval itself. On our running example, we have for instance that 5 4 is
smaller than 8 which is itself smaller than 9 10 11. Consider now a non-singleton strong
interval, corresponding to an internal node of the strong interval tree. Its children (assume
there are k of them) are also strong intervals, and they are disjoint. So they can be ordered
as described above. To this node of the tree, we associate a permutation τ of size k built
as follows: τi = j if the i-th child from the left is the j-th smallest one. For instance, the
permutation τ associated with the node labeled 9 10 11 13 8 12 in our running example
is 2 4 1 3 since 8 is smaller than 9 10 11, itself smaller than 12 and 13.

The permutations labeling the node enjoy a remarkable property (see [9], or in a
somewhat different presentation [1]): they are either increasing (1 2 . . . k) or decreasing
(k . . . 2 1) or simple. In the remainder of this article, when speaking about strong inter-
val trees, we mean the plane tree whose structure has been described above, but whose
internal nodes are only labeled by ⊕, 	 (corresponding to increasing or decreasing permu-
tations respectively), or by a simple permutation. In particular, the leaves carry no label.
Nodes labeled by ⊕ or 	 are called linear, whereas those labeled by simple permutations
are called prime. Figure 1-(a) shows the strong interval tree of our running example, and
Figure 1-(b) represents the strong interval tree of a simple permutation. What can be ob-
served on this example is true in general: the trees corresponding to simple permutations
consist of a single prime node labeled by the permutation itself, with pending leaves.

In a strong interval tree, it is impossible for a node labeled by ⊕ (resp. 	) to have a
child carrying the same label. This property appears (although in disguise) in [1], but is
simply proved by contradiction: assuming that a parent and a child both carry the label
⊕ (resp. 	) contradicts that the child is a strong interval (indeed, it overlaps an interval
resulting from the union of one of its own children with one of its siblings).

With this in mind, strong interval trees are now just plane trees, where internal nodes
are of arity at least 2 and carry labels ⊕, 	 or α for any simple permutation α, with the
additional conditions that a node labeled by ⊕ (resp. 	) does not have a child carrying
the same label, and that the number of children of a node labeled by a simple permutation
α is exactly the size of α.
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It turns out (and the proof follows immediately from [1]) that any such tree is the
strong interval tree of a permutation. Moreover, the above construction provides a bijec-
tion between permutations and strong interval trees. Note that the bijection is completely
constructive, and that it can be computed in linear time, although this is quite difficult
to achieve, see [4].

3.2 Strong interval trees as a constructible class

From now on, we denote by P the class of strong interval trees. As we have seen above,
this class is a set of trees where some internal nodes are signed and others are enriched
with a simple permutation. More precisely, the characterization of strong interval trees
given above can be rephrased as shown in the following theorem.

Theorem 3 (Reformulated from [1]). The class of permutations is in a size-preserving
bijection with the combinatorial class P of strong interval trees. These are enriched trees
defined by the following combinatorial system, where size is given by the number of leaves:

P = Z� + N⊕ · Seq>2 U⊕ + N	 · Seq>2 U	 + N• · S(P),

U⊕ = Z� + N	 · Seq>2 U	 + N• · S(P),

U	 = Z� + N⊕ · Seq>2 U⊕ + N• · S(P).

(5)

Above, the class Z is an atomic class with a single element of size 1, the N classes are
all epsilon classes containing a single element of size 0, marking internal nodes, and the
function S(z) =

∑
j>4 sjz

j is the generating function for simple permutations.

Notice that U⊕ and U	 define combinatorial classes which are in obvious size-preserving
bijection. In the following, in order to deal with one class instead of two, we replace them
by the equivalent class U = Z�+ N◦ ·Seq>2 U+ N• · S(P). Doing so, we change the labels
of the linear nodes having a linear parent (replacing them by ◦). This does not affect the
enumeration of the class. Indeed, these labels are determined since a linear node and its
linear parent have different labels.

It is not hard to view U as a family of trees not unlike those studied in Section 2:

Corollary 4. The following combinatorial equivalences are true:

P ≡ Seq>1 U and U ≡ Z + Seq>2 U + S(Seq>1 U).

Consequently, U is in bijection with a class of Λ-trees, or in other words its generating

function U(z) satisfies U(z) = z + Λ(U(z)), for Λ(x) = x2

1−x +
∑

j>4 sj
(

x
1−x

)j
, where sj is

the number of simple permutations of size j.

Proof. This equivalence is derived from Equation (5), the fact that U ≡ U⊕ ≡ U	, and
the intermediary equivalence P ≡ U + Seq>2 U .

There is however an important difference between U and the set of classes that are

covered by Theorem 1: the function Λ defined by Λ(x) = x2

1−x +
∑

j>4 sj
(

x
1−x

)j
has zero
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radius of convergence. The divergence comes from the coefficients sj. This is immediate
from the asymptotic formulas for these values, given by Albert et al. [2]. We make heavy
use of their estimates, and recall them now.

The sequence enumerating simple permutations, (sn)n, has label A111111 in the On-
Line Encyclopedia of Integer Sequences [16]. This sequence is not P-recursive, but it does
satisfy a simple functional inversion formula (see [2]), and we have calculated exact values
of sn for n < 800. Albert et al. [2] determined the following bounds:

n!

e2

(
1− 4

n

)
6 sn 6

n!

e2

(
1− 4

n
+

2

n(n− 1)

)
. (6)

Here are the first few terms in the generating function for simple permutations:

S(z) = 2z4 + 6z5 + 46z6 + 338z7 + 2926z8 + 28146z9 + 298526z10 + 3454434z11 + . . .

Because S(z), and hence Λ(x), are not analytic at the origin, neither P nor U are
simple varieties of trees whose analysis is covered by Section 2. However, we can express
U as the combinatorial limit of a sequence of simple varieties of trees, and properties of U
can next easily be translated into properties of P via the relation P ≡ Seq>1 U . Now, P is
in bijection with permutations, so we have a strong understanding of the enumeration by
several other methods. However, this does give us the template for a general strategy of
studying limit families, and the solution has some insightful subtleties which we explore
next.

