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Abstract

This paper discusses the asymptotic behaviour of the number of descents in a
random signed permutation and its inverse, which was listed as an interesting direc-
tion by Chatterjee and Diaconis (2017). For that purpose, we generalize their result
for the asymptotic normality of the number of descents in a random permutation
and its inverse to other finite reflection groups. This is achieved by applying their
proof scheme to signed permutations, i.e. elements of Coxeter groups of type Bn,
which are also known as the hyperoctahedral groups. Furthermore, a similar central
limit theorem for elements of Coxeter groups of type Dn is derived via Slutsky’s The-
orem and a bound on the Wasserstein distance of certain normalized statistics with
local dependency structures and bounded local components is proven for both types
of Coxeter groups. In addition, we show a two-dimensional central limit theorem
via the Cramér-Wold device.

Mathematics Subject Classifications: 20F55, 60C05, 60F05

1 Introduction

A recent result of Chatterjee and Diaconis in [5] was a new proof of the asymptotic nor-
mality of the number of descents in a random permutation and its inverse, normalized
by its expected value and its variance. This was shown via the method of interaction
graphs, which is an approach first introduced by Chatterjee [4] in 2008 that was derived
from Stein’s method. Chatterjee’s result gives a bound on the Wasserstein distance to
the standard normal distribution. As convergence with respect to the Wasserstein dis-
tance implies convergence in distribution, such bounds are powerful tools to investigate
asymptotic normality. The Wasserstein distance, also known as Kantorovich-Rubinstein
metric, is a common metric on probability distributions, although it is maybe less known
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as for example the Kolmogorov distance. An intuitive definition of the Wasserstein dis-
tance comes from optimal transport: The Wasserstein distance between two probability
measures corresponds to the minimal cost to transport the stochastic mass of one mea-
sure into the other. The method of interaction graphs and the bound on the Wasserstein
distance as introduced by Chatterjee [4] are shortly summarized in Section 2.

The asymptotic normality of the number of descents in a random permutation and
its inverse was already shown by Vatutin via generating functions in [8] in 1996, but was
not generalized to other statistics depending on both a random permutation and its in-
verse. Chatterjee and Diaconis [5] showed such a generalization through a bound of the
Wasserstein distance to the standard normal distribution for a wider class of normalized
statistics that depend on a random permutation and its inverse. In the last section of [5],
they issued the asymptotic normality of the number of descents in an element of a finite
reflection group and its inverse, for example for random signed permutations, as an inter-
esting direction and indicated, that their approach should also suffice in this case. This
paper confirms their intuition by applying their proof scheme on signed permutations,
that is elements of the Coxeter group of type Bn. For that purpose we construct ran-
dom signed permutations and their inverses from the same random variables. With this
construction, we are able to apply the method of interaction graphs, exactly like Chat-
terjee and Diaconis. Together with the bound on the Wasserstein distance between the
normalized statistic and a standard normal distribution mentioned before (see Theorem
3), we can show the asymptotic normality by plugging in the formulas for the variance
of the sum of the statistics into the bounds. Kahle and Stump listed the expected values
and variances of the sum of the statistics for all finite irreducible Coxeter groups in [6,
Corollary 5.2].
Using this result for signed permutations, we can extend the result to elements of the
Coxeter group of type Dn, which are signed permutations with an even number of nega-
tive signs. This is done via an application of Slutsky’s Theorem (see Theorem 5).
To generalize these results to certain sums of statistics of both a random signed permu-
tation and its inverse, which have a bounded local degree and local components which
are bounded by 1, we again follow Chatterjee and Diaconis and modify the interaction
graphs in the right way so that we can apply Theorem 3. From this, we show that this
also works for elements of Coxeter groups of type Dn (see Section 5). The last section
discusses the asymptotic behaviour of the two-dimensional statistic formed by the number
of descents in an element of a Coxeter group of both type Bn and Dn and its inverse via
the Cramér-Wold device.

