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Abstract

The linearization coefficient L(Ln1(x) . . . Lnk(x)) of classical Laguerre polynomi-
als Ln(x) is known to be equal to the number of (n1, . . . , nk)-derangements, which
are permutations with a certain condition. Kasraoui, Stanton and Zeng found a
q-analog of this result using q-Laguerre polynomials with two parameters q and y.
Their formula expresses the linearization coefficient of q-Laguerre polynomials as
the generating function for (n1, . . . , nk)-derangements with two statistics counting
weak excedances and crossings. In this paper their result is proved by constructing
a sign-reversing involution on marked perfect matchings.

Mathematics Subject Classifications: Primary: 06A07; Secondary: 05A30,
05A15

1 Introduction

A family of polynomials Pn(x) are called orthogonal polynomials with respect to a linear
functional L if degPn(x) = n for n > 0 and L(Pm(x)Pn(x)) = 0 if and only if m 6= n. The
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nth moment µn of the orthogonal polynomials is defined by µn = L(xn). It is well known
that monic orthogonal polynomials Pn(x) satisfy a three-term recurrence of the form

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x). (1)

Viennot [14] developed a combinatorial theory to study orthogonal polynomials. In
particular, he showed that orthogonal polynomials Pn(x) and the moments µn are ex-
pressed as weighted sums of certain lattice paths. There are several classical orthogonal
polynomials whose moments have simple combinatorial meanings. For example, the nth
moment of the Hermite (respectively, Charlier and Laguerre) polynomials is the number of
perfect matchings (respectively, set partitions and permutations) on [n] := {1, 2, . . . , n}.

By definition of orthogonal polynomials, it is easily seen that

Pm(x)Pn(x) =
m+n∑
`=0

c`m,nP`(x), c`m,n = L(P`(x)Pm(x)Pn(x))/L(P`(x)2).

Thus the coefficients c`m,n can be computed using the quantities L(Pn1(x) . . . Pnk(x)). We
call L(Pn1(x) . . . Pnk(x)) a linearization coefficient.

For the above mentioned classical orthogonal polynomials, the linearization coefficients
also have nice combinatorial interpretations as follows. Let n1, n2, . . . nk be positive in-
tegers with n = n1 + · · · + nk, and consider the set Ii (i = 1, 2, . . . , k) of consecutive
integers from n1 + · · ·+ ni−1 + 1 to n1 + · · ·+ ni, where n0 = 0. If Pn(x) are the Hermite
(respectively, Charlier and Laguerre) polynomials, then L(Pn1(x) . . . Pnk(x)) is the num-
ber of inhomogeneous perfect matchings (respectively, set partitions and permutations)
on I1 t · · · t Ik = [n], see [2, 4, 5, 6, 15] and references therein. Here, a perfect match-
ing m (respectively, set partition π and permutation σ) is inhomogeneous if there are no
edges (respectively, two elements in the same block and two elements j and σ(j)) that
are contained in the same set Ii.

There are q-analogs of the above combinatorial formulas for linearization coefficients
of Hermite, Charlier and Laguerre polynomials due to Ismail, Stanton and Viennot [8],
Anshelevich [1] and Kasraoui, Stanton and Zeng [9], respectively. There is a unified way
to prove combinatorial formulas for linearization coefficients using so called “separation of
variables” [7]. We refer the reader to the survey [2] for more details on these linearization
coefficients.

Suppose that Pn(x) are orthogonal polynomials whose moments L(xn) have a combi-
natorial model as in the case of Hermite, Charlier or Laguerre polynomials. Since Pn(x)
satisfy a simple recurrence (1), one may also give a combinatorial model for Pn(x) with
possibly negative signs involved. These combinatorial models for Pn(x) and L(xn) nat-
urally yield a combinatorial meaning to L(Pn1(x) . . . Pnk(x)), which may have negative
signs. Therefore, if there is a combinatorial formula for L(Pn1(x) . . . Pnk(x)) with only
positive terms, the most satisfying combinatorial proof of this formula would be finding a
sign-reversing involution on the combinatorial models for L(Pn1(x) . . . Pnk(x)) whose fixed
points give the positive terms in the formula.
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Indeed, the formulas for linearization coefficients of q-Hermite [8] and q-Charlier poly-
nomials [1] have been proved in this way by Ismail, Stanton and Viennot [8] and Kim,
Stanton and Zeng [10]. However, such a proof is missing in the case of q-Laguerre poly-
nomials. In this paper, we prove the formula for linearization coefficients of q-Laguerre
polynomials due to Kasraoui, Stanton and Zeng [9] by finding a sign-reversing involution.
We now describe their result below.

The q-Laguerre polynomials Ln(x; q, y) are defined by the three-term recurrence rela-
tion

Ln+1(x; q, y) = (x− y[n+ 1]q − [n]q)Ln(x; q, y)− y[n]2qLn−1(x; q, y) (2)

with L0(x; q, y) = 1 and L1(x; q, y) = x− y. Here, we use the notation [n]q = 1 + q+ · · ·+
qn−1. From now on L denotes the linear functional with respect to which the q-Laguerre
polynomials are orthogonal.

The set of permutations of [n] is denoted by Sn. For σ ∈ Sn, a weak excedance of
σ is an integer i ∈ [n] such that σ(i) > i. A crossing of σ is a pair (i, j) of integers
i, j ∈ [n] such that i < j 6 σ(i) < σ(j) or σ(i) < σ(j) < i < j. We denote by wex(σ)
(respectively, cross(σ)) the number of weak excedances (respectively, crossings) of σ. For
positive integers n1, . . . , nk and N = n1 + · · · + nk, an (n1, . . . , nk)-derangement is a
permutation σ ∈ SN such that there is no integer i ∈ [N ] with

n1 + · · ·+ nj−1 + 1 6 i, σ(i) 6 n1 + · · ·+ nj

for some j ∈ [k]. The set of (n1, . . . , nk)-derangements is denoted by D(n1, . . . , nk).
Kasraoui, Stanton and Zeng [9] showed that the nth moment is given by

µn(q, y) = L(xn) =
∑
σ∈Sn

ywex(σ)qcross(σ). (3)

They also proved the following formula for the linearization coefficients of q-Laguerre
polynomials.