4 Prime-Degree Restricted Strong Interval Trees

We filter the class of trees P by a parameter that bounds the maximal arity of prime
nodes. The class of trees wherein this parameter is bounded is a simple variety of trees,
and the results of Section 2 are applicable. Our motivation for studying this restriction
of strong interval trees is twofold.

First, as indicated above, the full class of trees is in bijection with permutations, and
hence the ordinary generating function is neither analytic at the origin, nor algebraic.
We give a natural way to express the generating function as the limit of a sequence of
analytic, algebraic generating functions. We believe this example is instructive and opens
the way to adapting this strategy to study other combinatorial classes which are similarly
complex, as we discuss in Section 5.

Our second motivation comes from the study of genome rearrangements, specifically
in the model of perfect sorting by reversals. Indeed, as shown in [3, 7], the algorithmic
complexity of finding an evolutionary scenario in this model depends heavily on the max-
imal arity of prime nodes in the strong interval trees of the permutations that encodes
the genomes (recording the order of the genes): the smaller this maximal arity, the more
efficient the algorithm. Based on biological data for mammalian genomes [11], it appears
that prime nodes occur relatively rarely, and are of small arity. In [7], the combinatorics
of strong interval trees without any prime nodes was investigated, resulting in a better
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understanding of the so-called commuting scenarios. Now allowing some prime nodes
to occur, but with a bounded arity, we are going a step further in this analysis, while
focusing on subclasses of strong interval trees that seem to represent the biological data
better than uniform random permutations. We propose the permutations that arise in
these classes as a better testing ground for algorithms destined for biological purposes.

4.1 The filtration for permutations

We define the class Pk as follows, where Sk(z) =
∑k

j=4 sjz
j:

Pk = Z + 2 Seq>2 Uk + Sk(Pk) and Uk = Z + Seq>2 Uk + Sk(Pk).

That is, only prime nodes of arity at most k are allowed. We refer to the classes
denoted by Pk, as classes of prime-degree restricted strong interval trees.

The containment Pk ⊂ Pk+1 is obvious. When k > n, the restriction on the prime
node degree has no impact, hence the set of trees of size n in Pk is precisely the set of trees
of size n in P when k > n. From this property we then deduce the limit of combinatorial
classes limk→∞Pk = P .

Furthermore, by the same manipulations as for the full class, we derive:

Pk ≡ Seq>1 Uk and Uk ≡ Z + Seq>2 Uk + Sk(Seq>1 Uk). (7)

As in the case of the full class, Uk is isomorphic to a Λk-tree with Λk(x) = x2

1−x +∑k
j=4 sj

(
x

1−x

)j
. This class is certainly algebraic and is a simple variety of trees. The

enumerative analysis of Section 2 applies directly to these families of trees Uk, then giving
access to enumeration and parameter average behavior for Pk also, even if Pk is not itself
a simple variety of trees. This is done in the remaining part of this section, focusing on
applications to the study of genome rearrangements. Also, keeping in mind our next goal
of letting k go to infinity to recover the class P , we would like to preserve k as much as
possible in the formulas.

4.2 Asymptotic enumeration

The combinatorial specification in Equation (7) allows us to directly apply Theorem 1
to determine asymptotic formulas for the coefficients of the generating functions Pk(z) of
the classes Pk.

To state the theorem relatively compactly, we first introduce some notation. Since the
finite sum

∑k
j=4 sj(

x
1−x)j is a polynomial in x

1−x , the function Λk(x) is certainly analytic
at 0. The radius of convergence of Λk is easily seen to be 1, and limx→1− Λ′k(x) = +∞.
Hence, Theorem 1 gives the following expansion, valid in an appropriate ∆-domain:

Uk(z) = τk − βk
(

1− z

ρk

)1/2

+O
(

1− z

ρk

)
,

with τk, ρk and βk defined in Theorem 5 below.
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Theorem 5. For any fixed k, the number of prime-degree restricted strong interval trees
of size n, denoted pk(n), grows asymptotically like

pk(n) ∼ γk
(1− τk)2

ρ−nk n−3/2, as n→∞, (8)

where Λk(x) =
x2

1− x
+

k∑
j=4

sj

(
x

1− x

)j
, τk satisfies 1− Λ′k(τk) = 0, ρk = τk − Λk(τk),

βk =

√
2ρk

Λ′′k(τk)
and γk =

βk
2
√
π

.

Proof. By the first relation in Equation (7), Pk(z) = Uk(z)
1−Uk(z)

. By Theorem 1, the value

of Uk(z) at its dominant singularity ρk is τk. Moreover, τk is less than the radius of

convergence of Λk, i.e., τk < 1. So the composition Pk(z) = Uk(z)
1−Uk(z)

is subcritical (see

[12, paragraph VI.9]): this implies that the dominant singularity of Pk(z) is also ρk. We
unravel the relation to get a singular expansion of Pk(z) at ρk in terms of the components
of the expression for Uk(z), valid in a similar region:

Pk(z) =
Uk(z)

1− Uk(z)
=

τk
1− τk

− βk
(1− τk)2

(
1− z

ρk

)1/2

+O

(
1− z

ρk

)
.

Again, the result follows from the classic Transfer theorem.

For the parameter analysis it is useful to now compare the first term of the expansions
for uk(n) = [zn]Uk(z) and pk(n):

uk(n) ∼ γk ρ
−n
k n−3/2 pk(n) ∼ γk

(1− τk)2
ρ−nk n−3/2.

They differ only by a multiplicative factor of (1 − τk)
−2. Note that along the proof of

Theorem 5, we have seen that τk < 1, an inequality that will be useful in Section 5 to
bound the asymptotic estimate of Equation (8).

Corollary 6. For any fixed k, as n tends to infinity, pk(n) behaves like γk
(1−τk)2ρ

−n
k n−3/2.