2 Interaction Graphs

We give a short overview over the method of interaction graphs as it is presented in [5]. Let
(X ,A) be a measurable space and f : X n → R a measurable map. Consider a map G(x),
which connects every x ∈ X n with a simple graph on [n] := {1, 2, . . . , n}. This graphical
rule is symmetric, if for a permutation π the graph G(xπ(1), . . . , xπ(n)) has exactly the
permuted edge set {(π(i), π(j))| (i, j) is an edge of G(x1, . . . , xn)}. For m ⩾ n, let G′(x)
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for x ∈ Xm be a symmetric graphical rule on Xm. G′(x) is an extension of G(x), if
G(x) = G(x1, . . . , xn) is a subgraph of G′(x) = G′(x1, . . . , xm) for all x ∈ Xm. To define
an interaction rule, let for x, x′ ∈ X n

xi := (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).

Furthermore, let xij be the vector x with replacements in the i-th and j-th position. Then,
i and j are non-interacting, if

f(x)− f(xj) = f(xi)− f(xij).

A graphical rule G is an interaction rule for a function f , if for any x, x′ ∈ X n and any
i, j, the edge (i, j) not being an edge of either G(x), G(xi), G(xj) or G(xij) implies that i
and j are non-interacting.

The Wasserstein distance is a distance function on the space of probability measures
[1, Chapter 7].

Definition 1 (Wasserstein distance, also known as Kantorovich–Rubinstein metric). Let
(M,d) be a metric space where every probability measure is a Radon measure and let
Pp(M) be the collection of probability measures on M with finite p-th moments. The
Lp-Wasserstein distance between X ∼ µ ∈ Pp(M) and Y ∼ ν ∈ Pp(M) is defined as

δp(µ, ν) = (inf E [d(X, Y )p])
1
p ,

where the infimum is taken over all joint distributions of (X, Y )T onM×M with marginals
µ and ν.

Definition 2. Let Y = (Y1, . . . , Yn) be a vector of real-valued random variables dis-
tributed according to a continuous distribution. The rank statistic is defined as R(Yi) =∑n

j=1 1{Yi ⩾Yj}, where 1{·} denotes the indicator function. The value of R(Yi) gives the
position of Yi when Y is sorted in ascending order.

We later apply the following theorem from [4], which can also be found in [5], on
signed permutations. The Theorem gives a bound on the Wasserstein distance between
a normalized statistic that admits a graphical interaction rule and the standard normal
distribution.

Theorem 3 (Chatterjee). Let f : X n → R be a measurable map that admits a symmetric
interaction rule G(x). Let X1, X2, . . . be independent and identically distributed X -valued
random variables and let X := (X1, . . . , Xn). Let W := f(X) and σ2 := V(W ). Let
X ′ = (X ′

1, . . . , X
′
n) be an independent copy of X. For each j, define

∆jf(X) = W − f(X1, . . . , Xj−1, X
′
j, Xj+1, . . . , Xn)

and let M := maxj |∆jf(X)|. Let G′(x) be an extension of G(x) on X n+4 and define

δ := 1 + degree of the vertex 1 in G′(X1, . . . , Xn+4).
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Then, the Wasserstein distance δW between W−E(W )
σ

and N(0, 1) satisfies

δW ⩽
C
√
n

σ2
E(M8)

1
4E(δ4)

1
4 +

1

2σ3

n∑
j=1

E|∆jf(X)|3

for some constant C independent of n.

Chatterjee and Diaconis used the theorem above to show a central limit theorem for
statistics of the form F1(π) + F2(π

−1), where both F1 and F2 have bounded local degree
and their local components’ absolute values are bounded by 1. Hereby π denoted a
permutation, hence an element of a Coxeter group of type An. We apply the same proof
scheme to statistics on signed permutation by modifying their model.