Theorem 1.1. ([9]) The linearization coefficients of q-Laguerre polynomials are given by

L(Ln1(x; q, y) · · ·Lnk(x; q, y)) =
∑

σ∈D(n1,...,nk)

ywex(σ)qcross(σ).

In [9] using recurrence relation for L(Ln1(x; q, y) · · ·Lnk(x; q, y)) and induction, they
proved Theorem 1.1. The purpose of this paper is to give a proof of Theorem 1.1 by con-
structing a sign-reversing involution. Our fundamental combinatorial objects are match-
ings instead of permutations.

The remainder of this paper is organized as follows. In Section 2 we give basic defini-
tions and combinatorial interpretations for Ln(x; q, y) and µn(q, y) using matchings and
perfect matchings. In Section 3 we give a combinatorial model for the linearization coeffi-
cient in terms of marked perfect matchings. We then construct a sign-reversing involution
on marked perfect matchings. Section 4 is devoted to showing that our map in Section 3
is indeed a sign-reversing involution that preserves the desired weights on marked perfect
matchings. In the final section we discuss future work.

An extended abstract of this paper will appear in the Proceedings of the 32nd Con-
ference on Formal Power Series and Algebraic Combinatorics.
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2 q-Laguerre polynomials and their moments

In this section we give combinatorial interpretations for the q-Laguerre polynomials
Ln(x; q, y) and their moments µn(q, y) using matchings and perfect matchings. The re-
sults in this section generalize the combinatorial models for Laguerre polynomials and
their moments due to Viennot [14, Ch. 6]. We start with basic definitions.

Definition 2.1. Let Kn,n be the complete bipartite graph with 2n vertices, i.e., the graph
with vertex set {1, 2, . . . , n, 1, 2, . . . , n} and edge set {(i, j) : 1 6 i, j 6 n}. A matching
of degree n is a subgraph π of Kn,n such that π contains every vertex of Kn,n and no two
distinct edges of π have common vertices. A matching π of degree n is called a perfect
matching if π has exactly n edges. Denote the set of all matchings (respectively, perfect
matchings) of degree n by Mn (respectively, PMn). For π ∈ Mn, we denote by E(π) the
set of edges in π and let e(π) = |E(π)|.

We visualize a matching π of degree n by placing the vertices 1, 2, . . . , n in the upper
row and the vertices 1, 2, . . . , n in the lower row as shown in Figure 1. We call 1, 2, . . . , n
the upper vertices and 1, 2, . . . , n the lower vertices of π. If there is no possible confusion,
we will simply write j instead of j. For example, since every edge of a matching is of the
form (i, j), we will also write this edge as (i, j).

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Figure 1: A matching π of degree 7, which is not a perfect matching.

For π ∈ Mn, if (i, j) ∈ π, we denote π(i) = j and ei = (i, π(i)). For example, if π
is the matching in Figure 1, then π(1) = 4, π(3) = 2 and e1 = (1, 4), e3 = (3, 2). An
upper vertex i of π is said to be unmatched if there is no edge of the form (i, j). Similarly,
a lower vertex j of π is unmatched if there is no edge of the form (i, j). Note that if
π ∈ PMn, there are no unmatched vertices and we can identify π with the permutation
σ ∈ Sn given by σ(i) = π(i) for all i ∈ [n]. We will often use this identification in this
paper.

Let π ∈ PMn. An edge e = (i, π(i)) of π is called a weak excedance if i 6 π(i). A
pair (e, e′′) of edges e = (i, π(i)) and e′ = (j, π(j)) is said to be overlapping if i < j 6
π(i) < π(j) or π(i) < π(j) < i < j. Let wex(π) and ov(π) denote the number of weak
excedances and overlapping pairs of π. In other words,

wex(π) = |{i ∈ [n] : π(i) > i}| and

ov(π) = |{(i, j) ∈ [n]× [n] : i < j 6 π(i) < π(j) or π(j) < π(i) < j < i}|.
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By the identification of PMn and Sn we can rewrite (3) as follows:

µn(q, y) = L(xn) =
∑

π∈PMn

ywex(π)qov(π). (4)

For the remainder of this section we will find a combinatorial model for Ln(x; q, y) in
Theorem 2.4 and give yet another expression for µn(q, y) in (7). To do this, we define
some statistics for matchings. Given a matching π ∈ Mn, let P = (B1, . . . , Bl) be the
unique ordered set partition of the upper vertices of π satisfying the following conditions:

• Each block Br consists of consecutive elements. In other words, Br is of the form
Br = {i, i+ 1, . . . , j}.

• For each i ∈ [n], i is the largest element in some block Br if and only if i is an
unmatched vertex or i = n.

We define the upper block index bindexUπ (i) of a vertex i to be the integer r such that
i ∈ Br. Note that bindexUπ (i) is equal to one more than the number of unmatched vertices
appearing before i in the upper row. The lower block index bindexLπ (i) is defined similarly
by considering the ordered set partition of the lower vertices of π.

Definition 2.2. For a matching π ∈ Mn, the block difference bdiffπ(e) of an edge e =
(i, π(i)) is the difference between bindexLπ (π(i)) and bindexUπ (i), that is,

bdiffπ(e) = bindexLπ (π(i))− bindexUπ (i).

An edge e ∈ E(π) is called a block weak excedance if bdiffπ(e) > 0. Denote the number of
block weak excedances in π by bwex(π). The block weight bwt(π) of π ∈ Mn is defined by

bwt(π) =
∑

bdiffπ(e)>0

bdiffπ(e) +
∑

bdiffπ(e)<0

(− bdiffπ(e)− 1).

A crossing of π is a pair (e, e′) of edges e = (i, π(i)) and e′ = (j, π(j)) in π such that i < j
and π(i) > π(j). The number of crossings of π is denoted by cr(π).

We note that the notion of crossing for a matching π ∈ Mn is different from that for a
permutation σ ∈ Sn. If π ∈ PMn corresponds to σ ∈ Sn using the identification, we have
cross(σ) = ov(π) but cross(σ) 6= cr(π). A crossing of π ∈ Mn can be understood as a pair
of edges that intersect in the visualization of π.