When k goes to infinity, this estimate is no larger than

1

(1− e
k
)2

√
e

4kπ

(
k

e

)n(
1 +

5

2

log k

k
+O

(
1

k

))n
n−3/2. (9)

Proof. The estimate for pk(n) has been proved in Theorem 5 above. To obtain the an-
nounced upper bound on this estimate, we rely on strong bounds on τk and ρk proved in
Proposition 8 and Theorem 11 (see Section 4.7). Assuming that k is large enough, these
two technical results yield:

• τk 6 τk
1−τk
6 e

k
, hence 1

(1−τk)2 6 1
(1− e

k
)2 ;

the electronic journal of combinatorics 27(2) (2020), #P2.20 14



k τk ρk k τk ρk

4 0.2258458016 0.1454726242 9 0.1463252500 0.1102193554

5 0.2043553556 0.1364583031 10 0.1375961304 0.1057725121

6 0.1841224072 0.1277948168 11 0.1300393555 0.1017629085

7 0.1689470150 0.1210046262 12 0.1234001218 0.09810173382

8 0.1565912704 0.1152312243 13 0.1174959122 0.09472586497

Table 2: Computed approximate values for ρk and τk for small values of k, using Maple
code available at https://github.com/marnijulie/strong-interval-trees-maple.

• ρk 6 e
k

and Λ′′k(τk) > 2, hence γk 6
√

e
4kπ

;

• and ρ−nk =
(
e
k

)−n (
1− 5

2
log k
k

+O
(

1
k

))−n
=
(
k
e

)n (
1 + 5

2
log k
k

+O
(

1
k

))n
.

Table 2 contains numeric approximations for τk and ρk in the range k = 4 . . . 13. Using
these estimates gives good asymptotic approximations and the enumerative formulas given
in Equation (8) converge quickly for fixed k. For example, when k = 8, our asymptotic
formula is within 2% of the correct value at n = 10.

4.3 When k is a function of n

As pointed out by a referee, our estimate of pk(n) and its upper bound (Theorem 5
and Corollary 6) should extend to the case where k is allowed to depend on n, in some
controlled way to be determined. Indeed, more terms in the Taylor expansion of Λk(u)
near τk (see Equation (2)) are easily obtained using Newton iteration, which result in
more terms in the approximation of Uk(z) and Pk(z) near ρk in the powers of

√
1− z/ρk.

The formulas so obtained should generalize our result.
However, to complete the estimate requires some precise computation of the error

terms to establish that this method is valid, and it appears to be necessary to go back
to the proofs of the analytic tools we use. For instance, the Taylor development of Λk(u)
near τk is

Λk(u) = Λk(τk) +
∑
i>1

Λ
(i)
k (τk)

i!
(u− τk)i, (10)

where Λ
(i)
k denotes the i-th derivative of Λk. From the bounds on τ̃k provided in Propo-

sition 8, we can show that Λ
(i)
k (τk) = Θ(k2i−2) for all i > 2. In a formula with an error

term, such as Λk(u) = Λk(τk) +u− τk +O((u− τk)2), the constant within the O notation
is super-polynomial in n for k = nα with α > 1

2
.

Secondly, there is a subtle issue in the usage of the Transfer Theorem, as ρk now tends
to 0 when n tends to infinity: all constants in the proof of the theorem now depend on n.
Every step of the proof should therefore be revisited carefully.
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Though it can certainly be done to establish a range for k := k(n) where our statement
can be extended, it is beyond the scope of this article to do such an involved analysis,
and we leave this question open.

4.4 Towards Stirling’s approximation

We can get a sense of the impact of such a dependency by considering the case k = n.
In this case our convergence formulas do not hold because the error terms are no longer
negligible. That said, it is close in this case: purely formal manipulations do reconcile
the limit of the tree asymptotics and Stirling’s formula, in some sense, up to a constant
factor.

Indeed, our analysis of P has brought together two classic asymptotic facts. The
asymptotic growth of each Pk is of the form pk(n) ∼ γρ−nn−3/2 for some real valued ρ
and γ. (Note that although Pk is not a simple variety of trees, the asymptotic behavior
of pk(n) is of the same form as for such families.) But for the full class P , the classical
Stirling’s approximation of n! gives p(n) ∼

(
n
e

)n√
2πn. Subtle analysis is required to

reconcile these two estimates, and our upper bound on the asymptotic estimate of pk(n)
allows us to take a first step in this direction.

For any n, the strong interval tree of a permutation of size n contains no prime node of
arity larger than n. Thus, if k > n, all of the trees corresponding to permutations of size
n are contained in Pk, and hence pk(n) = n! for k > n. Now, forget for a moment that
the estimates for pk(n) as n → ∞ is valid only for fixed k, and consider the expression
in (9) with k = n. It simplifies as follows:

1

(1− e
n
)2

√
e

4nπ

(n
e

)n(
1 +

5

2

log n

n
+O

(
1

n

))n
n−3/2 =

√
e

4π

(n
e

)n√
n · (1 + o(1)).

This is a constant times Stirling’s formula (the constant being
√

e
8π2 ).

The formula falls apart disastrously for k > n, since pk(n) = n! in this case, but this
is not accounted for in the formula, and the quantity in (9) gains an unwanted factor of
2n. This does not contradict the correctness of our asymptotic form for appropriate k.

4.5 Asymptotic parameter analysis

The average shape of general strong interval trees was described in [7]. This study is
essentially based on Equation (6), which shows that simple permutations make up about
1/9 of all permutations. As a consequence, general strong interval trees have a very flat
shape (i.e. height 1 or 2) with probability tending to 1, and this shape governs the average
case behavior of any tree parameter. However, the prime-degree restricted trees are much
richer in this regards, and the asymptotic formulas for parameters are given in Table 1.

We focus here on some parameters which are related to the average case complexity
analysis of perfect sorting scenarios for σ, that is, to parsimonious evolutionary scenarios
in the model of perfect sorting by reversals (see [7] for a detailed explanation of this
connection). We will be specifically interested in the number of internal nodes (which is
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Asymptotic number of trees with n leaves
√

ρk
2πΛ′′k(τk)

(1− τk)−2 · ρ−nk n−3/2

The average number of internal nodes (τk − ρk)ρ−1
k n

The average number of prime nodes Sk(
τk

1−τk
)ρ−1
k n

The average subtree size sum
√

π
2Λ′′k(τk)

n3/2

Table 3: A summary of asymptotic behavior for trees in Pk.

related to the number of reversals in a scenario), the number of prime nodes (since the
complexity of computing a parsimonious scenario depends on it) and the average subtree
sum size (which has a tight connection to the average reversal size). These parameters
give important insight into the average case analysis of perfect sorting by reversals.