3 Signed Permutations

Chatterjee and Diaconis modeled elements of the symmetric group Sn = An−1 and their
inverses by ranking functions on series of uniformly distributed random variables on the
unit square. We slightly modify this model by additionally introducing a random sign.
The Coxeter group of type Bn is the symmetry group of the n-hypercube. It is isomorphic
to the signed permutation group of rank n, which is the subgroup of all permutations on
{±1, . . . ,±n} with the antisymmetric constraint −π̃(i) = π̃(−i). In a one-line notation we
write π̃ = (π̃(1), . . . , π̃(n)) where π̃(i) ∈ {±1, . . . ,±n} and {|π̃(1)|, . . . , |π̃(n)|} = [n] (see
[6, Section 2.1]). Compare also the book of Björner–Brenti [3, p. 245], where an element
π̃ ∈ Bn is written in window notation, if π̃ = [a1, . . . , an] with π̃(i) = ai for i = 1, . . . , n.

Following [3, Proposition 8.1.2], it holds that the descents in some signed permutation
π̃ ∈ Bn in the one-line notation are

Des(π̃) = {0 ⩽ i < n : π̃(i) > π̃(i+ 1)},

where π̃(0) = 0. We write for π̃ ∈ Bn

des(π̃) = |Des(π̃)| = 1{0>π̃(1)} +
n−1∑
i=1

1{π̃(i)>π̃(i+1)}. (1)

In the following theorem, we study the asymptotic behaviour of the statistic

t(π̃) = des(π̃) + des(π̃−1).

If π̃ is picked uniformly from Bn, the statistic t(π̃) gives rise to a random variable TBn . We
show a central limit theorem for the sequence (TBn)n, normalized by its expected value
and its variance, so

TBn − E(TBn)√
V(TBn)

D→ N(0, 1), (2)

by adapting the proof of Theorem 1.1 in [5] for the modified model.
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Theorem 4. Given a sequence of Coxeter groups of type Bn of growing rank. Then, TBn

satisfies the central limit theorem, if n tends to infinity.

Proof. Let X := [0, 1]2 × {−1, 1} and X1, X2, . . . be independent and identically dis-
tributed of the form (Ui, Vi, Bi) with (Ui, Vi) ∼Unif([0, 1]2) and Bi ∼Ber(1

2
) on {−1, 1}

and independent of (Ui, Vi). Let X := (X1, . . . , Xn) and let the x-rank of Xi be the
rank statistic (cf. Definition 2) of Ui among (U1, . . . , Un) and the y-rank of Xi the rank
statistic of Vi among (V1, . . . , Vn), so that X(1), . . . , X(n) denote the Xi ordered with re-
spect to their x-ranks and X(1), . . . , X(n) with respect to their y-ranks. This means that
π(i) = y-rank of X(i) is a random permutation and σ(i) = x-rank of X(i) is its inverse.
Now, to see that

π̃(i) := B(|i|)sign(i)π(|i|), σ̃(i) := B(|i|)sign(i)σ(|i|)

define random signed permutations, just check that π̃(−i) = −π̃(i) and σ̃(−i) = −σ̃(i) and
that π̃(i) and σ̃(i) are injective. Furthermore it follows that σ̃ = π̃−1, as B(σ(|i|)) = B(|i|)

and

π̃(σ̃(i)) = B(|σ̃(i)|)sign(σ̃(i))π(|σ̃(i)|) = B(σ(|i|))sign(B
(|i|)sign(i))π(σ(|i|)) = i.

Therefore the number of descents in the signed permutation and its inverse is given
by:

TBn := f(X) =
n−1∑
i=0

1{π̃(i)>π̃(i+1)} +
n−1∑
i=0

1{σ̃(i)>σ̃(i+1)} (3)

= 1{0>B(1)π(1)} +
n−1∑
i=1

1{B(i)π(i)>B(i+1)π(i+1)} + 1{0>B(1)σ(1)} +
n−1∑
i=1

1{B(i)σ(i)>B(i+1)σ(i+1)}

To apply Theorem 3, it is required to define a symmetric interaction rule:
For x ∈ X n, define a simple graph G(x) on [n] as follows: For any 1 ⩽ i ̸= j ⩽ n, let

{i, j} be an edge if and only if the x-rank of xi and the x-rank of xj or the y-rank of xi and
the y-rank of xj differ by at most 1. To check that this graphical rule is symmetric, see that
the edge set of a relabeled Graph G(xπ(1), . . . , xπ(n)), where π is an arbitrary permutation,
has the edge set {(π(i), π(j))| (i, j) is an edge of G(x1, . . . , xn)}. This is true, since the
x-ranks or the y-ranks of xπ(i) are equal to the respective ranks of xi. Hence this graph is
invariant under relabeling of the indices and it is therefore a symmetric graphical rule.