Example 2.3. Let π be the matching in Figure 1. Then the ordered set partition for
the upper row is ({1, 2, 3, 4}, {5, 6}, {7}) and the ordered set partition for the lower row
is ({1, 2, 3, 4, 5}, {6, 7}). Let e = (7, 3). The block indices of its two endpoints are
bindexUπ (7) = 3 and bindexLπ (3) = 1, so we have bdiffπ(e) = −2. The number of block
weak excedances in π is bwex(π) = 3, the block weight of π is bwt(π) = 0, and the number
of crossings of π is cr(π) = 7.
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1 2 3

1 2

Figure 2: A matching π with its blocks. The block numbers are shown.

We are now ready to express the q-Laguerre polynomials combinatorially.

Theorem 2.4. For n > 0, we have

Ln(x; q, y) =
∑
π∈Mn

(−1)e(π)ybwex(π)qbwt(π)+cr(π)xn−e(π). (5)

Example 2.5. There are 7 matchings of degree 2 as shown in Figure 3.

x2 −xy −xyq −x

−xy y2 y2q

Figure 3: The matchings of degree 2 and their corresponding terms.

Then by Theorem 2.4, we have

L2(x; q, y) = x2 − (yq + 2y + 1)x+ y2 + y2q.

Proof of Theorem 2.4. The proof is by induction on n. The cases for n = 0, 1 are easy
to check. For n > 2 we will show that the right hand side of (5) satisfies the three-term
recurrence (2), which we recall here:

Ln+1(x; q, y) = (x− y[n+ 1]q − [n]q)Ln(x; q, y)− y[n]2qLn−1(x; q, y). (6)

For each matching π ∈ Mn+1 there are three cases as follows.

Case 1 Two vertices n+ 1 and n+ 1 are both unmatched. Let π′ ∈ Mn be the matching
obtained from π by deleting the last vertex in each row. Clearly all statistics but
the number of unmatched vertices of π and π′ are equal. Then this case contributes
xLn(x; q, y) to the right-hand side of (6).
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Case 2 The vertex n+ 1 is matched to some vertex i, i.e., there is an edge ei = (i, n+ 1)
∈ E(π). Let π′ be the matching obtained from π by deleting ei and its end vertices
and we regard π′ as a matching in Mn. Since the deleted vertex i is matched in
π, the block indices of vertices of π and π′ are equal, so are the block differences.
That is, bdiffπ(e) = bdiffπ′(e) for e ∈ E(π) \ {ei}. Since the number of block weak
excedances and the block weight of π depend only on the block differences, we only
need to consider the contribution of ei to bwex(π) and bwt(π). The lower block
index bindexLπ (n+ 1) is one more than the number of unmatched vertices in the
lower row, so bindexLπ (n+ 1) = n + 2 − e(π). Then ei is automatically a block
weak excedance, so bwex(π) = bwex(π′) + 1. To consider the block weight, let
m be the number of matched upper vertices j such that i < j. It is clear that
an edge ej crosses ei if and only if i < j, and hence cr(π) = cr(π′) + m. It is
easy to check that bindexUπ (i) = i + 1 − e(π) + m, so bdiffπ(ei) = n + 1 − i − m
and bwt(π) = bwt(π′) + n + 1 − i − m. Thus Case 2 corresponds to the term∑n+1

i=1 (−yqn+1−iLn(x; q, y)) = −y[n+ 1]qLn(x; q, y).

Case 3 The vertex n+ 1 is unmatched and the vertex n + 1 is matched to some vertex
i where i 6 n. This case is similar to Case 2, except that the edge (n + 1, i) is not

a block weak excedance. Letting M̃n be the set of matchings in Mn such that n is
unmatched and

L̃n(x; q, y) :=
∑
π∈M̃n

(−1)e(π)ybwex(π)qbwt(π)+cr(π)xn−e(π),

we obtain that Case 3 contributes −[n]qL̃n(x; q, y).

From Cases 1, 2 and 3, we have

Ln+1(x; q, y) = (x− y[n+ 1]q)Ln(x; q, y)− [n]qL̃n(x; q, y).

Comparing this with (6), it is enough to show that

Ln(x; q, y) = L̃n(x; q, y)− y[n]qLn−1(x; q, y).

By the same argument in Case 2, the second term (including the negative sign) in the
right-hand side of the above equation is equal to∑

π∈Mn\M̃n

(−1)e(π)ybwex(π)qbwt(π)+cr(π)xn−e(π),

then the proof follows.

Now we modify the combinatorial expression (4) for the moment µn(q, y) so that the
new expression is more suitable for our approach. For π ∈ PMn, the weight wt(π) of π is
defined by

wt(π) =
∑
π(i)>i

(π(i)− i) +
∑
π(i)<i

(i− π(i)− 1).
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In fact, this definition is obtained from the definition of the block weight by replacing
block differences bdiffπ(e) by π(i) − i. The following lemma gives a relation between
ov(π), wt(π) and cr(π).

Lemma 2.6. For π ∈ PMn, ov(π) = wt(π)− cr(π).

Proof. We prove that wt(π) = ov(π) + cr(π). By the definition of weight,

wt(π) =
∑
π(i)>i

(π(i)− i) +
∑
π(i)<i

(i− π(i)− 1)

=
∑
π(i)>i

|{j : i 6 π(j) < π(i)}|+
∑
π(i)<i

|{j : π(i) < π(j) < i}|

=
∑
π(i)>i

|{j : j < i 6 π(j) < π(i)}|+
∑
π(i)>i

|{j : i < j and i 6 π(j) < π(i)}|

+
∑
π(i)<i

|{j : π(i) < π(j) < i < j}|+
∑
π(i)<i

|{j : j < i and π(i) < π(j) < i}|.

On the right-hand side of the last equation, it is clear that the sum of the first and third
summands is equal to ov(π).

On the other hand, the weight of π can also be expressed as

wt(π) =
∑
π(i)>i

(π(i)− i) +
∑
π(i)<i

(i− π(i)− 1)

=
∑
π(i)>i

|{j : i < j 6 π(i)}|+
∑
π(i)<i

|{j : π(i) < j < i}|

=
∑
π(i)>i

|{j : i < j 6 π(i) < π(j)}|+
∑
π(i)>i

|{j : π(j) < π(i) and i < j 6 π(i)}|

+
∑
π(i)<i

|{j : π(j) < π(i) < j < i}|+
∑
π(i)<i

|{j : π(i) < π(j) and π(i) < j < i}|.