We have seen above that the generating function of Uk satisfies Uk(z) = z+ Λk(Uk(z))

with Λk(x) = x2

1−x +
∑k

j=4 sj
(

x
1−x

)j
. Consequently, Uk is a simple variety of trees, and this

allows to apply directly the results of Section 2 for the average number of internal nodes
or the average subtree size sum in Uk trees. The average number of prime nodes in Uk
trees can also be derived using the general framework developed in Section 2. Then, the
behavior of these parameters in Pk trees is deduced from the already observed identity

Pk = Uk + ◦ × Seq>2 Uk. (11)

Here ◦ is an element of size 0. We track the number of ◦s in a tree using an auxiliary
variable and a bivariate generating function. Note that even though Pk is not a simple
variety of trees, the behavior of the studied parameters are of the same order as in such
families of trees.

The results proved in this section are summarized in Table 3.

4.5.1 Number of internal nodes

Let U
(k)
k (z, y) (resp. Pk(z, y)) be the bivariate generating function of Uk trees (resp. Pk

trees), where z counts the size (i.e., the number of leaves) and y counts the number of
internal nodes (◦). It follows from Equation (11) that

Pk(z, y) = Uk(z, y) + y · Uk(z, y)2

1− Uk(z, y)
.

Consequently, we have

∂

∂y
Pk(z, y)

∣∣∣
y=1

=
∂

∂y
Uk(z, y)

∣∣∣
y=1

+
2Uk(z, 1)

1− Uk(z, 1)

∂

∂y
Uk(z, y)

∣∣∣
y=1

+
Uk(z, 1)2

1− Uk(z, 1)
+

Uk(z, 1)2

(1− Uk(z, 1))2

∂

∂y
Uk(z, y)

∣∣∣
y=1

. (12)
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Near ρk, we know that Uk(z, 1) = Uk(z) = τk − βk
√

1− z/ρk +O(1− z/ρk). The weaker

estimate Uk(z) = τk +O(
√

1− z/ρk) gives 1
1−Uk(z)

= 1
1−τk

+O(
√

1− z/ρk), and these are

enough to estimate all rational fractions in Uk(z) that appear in Equation (12). Moreover,

the generating function ∂
∂y
Uk(z, y)

∣∣∣
y=1

counts Uk trees weighted by their number of internal

nodes. As seen in Section 2.2.2, it then follows from Lemma 2 that, near ρk,

∂

∂y
Uk(z, y)

∣∣∣
y=1

=
βk(τk − ρk)

2ρk
√

1− z/ρk
+ o

(
1√

1− z/ρk

)
.

Combining these asymptotic estimates gives, near ρk,

∂

∂y
Pk(z, y)

∣∣∣
y=1

=
βk(τk − ρk)
2ρk(1− τk)2

1√
1− z/ρk

+ o

(
1√

1− z/ρk

)
.

Recalling the identity γk = βk
2
√
π

and the asymptotic behavior of [zn]Pk(z, 1) = pk(n) given
in Theorem 5, we deduce that the average number of internal nodes in Pk trees is

[zn] ∂
∂y
Pk(z, y)

∣∣∣
y=1

[zn]Pk(z, 1)
∼n→∞

βk(τk − ρk)
2ρk(1− τk)2

√
πn

ρ−nk ·
(1− τk)2

γkρ
−n
k

n3/2 =
(τk − ρk)

ρk
· n.

4.5.2 Number of prime nodes

Like before, let us denote by Uk(z, y) (resp. Pk(z, y)) the bivariate generating function of
Uk trees (resp. Pk trees), counted by size (for z) and number of prime nodes (for y). We
know an asymptotic estimate of Uk(z, 1) = Uk(z) near ρk, and we now apply the method

of Section 2 to compute one for ∂
∂y
Uk(z, y)

∣∣∣
y=1

.

For any Uk tree t, let σ(t) = ξ(t) denote the number of prime nodes in t and let η(t)
be 1 if the root of t is a prime node, 0 otherwise. With the notation of Lemma 2, we have

H(z) =
∑
t∈Uk

η(t)z|t| = Sk

(
Uk(z)

1− Uk(z)

)
and

∂

∂y
Uk(z, y)

∣∣∣
y=1

= Ξ(z) = H(z) · ∂
∂z
Uk(z) = Sk

(
Uk(z)

1− Uk(z)

)
· ∂
∂z
Uk(z),

where Sk(u) =
∑k

j=4 sju
j as before.

The asymptotic estimate of Uk(z) near ρk is Uk(z) = τk−βk
√

1− z/ρk +O(1− z/ρk),
from which we deduce that Uk(z)j = τ jk + o(1). Moreover, singular differentiation gives,
near ρk,

∂

∂z
Uk(z) =

βk

2ρk
√

1− z/ρk
+ o

(
1√

1− z/ρk

)
.
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Consequently, we obtain that near ρk,

∂

∂y
Uk(z, y)

∣∣∣
y=1

= Sk

(
τk

1− τk

)
· βk

2ρk
· 1√

1− z/ρk
+ o

(
1√

1− z/ρk

)
.

Now turning to Pk trees, Equation (11) implies that

Pk(z, y) = Uk(z, y) +
Uk(z, y)2

1− Uk(z, y)
=

Uk(z, y)

1− Uk(z, y)
.

Differentiation gives

∂

∂y
Pk(z, y)

∣∣∣
y=1

=

(
1

(1− Uk(z, 1))2

)
∂

∂y
Uk(z, y)

∣∣∣
y=1

.

The asymptotic estimates obtained above give that, near ρk,

∂

∂y
Pk(z, y)

∣∣∣
y=1

= Sk

(
τk

1− τk

)
· βk

2ρk(1− τk)2
· 1√

1− z/ρk
+ o

(
1√

1− z/ρk

)
.