We now show that G(x) is an interaction rule. For this, we define xi as the vector
(x1, . . . xi−1, x

′
i, xi+1, . . . , xn) where x, x′ ∈ X n. This means that xi is the vector x in

which the i-th entry is replaced by the i-th entry of x′. Furthermore, xij is the vector
with replacements in the i-th and the j-th entry. Now, suppose that (i, j) is not an edge
in G(x), G(xi), G(xj) or G(xij). Then, the equation

f(x)− f(xj) = f(xi)− f(xij)
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holds, as j is not a neighbour of i in either of the four graphs. To better visualize this,
check that

f(x) = f(xi) + f(xj)− f(xij). (4)

Any indicator function in f(x), that is not dependent of either xi or xj, appears in
f(xi), f(xj) and f(xij), as it is left unchanged by the replacements in xi, xj or xij. Those
indicator functions, that depend on xi but not on xj, are unchanged in f(xj). As i and
j are no neighbours in all four graphs, these indicator functions, that depend on xi but
not on xj, appear in both f(xi) and f(xij). Therefore, the indicator functions that either
depend on xi or on xj turn up exactly once on both sides of the equation. Hence Equation
(4) holds, since there cannot be an indicator functions that depend on both xi and xj,
as i and j are no neighbours in all four graphs. This means, that G(x) is a symmetric
interaction rule for f .

Now, we construct an extension G′(x) of G(x) on X n+4. For any 1 ⩽ i ̸= j ⩽ n + 4,
let {i, j} be an edge in G′(x) if and only if the x-rank of xi and the x-rank of xj or the
y-rank of xi and the y-rank of xj, differ by at most 5. As this graph is invariant under
relabeling of the indices, it is a symmetric graphical rule. Obviously, every edge in G(x)
is also an edge in G′(x), as the distance between two connected nodes in G(x) can be 5
at most through the insertion of four additional nodes. Therefore G′(x) is an extension
of G(x).

It remains to check the conditions in Theorem 3: As TBn can differ in at most 4
summands from f(X1, . . . , Xj−1, X

′
j, Xj+1, . . . , Xn), it follows that |∆jf(X)| ⩽ 4. Fur-

thermore, the degree of any node in G′(x) is bounded by 20, as either the difference in
the x-ranks or in the y-ranks has to be smaller or equal to 5. This means, that |δ| ⩽ 21.
Then, by Theorem 3,

δTBn ⩽
C
√
n

σ2
+

Cn

σ3

for some constant C. As [6] shows, σ2 = V(TBn) =
n+3
6
. Therefore, TBn follows the central

limit theorem.

4 Coxeter Group of Type Dn

This section reproduces the previous section’s result for sequences of Coxeter groups of
type Dn. The Coxeter group of type Dn is the symmetry group of the n-demicube. It is
isomorphic to the subgroup of the signed permutation group of rank n that consist of all
signed permutation with an even number of negative signs. This means, that

Dn = {π ∈ Bn :
n∏

i=1

π(i) > 0}.

For some π ∈ Dn, it holds that

Des(π) = {0 ⩽ i < n : π(i) > π(i+ 1)},
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where π(0) = −π(2) [3, Proposition 8.2.2]. We write for π ∈ Dn

des(π) = |Des(π)| = 1{−π(2)>π(1)} +
n−1∑
i=1

1{π(i)>π(i+1)}. (5)

We can reuse the model from the proof of Theorem 4 to generate TDn , with a slight
modification: One sign-generating random variable is set to be the product of all the
others. Therefore, the number of negative signs is always even. Of course it is not possible
to directly apply the method of interaction graphs, as the local dependency structure is
destroyed by one random variable being dependent of all the others. This problem is
solved via an application of Slutsky’s Theorem.