Similarly, in the right-hand side of the last equation, it is clear that the sum of the first
and third summands is equal to ov(π). Thus, with a slight change of variables, it is enough
to show that

2cr(π) =
∑
π(i)>i

|{j : i < j and i 6 π(j) < π(i)}|

+
∑
π(i)<i

|{j : j < i and π(i) < π(j) < i}|

+
∑
π(i)>i

|{j : π(j) < π(i) and i < j 6 π(i)}|

+
∑
π(i)<i

|{j : π(i) < π(j) and π(i) < j < i}|

the electronic journal of combinatorics 27(2) (2020), #P2.22 8



= |{(i, j) : i < j, π(i) > π(j) and i 6 π(j)}|
+ |{(i, j) : i < j, π(i) > π(j) and j > π(i)}|
+ |{(i, j) : i < j, π(i) > π(j) and j 6 π(i)}|
+ |{(i, j) : i < j, π(i) > π(j) and i > π(j)}|.

One can see that each crossing of π is counted twice in the right-hand side of the above
equation. To be precise, a pair (i, j) of integers such that (ei, ej) is a crossing of π is
counted once either in the first or last summand depending on the sign of i − π(j), and
counted once again either in the second or third summand depending on the sign of
j − π(i). This completes the proof.

By Lemma 2.6 we can rewrite the moment µn(q, y) using wt(π) and cr(π) instead of
ov(π):

µn(q, y) =
∑

π∈PMn

ywex(π)qwt(π)−cr(π). (7)

In the next section we will use Theorem 2.4 and (7) to give a combinatorial meaning to
the linearization coefficients of q-Laguerre polynomials.

3 Linearization coefficients and a sign-reversing involution

3.1 A combinatorial interpretation of linearization coefficients

In this section we give a combinatorial interpretation of the linearization coefficient
C(n1, . . . , nk) := L(Ln1 · · ·Lnk) of the q-Laguerre polynomials Ln = Ln(x; q, y). First
we recall the expression of Ln in terms of matchings in Theorem 2.4:

Ln =
∑
π∈Mn

(−1)e(π)ybwex(π)qbwt(π)+cr(π)xn−e(π). (8)

To give a description of the product Ln1 · · ·Lnk , we embed Mn1 × · · · × Mnk in MN ,

where N =
∑k

i=1 ni, by horizontally concatenating the k matchings π1, . . . , πk for each
(π1, . . . , πk) ∈ Mn1 × · · · × Mnk . Let Mn1,...,nk ⊂ MN denote the embedded image of
Mn1 × · · · ×Mnk .

Let π ∈ MN . We say that an edge (i, π(i)) of π is homogeneous with respect to
(n1, . . . , nk) if

n1 + · · ·+ nr−1 + 1 6 i, π(i) 6 n1 + · · ·+ nr,

for some 1 6 r 6 k, and inhomogeneous otherwise. For simplicity, we omit the expression
‘with respect to (n1, . . . , nk)’ when there is no confusion. Note that Mn1,...,nk is the set of
matchings in MN such that every edge is homogeneous. We will write EH(π) for the set
of homogeneous edges of π.

Note that if π ∈ Mn1,...,nk is the concatenation of π1, . . . , πk, then each statistic in (8)

satisfies the relation stat(π) =
∑k

i=1 stat(πi). Thus the product Ln1 · · ·Lnk is written as

Ln1 · · ·Lnk =
∑

π∈Mn1,...,nk

(−1)e(π)ybwex(π)qbwt(π)+cr(π)xN−e(π). (9)
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Applying L to (9), we have

L (Ln1 · · ·Lnk) =
∑

π∈Mn1,...,nk

(−1)e(π)ybwex(π)qbwt(π)+cr(π)L
(
xN−e(π)

)
.

Here we recall the formula of the nth moment in (7):

µn(q, y) = L(xn) =
∑

π∈PMn

ywex(π)qwt(π)−cr(π).

Note that N − e(π), the power of x in (9), represents the number of unmatched vertices
in the upper (or lower) row, or equivalently, the number of edges we need to add to
make it a perfect matching. Thus, applying the functional L to xN−e(π) is interpreted as
summing up all possible ways to complete π into a perfect matching, by adding edges on
the unmatched vertices, allowing inhomogeneous edges.

x3y3q2

L

(y3q0)y3q2

+

(y2q0)y3q2

+

...
...

...

+

(y2q0)y3q2

Figure 4: An example of applying L to a term x3y3q2 in the product L2L3L2. There are
3!=6 terms in L(x3) corresponding to all possible completions of the original
matching.

Example 3.1. Figure 4 describes an example of the application of L. The matching
on the left side represents a term x3y3q2 in L2L3L2, which is the product of three terms
−xyq, xyq and −xy in L2, L3 and L2, respectively. Applying L gives an equation( ∑

π∈PM3

ywex(π)qwt(π)−cr(π)

)
y3q2,

where each summand corresponds to a way to add edges to remaining vertices, represented
in dashed lines.

In order to describe the expansion of L(Ln1 · · ·Lnk), we introduce a perfect matching
model containing the information of which edges are newly added by applying L. Let
PM∗n1,...,nk

be the set of pairs m = (π, S) such that
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• π ∈ MN is a perfect matching of degree N =
∑k

i=1 ni,

• S is a subset of edges in π, which contains all inhomogeneous edges of π, i.e.,
E(π) \ EH(π) ⊆ S.

We call an element m = (π, S) of PM∗n1,...,nk
a marked perfect matching. An edge e of π

is said to be marked if e ∈ S. In other words, S is the set of marked edges. With marks
on edges, we can distinguish new edges added by applying L from the original edges from
Ln1 · · ·Lnk . The condition E(π)\EH(π) ⊆ S is needed since inhomogeneous edges cannot
be present in the original matching coming from Ln1 · · ·Lnk .

Now we give a bijective correspondence between PM∗n1,...,nk
and the terms in the ex-

pansion of L(Ln1 · · ·Lnk). To do this, we extend our former definitions of statistics on
Mn and PMn to marked perfect matchings. In detail, we consider the decomposition of
m into unmarked and marked portions. For m = (π, S) ∈ PM∗n1,...,nk

, define π \ S and π|S
as follows:

• π \ S (unmarked portion of m) is the matching in Mn1,...,nk with n1 + · · ·+ nk − |S|
edges obtained from π by deleting the |S| marked edges but leaving their incident
vertices not deleted.