Finally, we deduce that the average number of prime nodes in Pk trees is

[zn] ∂
∂y
Pk(z, y)

∣∣∣
y=1

[zn]Pk(z, 1)
∼n→∞

Sk

(
τk

1−τk

)
· βk

2ρk(1− τk)2
√
πn

ρ−nk ·
(1− τk)2

γkρ
−n
k

n3/2 =
Sk

(
τk

1−τk

)
ρk

· n.

4.5.3 Subtree size sum

Again, we denote by Uk(z, y) (resp. Pk(z, y)) the bivariate generating function of Uk
trees (resp. Pk trees), counted by size (for z) and subtree size sum (for y). In this case,
Equation (11) gives

Pk(z, y) = Uk(z, y) +
Uk(zy, y)2

1− Uk(zy, y)
.

As before, we have Uk(z, 1) = Uk(z). Note also that ∂
∂z
Uk(z, y)

∣∣∣
y=1

= ∂
∂z
Uk(z). It follows

that

∂

∂y
Pk(z, y)

∣∣∣
y=1

=
∂

∂y
Uk(z, y)

∣∣∣
y=1

+

(
2Uk(z, 1)

1− Uk(z, 1)
+

Uk(z, 1)2

(1− Uk(z, 1))2

)(
z
∂

∂z
Uk(z) +

∂

∂y
Uk(z, y)

∣∣∣
y=1

)
and we proceed like in the previous cases. Near ρk, the asymptotic estimate of ∂

∂z
Uk(z) is

∂

∂z
Uk(z) =

βk

2ρk
√

1− z/ρk
+ o

(
1√

1− z/ρk

)
,
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and we have seen in Section 2 that

∂

∂y
Uk(z, y)

∣∣∣
y=1

=
β2
k

4ρk(1− z/ρk)
+ o

(
1

1− z/ρk

)
,

since this function counts Uk trees weighted by their subtree size sum. Consequently, the

asymptotic estimate of ∂
∂y
Pk(z, y)

∣∣∣
y=1

near ρk is

∂

∂y
Pk(z, y)

∣∣∣
y=1

=
β2
k

4ρk(1− τk)2(1− z/ρk)
+ o

(
1

1− z/ρk

)
.

We conclude that the average value of the subtree size sum in Pk trees is

[zn] ∂
∂y
Pk(z, y)

∣∣∣
y=1

[zn]Pk(z, 1)
∼n→∞

β2
k

4ρk(1− τk)2
ρ−nk ·

(1− τk)2

γkρ
−n
k

n3/2 =
β2
k

4ρkγk
· n3/2.

4.6 Random generation

Equation (7) gives immediate access to random sampling of trees in Pk. Thinking of the
classes Pk as possible models for the biological data collected in [11], it is interesting to
generate random trees in Pk, to compare them with the trees obtained from the data. In
this context, our interest is the global shape of the trees, and not the particulars of the
internal nodes. It is straightforward to produce a random generator which generates trees
in Pk of size approximately 10000 for k 6 800 up to generating the simple permutation
labels (prime and linear nodes are however distinguished).

Figure 2 illustrates a tree of size 300 drawn uniformly at random from P6 using Maple’s
combstruct package. The white nodes are prime, the red are linear with ⊕ sign, and the
blue linear with 	 sign. The average size of a subtree is 14.2, which is close to the expected
average of approximately 13.99. It has 34 prime nodes, which is close to the expected
number of approximately 34.7.

One of our long term goals on the biological side is to identify the very specific traits
which arise in permutations which encode mammalian genome comparisons, and to pro-
vide more adequate models. Chauve, McCloskey and Mishna [11] have taken some pre-
liminary steps in this direction, and a reasonable model should use Pk trees as subtrees.

4.7 Estimates and bounds on ρk and τk

In this section we prove the technical bounds that allow us to prove the upper bound for
the asymptotic estimate of pk(n) given in Corollary 6. In particular, this section gives
estimates on τk, ρk and Λk(τk) as functions of k. The first ingredient is a more explicit
bound for sn, the number of simple permutations of size n.

Lemma 7 (Bound for sn). For every n > 4, sn 6
√

2π nn+1/2 e−n−2.
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Figure 2: A tree from P6 generated uniformly at random

Proof. This inequality follows from Equation (6), stating that sn 6 n!
e2

(
1− 4

n
+ 2

n(n−1)

)
,

and the following upper bound on n!: n! 6
√

2πnn+ 1
2 e−n e

1
12n . Combining these two,

our claim will follow if we prove that (1 − 4
n

+ 2
n(n−1)

)e
1

12n 6 1 for n > 4. This is

equivalent to (1 − 4
n

+ 2
n(n−1)

) 6 e−
1

12n . And since 1 − x 6 e−x, it is sufficient to prove

that 1 − 4
n

+ 2
n(n−1)

6 1 − 1
12n

, i.e., that 4 − 2
n−1
> 1

12
. This obviously holds for n > 4,

concluding the proof.

From this estimate, the derivations of the bounds on τk and ρk are relatively straight-
forward, but technical. Working with the value τ̃k = τk

1−τk
simplifies the expressions. To

derive those bounds, it is essential to keep in mind this sequence of inequalities, which
follow from τk < 1 and ρk = τk − Λk(τk):

0 < ρk < τk < τ̃k < 1.

Proposition 8 (Bounds for τ̃k). For any α < e−2
e−1

, there exists k(α) such that for k > k(α)

(
α

ksk

) 1
k−1

< τ̃k <

(
1

ksk

) 1
k−1

.

Consequently,

e

k

(
αe3

√
2π k5/2

) 1
k−1

< τ̃k <
e

k

(
e3

√
2π k3/2(k − 4)

) 1
k−1

<
e

k
.
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Computational evidence suggests that k(α) = 4, for all α near e−2
e−1

.

Proof. The starting point is the equation Λ′k(x) = 1, satisfied by τk. Because Λk(x) =
x2

1−x+
∑k

j=4 sj(
x

1−x)j, it is convenient to consider this equation under the change of variables

y = x
1−x , i.e., x = y

1+y
. Notice that it implies 1

(1−x)2 = (1 + y)2.