Theorem 5. Let Wn be a sequence of growing rank of Coxeter groups of type Dn. Then,
TDn satisfies the central limit theorem, if n tends to infinity.

Proof. Let X := [0, 1]2 × {−1, 1} and X1, X2, . . . , Xn−1 be independent and identically
distributed of the form (Ui, Vi, Bi) with (Ui, Vi) ∼Unif([0, 1]2) and Bi ∼Ber(1

2
) on {−1, 1}.

Furthermore, set Xn = (Un, Vn,
∏n−1

i=1 Bi) with (Un, Vn) ∼Unif([0, 1]2) and Bn =
∏n−1

i=1 Bi.
The product of independent Ber(1

2
)-distributed random variables on {−1, 1} is again

Ber(1
2
)-distributed on {−1, 1}. Let X := (X1, . . . , Xn) and let the x-rank and the y-

rank of X be defined as in the proof of Theorem 4. X(1), . . . , X(n) denote the Xi ordered
in respect to their x-ranks and X(1), . . . , X(n) in respect to their y-ranks. Then, as in (5),
if π̃ ∈ Dn and π̃−1 = σ̃, with π̃(0) = −π̃(2) we obtain

TDn =
n−1∑
i=0

1{π̃(i)>π̃(i+1)} +
n−1∑
i=0

1{σ̃(i)>σ̃(i+1)}

= 1{−B(2)V(2)>B(1)V(1)} +
n−1∑
i=1

1{B(i)V(i)>B(i+1)V(i+1)}

+ 1{−B(2)U(2)>B(1)U(1)} +
n−1∑
i=1

1{B(i)U(i)>B(i+1)U(i+1)}.

Now, TDn is equal in distribution to TBn−1+Yn, where Yn = TDn−TBn−1 is a random variable
with |Yn| ⩽ c for some positive constant c and all n. This holds as we directly obtain
TBn−1 from X1, . . . , Xn−1. Comparing TBn−1 and TDn , we see that all indicator functions
are identical except where B(i), B

(i), B(i+1) or B
(i+1) equal Bn. This implies |Yn| ⩽ c.

Then, as E(TDn) = n and E(TBn−1) = n− 1 (see for example in [6]),

TDn − E(TDn)√
V(TDn)

=
TBn−1 + Yn − n√

V(TDn)
=

√
V(TBn−1)√
V(TDn)

TBn−1 − (n− 1)√
V(TBn−1)

+
Yn − 1√
V(TDn)

. (6)

We know from Theorem 4 that
TBn−1−(n−1)√

V(TBn−1 )
converges in distribution to a standard normal

distribution. Yn is bounded, as it is a finite sum of indicator functions. Therefore,
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lim
n→∞

Yn−1√
V(TDn )

= 0 almost surely and lim
n→∞

√
V(TBn−1 )√
V(TDn )

= 1 (compare [6, Corollary 5.2]).

Therefore, TDn satisfies the central limit theorem (see Slutsky’s theorem, for example in
[7, Theorem 2.3.3]).

5 Generalization to a Class of Statistics with Local Degree k

As in [5], it is possible to generalize the proof of Theorem 4 via the method of interaction
graphs as introduced by Chatterjee in [4, Section 2.3] to a wider class of statistics of local
degree k. These statistics are of the form

F1(π) + F2(π
−1),

where the local components’ absolute value is bounded by 1. If π is a signed permutation,
a bound for the Wasserstein distance between the normalized statistic and the standard
normal distribution follows. Therefore the central limit theorem for these statistics holds,
if the variance of the statistics is of order n

1
2
+ε for an ε > 0. The Theorem is implied from

a generalization of the proof of Theorem 4 by constructing the symmetric interaction rule
in the right way.