• π|S (marked portion of m) is the perfect matching in PM|S| obtained from π by
deleting all unmarked edges and their adjacent vertices.

Definition 3.2. For m = (π, S) ∈ PM∗n1,...,nk
, define statistics e(m), bwex(m), cr(m) and

wt(m) as follows:

e(m) = e(π \ S), bwex(m) = bwex(π \ S) + wex(π|S),

cr(m) = cr(π \ S)− cr(π|S), wt(m) = bwt(π \ S) + wt(π|S).

Remark 1. Indeed, the notions of bwex and wt in Definition 3.2 is still compatible with
those of block index and block difference we defined earlier on a matching in Mn. The
only difference is that the blocks are separated by the vertices incident to marked edges,
instead of unmatched ones. More precisely, for a marked perfect matching m = (π, S) ∈
PM∗n1,...,nk

, let P = (B1, . . . , Bl) be the unique ordered set partition of upper vertices
satisfying the following conditions:

• Each Br consists of consecutive elements. In other words, Br is of the form Br =
{i, i+ 1, . . . , j}.

• For i ∈ {1, . . . , n1 + · · ·+ nk}, i is the largest element in some block Br if and only
if i is incident to a marked edge or i = n1 + · · ·+ nk.

The upper block index bindexUm(i) of a vertex i is defined to be the integer r such that
i ∈ Br. Note that bindexUm(i) is equal to one more than the number of vertices in-
cident to marked edges appearing before i. The lower block index bindexLm(i) is de-
fined similarly. The block difference bdiffm(e) of an edge e = (i, π(i)) is defined by
bdiffm(e) = bindexLm(π(i))− bindexUm(i). The definitions of bwex(m) and wt(m) in Defini-
tion 3.2 are indeed equivalent to those in Definition 2.2 with bdiffπ replaced by bdiffm.
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1 0 0 1 −1 0 −1
1 2 3

1 2 3

π \ S

π|Sbwex(m) = 5 wt(m) = 2
cr(m) = 0

1 0 −1 0
1 2 3

1 2 3

bwex(π \ S) = 3 bwt(π \ S) = 1
cr(π \ S) = 1

0 1 −1
1

1

2

2

3

3

bwex(π|S) = 2 wt(π|S) = 1
cr(π|S) = 1

Figure 5: An example of a marked perfect matching m in PM∗2,3,2 and its unmarked and
marked portions.

Example 3.3. Figure 5 shows a marked perfect matching m in PM∗2,3,2 and block indices
of its vertices. The block difference of each edge is indicated above its upper endpoint.
The statistics bwex(m) = 5 and wt(m) = 2 can be computed directly by the notion of
block difference in m, or summing the statistics defined on each π \ S and π|S. For the
other statistics of m, we have e(m) = 4 and cr(m) = 0.

Under this construction, the linearization coefficient C(n1, . . . , nk) is expressed in
terms of marked perfect matchings by

C(n1, . . . , nk) =
∑

m∈PM∗n1,...,nk

(−1)e(m)ybwex(m)qwt(m)+cr(m). (10)

There are many cancellations in this summation. Our goal is to cancel all negative terms
by finding a sign-reversing involution on PM∗n1,...,nk

.
Recall that D(n1, . . . , nk) ⊂ SN is the set of (n1, . . . , nk)-derangements. The set

D(n1, . . . , nk) can be naturally identified with the set of marked perfect matchings whose
edges are all inhomogeneous (necessarily marked). To be more precise, let σ be a de-
rangement in D(n1, . . . , nk). Then we will identify σ with the marked perfect matching
m = (π,E(π)) ∈ PM∗n1,...,nk

, where π ∈ PMN is given by π(i) = σ(i) for all i ∈ [N ]. Under
this identification one can easily check that

wex(σ) = wex(π) = bwex(m),

cross(σ) = ov(π) = wt(π)− cr(π) = wt(m) + cr(m).

By abuse of notation from now on we will write

D(n1, . . . , nk) = {(π, S) ∈ PM∗n1,...,nk
: EH(π) = ∅}.

Using the above discussion we can rewrite Theorem 1.1 as follows.

Theorem 3.4. We have

C(n1, . . . , nk) =
∑

m∈D(n1,...,nk)

ybwex(m)qwt(m)+cr(m).

the electronic journal of combinatorics 27(2) (2020), #P2.22 12



3.2 Construction of a sign-reversing involution

In order to prove Theorem 3.4, we give a sign-reversing involution Φ on PM∗n1,...,nk
that

preserves the statistics bwex and wt +cr. Indeed, Φ will be a map that marks or unmarks
a single homogeneous edge, or does not change anything. First we introduce some facts
and definitions that we need to describe the map Φ.

For m = (π, S) ∈ PM∗n1,...,nk
, let us observe a change in the block difference of an edge

ej while marking or unmarking a homogeneous edge ei. If we mark ei that was unmarked
before, the upper (respectively, lower) index bindexUm(j) (respectively, bindexLm(π(j))) in-
creases by 1 if and only if j > i (respectively, π(j) > π(i)). Therefore the block difference
bdiffm(ej) = bindexLm(π(j)) − bindexUm(j) changes if and only if ej crosses ei. More pre-
cisely, if m = (π, S) with ei 6∈ S turns into m′ = (π, S ∪ {ei}), then we have

bdiffm′(ej) =


bdiffm(ej) if ej = ei, or ej and ei do not cross each other,
bdiffm(ej) + 1 if j < i and π(j) > π(i),
bdiffm(ej)− 1 if j > i and π(j) < π(i).

(11)

Conversely, if we unmark a marked edge ei ∈ EH(π) so that m = (π, S) turns into
m′ = (π, S \ {ei}), then we have

bdiffm′(ej) =


bdiffm(ej) if ej = ei, or ej and ei do not cross each other,
bdiffm(ej)− 1 if j < i and π(j) > π(i),
bdiffm(ej) + 1 if j > i and π(j) < π(i).

(12)

From now on, let us adopt an expression ej crosses ei from the left, or equivalently ei
crosses ej from the right for the relation j < i and π(j) > π(i). With this observation,
we define the convertibility of a homogeneous edge, which is a key ingredient of the map
Φ.

Definition 3.5. Let m = (π, S) ∈ PM∗n1,...,nk
. An edge e ∈ EH(π) is said to be convertible

(in m) if it satisfies the following conditions.