Derivation gives Λ′k(x) = 1
(1−x)2 − 1 + 1

(1−x)2

∑k
j=4 jsj(

x
1−x)j−1, so that the equation

Λ′k(x) = 1 can be rewritten as

(1+y)2−1+(1+y)2

k∑
j=4

jsjy
j−1 = 1 which implies

2− (1 + y)2

(1 + y)2
=

k∑
j=4

jsjy
j−1. (13)

The next step towards proving the stated inequalities is the fact that for 0 < y < 1,

1−5y < 2−(1+y)2

(1+y)2 < 1, which is immediately proved by simple manipulations of inequalities.

Indeed, we now observe that (by definition of τ̃k), Equation (13) is satisfied at y = τ̃k.
Consequently, these inequalities yield an upper and a lower bound for

∑k
j=4 jsj τ̃

j−1
k :

1− 5τ̃k <
k∑
j=4

jsj τ̃
j−1
k < 1. (14)

From Equation (14), we get kskτ̃
k−1
k 6

∑k
j=4 jsj τ̃

j−1
k < 1, from which the upper bound

τ̃k <
(

1
ksk

) 1
k−1

follows. From there, deriving τ̃k <
e
k

(
e3√

2π k3/2(k−4)

) 1
k−1

is then a routine

exercise using k!
e2

(
1− 4

k

)
6 sk (see Equation (6)) and Stirling’s inequality

(
k
e

)k√
2πk 6 k!.

This quantity is no larger than e
k

as soon as k > 5. This concludes the part of the proof
about upper bounds.

For the lower bounds, we start again from Equation (14) above. We use the inequality
1− 5τ̃k −

∑k−1
j=4 jsj τ̃

j−1
k < kskτ̃

k−1
k , and combine it with the bound 0 < τ̃k 6 e/k = o(1),

and an upper bound on
∑k−1

j=4 jsj τ̃
j−1
k obtained below. We split this sum as

k−1∑
j=4

j sj τ̃
j−1
k =

k−ιk−1∑
j=4

j sj τ̃
j−1
k︸ ︷︷ ︸

A(k)

+
k−1∑

j=k−ιk

j sj τ̃
j−1
k .︸ ︷︷ ︸

B(k)

where ιk = bk 1
3 c. Note that ιk a non-decreasing integer function of k that tends to infinity

and such that ιk = o(
√
k). Lemmas 9 and 10 below prove that

A(k) =

k−ιk−1∑
j=4

jsj τ̃
j−1
k = O

(
1

k3

)
and that B(k) =

k−1∑
k−ιk

jsj τ̃
j−1
k =

1

e− 1
+ o(1).

It follows that

kskτ̃
k−1
k > 1− 5τ̃k −

k−1∑
j=4

jsj τ̃
j−1
k = 1− 1

e− 1
+ o(1) =

e− 2

e− 1
+ o(1).
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Hence for any α < e−2
e−1

, there exists k(α) such that for any k > k(α), we have k sk τ̃
k−1
k > α,

and therefore τ̃k >
(

α
k sk

) 1
k−1

. To conclude the proof, we plug in the upper bound on sk

from Lemma 7.

Lemma 9. The quantity A(k) =
∑k−ιk−1

j=4 jsj τ̃
j−1
k defined in the proof of Proposition 8

satisfies A(k) = O
(

1
k3

)
.

Proof. It is convenient to define bj = j sj. For any k > 5, since τ̃k < e/k, aj = bj e
j−1 k1−j

is an upper bound on j sj τ̃
j−1
k , so that A(k) 6

∑k−ιk−1
j=4 aj. In what follows, we prove

that
∑k−ιk−1

j=4 aj = O
(

1
k3

)
(which is enough to conclude, since A(k) > 0).

We claim that for some integer j0, the sequence (bj)j>j0 is log-convex. Indeed, for any

j > 6,
b2j

bj−1bj+1
= j2

(j−1)(j+1)

s2j
sj+1sj−1

, and Equation (6) then gives

b2
j

bj−1bj+1

6
j2

(j − 1)(j + 1)

j!2
(

1− 4
j

+ 2
j(j−1)

)2

(j − 1)!(j + 1)!
(

1− 4
j+1

)(
1− 4

j−1

) = 1− 1

j
+O

(
1

j2

)
.

In particular, there exists an integer j0 > 6 such that for any j > j0,
b2j

bj−1bj+1
< 1 and

therefore the sequence (bj)j>j0 is log-convex.

Now, note that for any k, (aj)j>j0 is also log-convex, since
a2
j

aj−1aj+1
=

b2j
bj−1bj+1

for all j.

The reason for considering the sequence (bj) instead of (aj) in the first place is to ensure
that j0 does not depend on k, although the definition of aj = j sj e

j−1 k1−j depends on k.
Log-convex sequences are decreasing down to a given minimum then increasing, and

therefore are bounded from above by the values reached at the extremities. Thus for all
j ∈ {j0, . . . , k − ιk − 1}, aj 6 max{aj0 , ak−ιk−1} 6 aj0 + ak−ιk−1. Consequently,

k−ιk−1∑
j=4

aj =

j0−1∑
j=4

aj +

k−ιk−1∑
j=j0

aj 6
j0−1∑
j=4

aj + k aj0 + k ak−ιk−1,

and the result will follow if we find adequate upper bounds on each on these three terms,
which we now do.

For any j ∈ {4, . . . j0 − 1}, we have aj = j sj e
j−1 k1−j 6 jj! ej−1 k1−j 6 j0j0! ej0−1 k−3

so that
∑j0−1

j=4 aj 6 j2
0j0! ej0−1 k−3 = O(k−3).

For the term k aj0 , we have k aj0 = j0 sj0 e
j0−1 k2−j0 = O(k−3) since j0 > 6. Using

Lemma 7 and the fact that for all x ∈ (0, 1), log(1 − x) < −x, we obtain the bound for
the last term. More precisely, we have:

k ak−ιk−1 6 k2 · sk−ιk−1 · ek−ιk−2 · k2−k+ιk

6 k2 ·
√

2π · (k − ιk − 1)k−ιk−1/2 · e−k+ιk−1 · ek−ιk−2 · k2−k+ιk

6

√
2π

e3
k7/2 ·

(
1− ιk + 1

k

)k−ιk−1/2
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6

√
2π

e3
k7/2 · exp

(
(k − ιk − 1/2) log

(
1− ιk + 1

k

))
6

√
2π

e3
k7/2 · exp

(
−(k − ιk − 1/2)(ιk + 1)

k

)
.