Theorem 6. Let Wn be a sequence of growing rank of Coxeter groups of type B and let
F1, F2 be statistics of local degree k, with the absolute value of their local components
bounded by 1. The statistic F1(π) + F2(π

−1) gives rise to a random variable F . The
Wasserstein distance between F , normalized by its mean and variance, and the standard
normal distribution satisfies

δF ⩽ C(k)

(√
n

s2
+

n

s3

)
for s2 := V(F1(π) + F2(π

−1)) and some constant C(k).

Proof. If the statistics F1 and F2 are of local degree k and their local components’ absolute
value is bounded by 1, let {i, j} be an edge in G(x) if and only if the x-ranks or the y-ranks
differ by at most k−1. For the extension G′(x), we say that {i, j} is an edge if and only if
the ranks differ by at most k+3. Then, Theorem 3 applies, and the Wasserstein distance
is bounded:

δF ⩽ C(k)

(√
n

s2
+

n

s3

)
.

Here, C(k) is a large enough constant.

To see that the bound in Theorem 6 also holds when π is an element of a Coxeter group
of type Dn, we use the same technique as in the proof of Theorem 5. Hence, we decompose
the statistic into a part that is the same statistic depending on a signed permutation on
{±1, . . . ,±(n− 1)} and a finitely bounded random variable.
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Theorem 7. Let Wn be a sequence of growing rank of Coxeter groups of type D and let
F1, F2 be statistics of local degree k, with the absolute value of their local components
bounded by 1. The statistic F1(π) + F2(π

−1) gives rise to a random variable F . Then, if
we assume that V(F ) → ∞, the Wasserstein distance between F , normalized by its mean
and variance, and the standard normal distribution satisfies

δF ⩽ C(k)

(√
n− 1

s2
+

n− 1

s3

)
+ o(1)

for s2 := V(F1(π) + F2(π
−1)) and some constant C(k).

Proof. Let F = F1(π1) + F2(π
−1
1 ) = f(X) where π1 is a uniformly chosen element of the

Coxeter group of type Dn. Let X = (X1, . . . , Xn) be generated as in the proof of Theorem
5, so Xi = (Ui, Vi, Bi) with (Ui, Vi) ∼Unif([0, 1]2). Bi is an independent random sign
for 1 ⩽ i ⩽ n − 1 and Bn =

∏n−1
i=1 Bi. Then, F ′ is the statistic where we remove all

local components that depend on Bn. Subsequently we add local components, so that
the resulting statistic is F ′ = F1(π2)+F2(π

−1
2 ), where π2 is a random signed permutation

on {±1, . . . ± (n − 1)} generated by (X1, . . . , Xn−1). Then, as the local degree is k,
F −F ′ = O(1) and therefore E(F −F ′) = O(1) and V(F −F ′) = O(1), which implies that
V(F ′) = V(F ) +O(1). Now, see that Eq. (6) from the proof of Theorem 5 generalizes to

F − E(F )√
V(F )

=

√
V(F ′)√
V(F )

F ′ − E(F ′)√
V(F ′)

+
F − F ′ − E(F − F ′)√

V(F )
,

which immediately shows that the Wasserstein distance between F and F ′ tends to zero,
because lim

n→∞
V(F ′)
V(F )

= 1 and lim
n→∞

F−F ′−E(F−F ′)√
V(F )

= 0. Therefore it holds that δF ⩽ δF ′ +o(1)

and the theorem follows.

6 The Statistic (des(π), des(π−1))

This section derives a two-dimensional central limit theorem for the vector statistic defined
as (des(π), des(π−1)) for π being either an element of a Coxeter group of type Bn or Dn.
This is achieved with the Cramér–Wold device and a slight modification of the proofs of
Theorems 4 and 5. The Cramér–Wold device shows the equivalence of the convergence in
distribution between a random vector and every linear combination of its elements. It is
also known as the Theorem of Cramér–Wold (see for example in [2, Theorem 29.4]).