1. If e is unmarked, i.e., e /∈ S, then for every edge e′ that crosses e, either

• e′ crosses e from the left and bdiffm(e′) > 0, or

• e′ crosses e from the right and bdiffm(e′) 6 −1.

2. If e is marked, i.e., e ∈ S, then for every edge e′ that crosses e, either

• e′ crosses e from the left and bdiffm(e′) > 0, or

• e′ crosses e from the right and bdiffm(e′) < −1.

Note that if an edge e ∈ EH(π) is convertible, then the status of other edges being
block weak excedances does not change under the map m = (π, S) 7→ m′ = (π, S4{e}),
where X4Y denotes the symmetric difference (X ∪ Y ) \ (X ∩ Y ). In particular, marking
or unmarking a convertible edge preserves the statistic bwex. Note also that an edge e is
convertible in m = (π, S) if and only if it is convertible in m′ = (π, S4{e}).
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Remark 2. Suppose that e′ = (i, π(i)) is an inhomogeneous edge of m = (π, S) ∈ Mn1,...,nk .
Then n1 + · · ·+nr−1 +1 6 i 6 n1 + · · ·+nr and n1 + · · ·+ns−1 +1 6 π(i) 6 n1 + · · ·+ns for
some r 6= s. It is easy to check that the block difference bdiffm(e′) is nonzero, and its sign
is determined by r and s. Thus, marking or unmarking a homogeneous edge e ∈ EH(m)
does not change the status of whether e′ is a block weak excedance or not. Therefore, it
is sufficient to consider the changes of block differences of homogeneous edges when we
toggle e.

We are now ready to define the involution Φ.

Definition 3.6. [The involution Φ] For m = (π, S) ∈ PM∗n1,...,nk
, we define Φ(m) as

follows.

Case 0 If m has no homogeneous edges, then define Φ(m) = m. In other words, Φ is the
identity map on D(n1, . . . , nk).

Case 1 Suppose m has homogeneous edges and bdiffm(e) > 0 for all e ∈ EH(π). Define
Φ(m) = (π, S4{ei}), where i is the integer satisfying π(i) = min{π(j) : ej ∈ EH(π)}.
In other words, we mark or unmark the homogeneous edge whose lower endpoint is the
leftmost one among the homogeneous edges.

Case 2 Suppose m has homogeneous edges and bdiffm(e) < 0 for some e ∈ EH(π). Let
i = min

{
j : ej ∈ EH(π), bdiffm(ej) < 0

}
. Depending on the convertibility of the edge ei,

we consider two subcases.

Subcase 2-(a) If ei is convertible, then define Φ(m) = (π, S4{ei}).

Subcase 2-(b) If ei is not convertible, then define Φ(m) = (π, S4{ei′}), where

i′ = max
{
j < i : ej ∈ EH(π), bdiffm(ej) = 0, ej crosses ei

}
.

Example 3.7. The applications of the map Φ in Cases 1, 2-(a) and 2-(b) are illustrated
in Figures 6,7 and 8, respectively. Marked edges are represented in dashed lines, and
inhomogeneous edges are colored in gray. The block differences of homogeneous edges are
indicated by the numbers above their upper endpoints. The edge chosen by Φ is the thick
(dashed) edge.

1 2 3

1 2 3

1 0 0

Φ

1 2 3 4

1 2 3 4

2 0 0

Figure 6: An example of the map Φ in Case 1, which toggles the edge e3 = (3, 2).
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1 2 3 4

1 2 3 4

0 0 1 2 −1

Φ

1 2 3

1 2 3

0 0 0 1 −1

Figure 7: An example of the map Φ in Subcase 2-(a), which toggles the edge e6 = (6, 4).

1 2 3 4 5

1 2 3 4

1 1 0 −1 −1

Φ

1 2 3 4 5 6

1 2 3 4 5

1 2 0 −2 −1

Figure 8: An example of the map Φ in Subcase 2-(b), which toggles the edge e5 = (5, 5).

For the well-definedness of Φ, the only part that is not clear is the existence of the
number i′ in Subcase 2-(b), or equivalently,{

j < i : ej ∈ EH(π), bdiffm(ej) = 0, ej crosses ei
}
6= ∅.

We will prove this in Lemma 4.3.
Note that except for Case 0, Φ toggles only one edge’s marking status. Hence Φ is

sign-reversing. In the following section, we will prove that Φ is indeed a well-defined
involution that preserves the statistics bwex and wt +cr.

4 Proof of Theorem 3.4

We start with a simple fact which will be used frequently throughout this section.

Proposition 4.1. Let ei and ej be edges in m = (π, S) such that ei crosses ej from the left,
or equivalently, ej crosses ei from the right. Then we have

bdiffm(ei) > bdiffm(ej).

Moreover, the inequality is strict if ei ∈ S or ej ∈ S.
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Proof. By the assumption, we have i < j and π(i) > π(j) and the first statement follows
from the relations

bindexUm(i) 6 bindexUm(j) and (13)

bindexLm(π(i)) > bindexLm(π(j)). (14)

Since the inequality (13) (respectively, (14)) holds strictly if ei ∈ S (respectively, ej ∈ S),
we obtain the second statement.

Before proving Theorem 3.4, we verify the well-definedness of Φ in the following two
lemmas. Recall that D(n1, . . . , nk) is identified with the set of marked perfect matchings
in PM∗n1,...,nk

such that all edges are inhomogeneous.

Lemma 4.2. Let m = (π, S) ∈ PM∗n1,...,nk
\ D(n1, . . . , nk). Suppose e = ei ∈ EH(π) is not

convertible, where
i = min

{
j : ej ∈ EH(π), bdiffm(ej) < 0

}
.

Then e is a marked edge, i.e., e ∈ S.

Proof. Suppose that e is not marked, i.e., e /∈ S. By the assumption that e is not
convertible, there are two possibilities:

• There is an edge e′ ∈ EH(π) such that e′ crosses e from the left and bdiffm(e′) < 0,
or

• There is an edge e′ ∈ EH(π) such that e′ crosses e from the right and bdiffm(e′) > −1.

By the minimality of i, the first case cannot occur. For the second case, since e′ crosses
e from the right and bdiffm(e) < 0, we have bdiffm(e′) 6 bdiffm(e) < 0, which contradicts
the fact that bdiffm(e′) > −1. Therefore, e is a marked edge.