The quantity in the exponential is asymptotically equivalent to −ιk = −bk 1
3 c. Hence

k ak−ιk−1 decreases super-polynomially fast toward 0, and is therefore a O(k−3) too.

Lemma 10. The quantity B(k) =
∑k−1

k−ιk jsj τ̃
j−1
k defined in the proof of Proposition 8

satisfies B(k) = 1
e−1

+ o(1).

Proof. With the change of variable i = k−j, we can write B(k) =
∑ιk

i=1(k−i) sk−i τ̃ k−i−1
k .

By Lemma 7 and the upper bound on τ̃k proved in Proposition 8, we have

(k − i) sk−i 6
√

2π(k − i)k−i+3/2

ek−i+2
,

τ̃ k−i−1
k 6

ek−i−1

kk−i−1

(
e3

√
2π k3/2 (k − 4)

)
·
(

e3

√
2π k3/2 (k − 4)

) −i
k−1

.

Therefore (k− i) sk−i τ̃ k−i−1
k 6

(
1− i

k

)k−i+3/2 (
e−3
√

2π k3/2 (k − 4)
) i
k−1 · 1

1− 4
k

. Since i 6 ιk

and e−3
√

2π k3/2 (k − 4) > 1 as soon as k > 5, we obtain that for k > 5,

(k − i) sk−i τ̃ k−i−1
k 6

(
1− i

k

)k−i+3/2 (
e−3
√

2π k3/2 (k − 4)
) ιk
k−1 · 1

1− 4
k︸ ︷︷ ︸

1+O( 1
k

)

.

Using again that log(1− x) < −x for x ∈ (0, 1), we have

(1− i/k)k−i+3/2 = e(k−i+3/2) log(1− i
k) 6 e−

(k−i+3/2)i
k = e−i+

i2

k
− 3i

2k .

Recalling that i 6 ιk = bk 1
3 c, this gives (1− i/k)k−i+3/2 6 e−i exp(k−1/3) = e−i (1 + o(1)).

Proceeding similarly, the middle term satisfies(
e−3
√

2π k3/2 (k − 4)
) ιk
k−1

= 1 + o(1).

Therefore, we obtain (k− i) sk−i τ̃ k−i−1
k 6 e−i (1 + o(1)), where the function hidden in the

o(1) notation depends on k but not on i. Consequently, summing over i, we obtain

B(k) 6

(
ιk∑
i=1

e−i

)
(1 + o(1)) 6

(
∞∑
i=1

e−i

)
(1 + o(1)) =

1 + o(1)

e− 1
,

as claimed.
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Theorem 11 (Bounds for ρk). There exists a constant β such that for any α < e−2
e−1

,
there exist k(α, β) such that for any k > k(α, β),

e

k

(
αe3

√
2π k5/2

) 1
k−1
(

1− β

k

)
< ρk <

e

k

(
e3

√
2π k3/2(k − 4)

) 1
k−1

.

Consequently, ρk = e
k

(
1− 5

2
log k
k

+O( 1
k
)
)
.

Proof. The upper bound is immediate from the bound ρk < τ̃k and Proposition 8.
For the lower bound, we start from ρk = τk − Λk(τk). The definitions of τ̃k and Λk give

ρk = τ̃k

(
1− 2τ̃k

1+τ̃k
−
∑k

j=4 sj τ̃
j−1
k

)
. Our main step is to deduce from this equality that

ρk > τ̃k(1−β/k) for some constant β. The lower bound will then follow from Proposition 8.
As in the proof of Proposition 8, we leverage upper bounds on τ̃k to build a lower

bound on 1− 2τ̃k
1+τ̃k
−
∑k

j=4 sj τ̃
j−1
k . In this case, we use 2τ̃k

1+τ̃k
6 2τ̃k 6 2 e

k
, and we will bound

the summation by splitting the sum at the same place:

k∑
j=4

sj τ̃
j−1
k =

k−ιk−1∑
j=4

sj τ̃
j−1
k +

k−1∑
j=k−ιk

sj τ̃
j−1
k + sk τ̃

k−1
k .

Even though it is not the same summation, we can re-use the bounds from Lemmas 9
and 10. Indeed,

k−ιk−1∑
j=4

sj τ̃
j−1
k 6

k−ιk−1∑
j=4

j sj τ̃
j−1
k = A(k) = O

(
1

k3

)

and
k−1∑

j=k−ιk

sj τ̃
j−1
k 6

k−1∑
j=k−ιk

j

k − ιk
sj τ̃

j−1
k =

B(k)

k − ιk
= O

(
1

k

)
.

Finally, Proposition 8 ensures that k sk τ̃
k−1
k 6 1, and we obtain 2τ̃k

1+τ̃k
+
∑k

j=4 sj τ̃
j−1
k =

O
(

1
k

)
. It follows that for some β, there exists k(β) such that when k > k(β) we have:

2τ̃k
1 + τ̃k

+
k∑
j=4

sj τ̃
j−1
k 6

β

k
and hence ρk > τ̃k

(
1− β

k

)
,

which together with Proposition 8 proves the lower bound.
To obtain the claimed asymptotic estimate of ρk, it is enough to observe that both

the upper and the lower bound behave like e
k

(
1− 5

2
log k
k

+O( 1
k
)
)
. More precisely,(

αe3

√
2π k5/2

) 1
k−1

= exp

(
log(k−5/2) +O(1)

k − 1

)
= exp

(
−5

2

log k

k − 1
+
O(1)

k − 1

)
= 1− 5

2

log k

k
+O

(
1

k

)
,
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So that (
αe3

√
2π k5/2

) 1
k−1
(

1− β

k

)
= 1− 5

2

log k

k
+O

(
1

k

)
and (

e3

√
2π k3/2(k − 4)

) 1
k−1

= exp

(
log(k−5/2) + log( 1

1−4/k
) +O(1)

k − 1

)

= 1− 5

2

log k

k
+O

(
1

k

)
.