Theorem 8 (Cramér–Wold). Let X̄n = (Xn1, . . . , Xnk) and X̄ = (X1, . . . , Xk) be random

vectors of dimension k. Then, X̄n
D→ X̄, if and only if

k∑
i=1

tiXni
D→

k∑
i=1

tiXi

for each t = (t1, . . . , tk) ∈ Rk and for n → ∞.
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We use the short-hand notation (Dn, D
′
n) for the random variable that rises from

(des(π), des(π−1)). With Theorem 8, we can show the convergence of (Dn, D
′
n) by study-

ing linear combinations of the form t1Dn + t2D
′
n. It is sufficient to only check linear

combinations with t ∈ S1, since the investigated statistic is normalized by the square root
of the variance V(t1Dn + t2D

′
n). This leads to the following theorem:

Theorem 9. Let Wn be a sequence of Coxeter groups of growing rank of either type Bn or
Dn. Then, the statistic (Dn, D

′
n) satisfies a two-dimensional central limit theorem of the

form

Σ
− 1

2
n

(
Dn − E(Dn)
D′

n − E(D′
n)

)
D→ N2(0, I)

for n → ∞, where I denotes the two-dimensional identity matrix and Σn is the covariance
matrix of (Dn, D

′
n).

Proof. Via the Theorem of Cramér–Wold, we can study the convergence of (Dn, D
′
n) by

studying t1Dn + t2D
′
n for tT = (t1, t2) ∈ S1. We derive a convergence

tT
1√

V(Dn)

(
Dn − E(Dn)
D′

n − E(D′
n)

)
D→ N(0, 1) (7)

to show the Theorem via an application of Slutsky’s Theorem. (7) is equivalent to

1√
V(Dn)

(t1Dn + t2D
′
n − (t1 + t2)E(Dn))

D→ N(0, 1), (8)

as E(Dn) = E(D′
n). Now, since t ∈ S1, the proofs of the Theorems 4 and 5 apply, which

means that
t1Dn + t2D

′
n − (t1 + t2)E(Dn)√

V(t1Dn + t2D′
n)

D→ N(0, 1).

This convergence is also a consequence of Theorem 6 or Theorem 7, as the local com-
ponents of t1Dn + t2D

′
n are still bound by 1 and the local dependency structure is not

changed by multiplying the sum of indicator functions that model Dn and D′
n with con-

stants. Furthermore, the variance V(t1Dn+ t2D
′
n) is of order n and therefore, the Wasser-

stein distance to the standard normal distribution is bound by a vanishing function in n.
Now, by Slutsky’s Theorem, (8) and therefore (7) is satisfied as

V(t1Dn + t2D
′
n)

V(Dn)

a.s→ 1.

This results from the fact that V(Dn) = V(D′
n)) and Cov(Dn, D

′
n) = O(1) (see [6]) and

that t21 + t22 = 1. Because of the convergence in (7), the theorem follows via another
application of Slutsky’s Theorem, as

1

V(Dn)
Σn =

1

V(Dn)

(
V(Dn) Cov(Dn, D

′
n)

Cov(Dn, D
′
n) V(D′

n)

)
a.s.→ I,

since Cov(Dn, D
′
n) = O(1) and V(Dn) = V(D′

n).
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Remark 10. Theorem 9 can be generalized to certain statistics (F1(π), F2(π
−1)), if F1 and

F2 meet the constraints of Theorem 6 or Theorem 7, V(F1(π)) = V(F2(π
−1)) holds and

V(F1(π)) is big enough so that the constraint to the Wasserstein distance in Theorem 6
or Theorem 7 converges to zero for n going to infinity.

Acknowledgements

I want to thank Philipp Godland, Hauke Seidel and in particular Norbert Gaffke for helpful
comments and discussions. Furthermore, I want to thank my PhD-advisors Thomas Kahle
and Rainer Schwabe for their support and guidance. As a fellow of the research train-
ing group on Mathematical Complexity Reduction at the Otto-von-Guericke-University
Magdeburg, this work was funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) - 314838170, GRK 2297 MathCoRe.

References
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