Lemma 4.3. Under the same assumptions in Lemma 4.2, the set{
j < i : ej ∈ EH(π), bdiffm(ej) = 0, ej crosses ei

}
is not empty.

Proof. By Lemma 4.2, e = ei is marked. By the assumption that e is not convertible, we
have two possible cases:

• There is an edge e′ ∈ EH(π) such that e′ crosses e from the left and bdiffm(e′) 6 0,
or

• There is an edge e′ ∈ EH(π) such that e′ crosses e from the right and bdiffm(e′) > −1.

Suppose an edge e′ ∈ EH(π) crosses e from the right. Then we have bdiffm(e′) <
bdiffm(e) < 0, where the first inequality follows from the fact that e is marked. Thus
the latter case cannot happen. Therefore there exists an edge e′ corresponding to the first
case. By the minimality of i, we have bdiffm(e′) = 0 and, therefore, the given set is not
empty.
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We now give a proof of Theorem 3.4 by a sequence of lemmas. The first objective is
to prove that the edge chosen by Φ to be toggled is convertible.

Lemma 4.4. For m = (π, S) ∈ PM∗n1,...,nk
\ D(n1, . . . , nk), the edge in m toggled by the

map Φ is convertible in m, i.e., if Φ(m) = (π, S4{e}), then the edge e is convertible in
m.

Proof. We consider each case in Definition 3.6 except for Case 0, which does not occur
since m 6∈ D(n1, . . . , nk).

Case 1 Suppose m has homogeneous edges and bdiffm(e) > 0 for all e ∈ EH(π). Then
Φ(m) = (π, S4{ei}) for the integer i satisfying π(i) = min

{
π(j) : ej ∈ EH(π)

}
. Suppose

an edge e ∈ EH(π) crosses ei. By the minimality of π(i), e must cross ei from the left. By
Proposition 4.1, we have bdiffm(ei) 6 bdiffm(e) if ei is unmarked and bdiffm(ei) < bdiffm(e)
if ei is marked. Since bdiffm(ei) > 0 we conclude that ei is convertible.

Case 2 Suppose m has homogeneous edges and bdiffm(e) < 0 for some e ∈ EH(π). Let

i = min{j : ej ∈ EH(π), bdiffm(ej) < 0}.

There are two subcases.

Subcase 2-(a) If ei is convertible, then Φ(m) = (π, S4{ei}). In this case ei is convert-
ible by the assumption.

Subcase 2-(b) If ei is not convertible, then Φ(m) = (π, S4{ei′}), where

i′ = max
{
j < i : ej ∈ EH(π), bdiffm(ej) = 0, ej crosses ei

}
.

Let e = ei and e′ = ei′ . To check the convertibility of e′, let e′′ = ei′′ ∈ EH(π) be an
edge that crosses e′.

If e′′ crosses e′ from the left, then we have bdiffm(e′′) > bdiffm(e′) = 0, where
the inequality is strict if e′ is marked. Now suppose that e′′ crosses e′ from the
right. Then we have bdiffm(e′′) 6 bdiffm(e′) = 0, where the inequality is strict
if e′ is marked. For the convertibility of e′ we have to show that the inequality
bdiffm(e′′) 6 −1 (respectively, bdiffm(e′′) < −1) holds if e′ /∈ S (respectively, e′ ∈ S).
We consider the two cases e′ 6∈ S and e ∈ S as follows.

e′ /∈ S Suppose bdiffm(e′′) = bdiffm(e′) = 0. By the argument in the proof of
Proposition 4.1, it follows that bindexUm(i′) = bindexUm(i′′) and bindexLm(π(i′)) =
bindexLm(π(i′′)). On the other hand, the edge e is marked and it crosses e′ from
the right, by the choice of e′ and Lemma 4.2. From these facts, we must have
i′ < i′′ < i and π(i′) > π(i′′) > π(i). Thus, e′′ crosses e from the left and
bdiffm(e′′) = 0, but this contradicts the maximality of i′. Therefore we have
bdiffm(e′′) < bdiffm(e′) and bdiffm(e′′) 6 −1.
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e′ ∈ S Suppose bdiffm(e′′) = bdiffm(e′) − 1 = −1. By the same argument in
the case e′ /∈ S, we have bindexUm(i′) = bindexUm(i′′) − 1, bindexLm(π(i′)) =
bindexLm(π(i′′)), i′ < i′′ 6 i and π(i′) > π(i′′) > π(i). By the minimality of i, we
must have i′′ = i, but then bindexLm(π(i′)) > bindexLm(π(i)) = bindexLm(π(i′′))
also follows, which contradicts bindexLm(π(i′)) = bindexLm(π(i′′)). Hence we
have bdiffm(e′′) < bdiffm(e′)− 1 = −1.

Lemma 4.5. The map Φ is an involution, i.e., Φ2 = Id.

Proof. Let m = (π, S) ∈ PM∗n1,...,nk
be mapped to m′ by Φ. We will show that Φ(m′) = m

in each case of Definition 3.6, where Case 0 is trivial.

Case 1 Suppose m has homogeneous edges and bdiffm(e) > 0 for all e ∈ EH(π). Then
m′ = Φ(m) = (π, S4{ei}) for the integer i satisfying π(i) = min

{
π(j) : ej ∈ EH(π)

}
.

Since ei is convertible by Lemma 4.4, we also have bdiffm′(e) > 0 for all e ∈ EH(π). That
is, when we apply Φ to m′ we are still in Case 1. Since the edge ei toggled by Φ depends
only on π, the map Φ toggles the same edge ei in m′ and we have Φ(m′) = m.

Case 2 Suppose m has homogeneous edges and bdiffm(e) < 0 for some e ∈ EH(π). Let

i = min{j : ej ∈ EH(π), bdiffm(ej) < 0}.

Note that in this case, the set of edges having negative block difference is invariant under
Φ by the convertibility of the edge toggled by Φ. Hence when we apply Φ to m′ we are
still in Case 2 and the same index i satisfies

i = min{j : ej ∈ EH(π), bdiffm′(ej) < 0}.

Now we consider the following two subcases.

Subcase 2-(a) If ei is convertible, then Φ(m) = (π, S4{ei}). Since ei is also convertible
in m′, we have Φ(m′) = m.