This concludes the proof.

It was known in [10] that ρk = e
k
(1 + o(1)), but we are able to produce a more precise

estimate. We require this precision when we consider the limit as k →∞.
Looking at the asymptotic estimate of pk(n) provided by Theorem 5, and aiming at

obtaining an upper bound on this estimates, the only missing piece is a lower bound on
Λ′′k(τk). The definition of Λk (see Theorem 5) gives

Λ′′k(x) =
2

(1− x)3

(
1 +

k∑
j=4

jsj

(
x

1− x

)j−1

+
1

2(1− x)

k∑
j=4

j(j − 1)sj

(
x

1− x

)j−2
)

>
2

(1− x)3
for all x ∈ (0, 1),

and therefore the series expansion of (1− x)−3 ensures that Λ′′k(τk) > 2 + 6τ̃k. We could
expand this expression further, and use lower bounds on τ̃k, but it turns out that for our
purposes, the bound Λ′′k(τk) > 2 is sufficient.

This completes the required set of elements for the bounds of Corollary 6.

5 Studying a combinatorial class via its filtration

The study thus far illustrates a strategy to enumerate classes C of trees whose generating
functions satisfy C(z) = z + Λ(C(z)), in particular in the case where Λ is not analytic.

Specifically, we have considered a sequence of analytic Λk such that as formal power
series, limk→∞ Λk = Λ, and studied first the sets Ck of Λk-trees. One such example is
truncations at order k.

The main goal is to obtain results about C from what is known about the classes Ck.
More specific goals are: to determine conditions so that the limit of the asymptotics of the
subclasses tends to the asymptotics of the whole class; and to determine which parameter
formulas are valid under the limit. A first step towards this is to consider the case when
Λ is analytic. We show that in this case, we obtain the correct asymptotic formula when
taking the limit as k tends to infinity, i.e. that limits in n and k commute.
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Consider a series Λ(x) =
∑

i>2 λix
i with non-negative coefficients, analytic at 0. And

for all k > 2, define Λk(x) =
∑k

i=2 λix
i. We denote respectively by C and Ck the classes

of trees whose generating functions satisfy

C(z) = z + Λ(C(z)) and Ck(z) = z + Λk(Ck(z)).

Suppose that Λ has radius of convergence R. There is a unique solution τ ∈ (0, R) to
the equation Λ′(x) = 1. It follows from Theorem 1 that C(z) is analytic at 0 and has
a unique dominant singularity ρ = τ − Λ(τ). Under the further assumption that C(z)
is aperiodic, we conclude that the coefficients of this series behave asymptotically like

[zn]C(z) ∼
√

ρ
2πΛ′′(τ)

· ρ−n
n3/2 .

Lemma 12. For all k > 2, there exists a unique τk ∈ (0,+∞) such that Λ′k(τk) = 1.
Moreover, the sequence (τk)k>2 is decreasing and converges to τ as k goes to infinity.

Proof. Fix some k > 2. From the definition of Λk(x) =
∑k

i=2 λix
i, it follows that Λ′k(x)

is a polynomial with non-negative coefficients, increasing from 0 to +∞ when x varies
from 0 to +∞. Moreover, its derivative Λ′′k being nowhere zero on (0,+∞), Λ′k is strictly
increasing. Therefore, there is a unique positive solution to Λ′k(x) = 1, that we denote τk.

The fact that the sequence (τk)k>2 is decreasing is immediate from

1 = Λ′k(τk) =
k∑
i=2

iλiτ
i−1
k 6

k+1∑
i=2

iλiτ
i−1
k = Λ′k+1(τk)

and the fact that Λ′k+1 is increasing.
The sequence (τk)k>2 being decreasing and non-negative, it admits a limit, that we

denote `. We want to prove that ` = τ , i.e., that Λ′(`) = 1. First, for all k, ` 6 τk, so that
Λ′k(`) 6 1. Moreover, the sequence (Λ′k(`))k is increasing (we keep adding non-negative
terms), and thus converges towards a limit that is no larger than 1. This limit being
Λ′(`), we obtain that Λ′(`) 6 1. Now as Λ′ is increasing, and Λ′(τ) = 1 it follows that
` 6 τ . As τ < R and (τk)k is decreasing, this is sufficient to get that Λ is defined for τk,
for sufficiently large k. For any such large k, we have

1 = Λ′k(τk) =
k∑
i=2

iλiτ
i−1
k 6

∑
i>2

iλiτ
i−1
k = Λ′(τk),

and taking the limit in k gives Λ′(`) > 1, by continuity of Λ′.

We have a similar result for the sequence of radii of convergence.

Lemma 13. For all k > 2, define ρk = τk −Λk(τk). The sequence (ρk)k>2 converges to ρ
as k goes to infinity.
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Proof. It is enough to prove that (Λk(τk))k converges to Λ(τ). Like in the previous proof,
since (τk)k>2 is decreasing towards τ < R, we get that for k large enough, Λ is defined in
τk. For such large k, we have

k∑
j=2

λkτ
k 6

k∑
j=2

λkτ
k
k 6

∑
j>2

λkτ
k
k that is to say Λk(τ) 6 Λk(τk) 6 Λ(τk).

Because (Λk(τ))k and (Λ(τk))k share the same limit Λ(τ), by the squeeze theorem, as k
goes to infinity, we obtain that lim

k→+∞
Λk(τk) = Λ(τ).

From Theorem 1, we obtain

[zn]Ck(z) ∼
√

ρk
2πΛ′′k(τk)

· ρ
−n
k

n3/2
,

and the two lemmas above ensure that taking the limit in k in this estimates give
√

ρ
2πΛ′′(τ)

·
ρ−n

n3/2 . In addition, lim
k→+∞

Ck(z) = C(z) from which we get [zn] lim
k→+∞

Ck(z) ∼
√

ρ
2πΛ′′(τ)

· ρ−n
n3/2 .

In other words, taking the limit in k in the estimate of the number of trees of size n in Ck
gives the estimates of the number of trees of size n in C.
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