Subcase 2-(b) If ei is not convertible, then Φ(m) = (π, S4{ei′}), where

i′ = max
{
j < i : ej ∈ EH(π), bdiffm(ej) = 0, ej crosses ei

}
.

Let e = ei and e′ = ei′ . To show Φ(m′) = m, it suffices to show the following two
properties:

• e is not convertible in m′, i.e., when we apply Φ to m′ we are still in Subcase
2-(b).

• The map Φ toggles the same edge e′ in m′, i.e.,

i′ = max
{
j < i : ej ∈ EH(π), bdiffm′(ej) = 0, ej crosses ei

}
. (15)
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For the first part, recall that toggling e′ preserves the block difference of itself.
That is, bdiffm(e′) = bdiffm′(e

′) = 0. Therefore e is still not convertible in m′ due to
the presence of e′.

For the second part, we will prove (15). Assume that there is an edge e′′ = ei′′ ∈
EH(π) such that i′ < i′′ < i, bdiffm′(e

′′) = 0 and e′′ crosses e. In m, we must have
bdiffm(e′′) > 0 by the choice of the indices i and i′ in m. Since m and m′ only differ
by a mark on e′, the only possible case is that bdiffm(e′′) = 1, e′ crosses e′′ from left
and e′ is marked in m. Hence we must have bdiffm(e′) > bdiffm(e′′) = 1, but this
contradicts the assumption bdiffm(e′) = 0. Therefore, there is no such edge e′′ and
(15) holds.

Lemma 4.6. The map Φ preserves the block weak excedances, i.e.,

bwex(m) = bwex(Φ(m)).

Proof. It is an immediate consequence of Lemma 4.4.

Lemma 4.7. The map Φ preserves the sum of the weight and the number of crossings, i.e.,

wt(m) + cr(m) = wt(Φ(m)) + cr(Φ(m)).

Proof. If m is fixed by Φ, then the assertion is clear. Assume that an edge e of m is toggled
by Φ. We may also assume that e is marked. The block difference of an edge changes
after unmarking e if and only if the edge crosses e. Let e′ (respectively, e′′) be an edge
that crosses e from the left (respectively, right). Then unmarking e decreases bdiffm(e′)
by 1 and increases bdiffm(e′′) by 1. Since e is convertible, we must have bdiffm(e′) > 0
and bdiffm(e′′) < −1, and wt(Φ(m)) is equal to wt(m) subtracted by the number of edges
that cross e.

On the other hand, by definition of cr(m) = cr(π \ S) − cr(π|S), we actually count a
crossing of pair of unmarked edges as +1, a crossing of pair of marked edges as −1 and
a crossing of pair of a unmarked edge and a marked edge as 0. Thus, when we toggle e
from marked to unmarked, for every marked (respectively, unmarked) edge that crosses
e its contribution to cr(m) changes from −1 to 0 (respectively, from 0 to 1). Therefore
cr(Φ(m)) is equal to the sum of cr(m) and the number of edges that cross e. This together
with the result in the above paragraph implies the conclusion.

Finally we give a proof of Theorem 3.4.

Proof of Theorem 3.4. Recall from (10) that we have

C(n1, . . . , nk) =
∑

m∈PM∗n1,...,nk

(−1)e(m)ybwex(m)qwt(m)+cr(m).

Lemmas 4.5, 4.6 and 4.7 imply that Φ is a sign-reversing and weight-preserving involution
on PM∗n1,...,nk

with fixed point set D(n1, . . . , nk). Thus

C(n1, . . . , nk) =
∑

m∈D(n1,...,nk)

(−1)e(m)ybwex(m)qwt(m)+cr(m).
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If m = (π, S) ∈ D(n1, . . . , nk), then S = E(π) and therefore e(m) = 0. Thus we obtain
the desired formula.

5 Further study

Pan and Zeng [13] introduced the q-Laguerre polynomials L
(α)
n (x; y, q) with an additional

parameter α defined by L
(α)
−1 (x; y, q) = 0, L

(α)
0 (x; y, q) = 1, and for n > 1,

L
(α)
n+1(x; y, q) = (x− (y([n+ α + 1]q + [n]q)))L

α
n(x; y, q)− y[n]q[n+ α]qL

(α)
n−1(x; y, q).

They found combinatorial interpretations for the polynomials L
(α)
n (x; y, q) and their mo-

ments. They also showed that if α is a nonnegative integer then the linearization coefficient

Lα,y,q(L(α)
n1

(x; y, q) . . . L(α)
nk

(x; y, q)) (16)

is a polynomial in y and q with nonnegative integer coefficients, where Lα,y,q is the linear

functional for the orthogonal polynomials L
(α)
n (x; y, q).

If α = 0, then L
(0)
n (x; y, q) is the q-Laguerre polynomial Ln(x; q, y) that we considered

in this paper. Therefore,

L0,y,q(L
(0)
n1

(x; y, q) . . . L(0)
nk

(x; y, q)) =
∑

σ∈D(n1,...,nk)

ywex(σ)qcross(σ). (17)

If q = 1, we have

Lα,y,1(L(α)
n1

(x; y, 1) . . . L(α)
nk

(x; y, 1)) =
∑

σ∈D(n1,...,nk)

ywex(σ)(α + 1)cyc(σ), (18)

where cyc(σ) is the number of cycles of σ. It is an open problem to find a combinatorial
interpretation for (16) generalizing both (17) and (18).

In this paper we found a sign-reversing involution proving (17). Unfortunately, our
approach does not apply directly to (18). If y = q = 1, then a simple combinatorial
proof of (18) was found by Foata and Zeilberger [5]. This was also proved by Kim and
Zeng [11] who found a combinatorial interpretation for linearization coefficients of general
Sheffer polynomials using sign-reversing involutions. For the case q = 1, Médicis [12]
gave a combinatorial proof of a generalization of (18) to Meixner polynomials using sign-
reversing involutions.

Finally, we note that there is a combinatorial interpretation of the linearization coef-
ficient L(Pn1(x) . . . Pnk(x)) for any orthogonal polynomials in terms of weighted Motzkin
paths due to de Médicis and Stanton [3]. Their result immediately implies the nonnegativ-
ity of (16). It might be interesting to study the linearization coefficients of the q-Laguerre
polynomials considered here using their combinatorial model.
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