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Abstract

We prove that every locally Hamiltonian graph with n vertices and possibly with
multiple edges has at least 3n− 6 edges with equality if and only if it triangulates
the sphere. As a consequence, every edge-maximal embedding of a graph G on some
2-dimensional surface Σ (not necessarily compact) has at least 3n − 6 edges with
equality if and only if G also triangulates the sphere. If, in addition, G is simple,
then for each vertex v, the cyclic ordering of the edges around v on Σ is the same
as the clockwise or anti-clockwise orientation around v on the sphere. If G contains
no complete graph on 4 vertices, then the face-boundaries are the same in the two
embeddings.

Mathematics Subject Classifications: 05C10, 05C35, 05C45

1 Introduction

In 1974 Kainen [7] posed as the first open problem in his survey the following question:
By how many edges can an edge-maximal simple graph embeddable in a surface of Euler

∗This work was done while the second author held the Dean’s Distinguished Visiting Professorship at
the University of Waterloo Fall 2019.
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genus g be short of a triangulation? It is straightforward to show that a non-complete
simple graph which is edge-maximal with respect to being embeddable in the plane has
embeddings that triangulate the plane. However unlike planar graphs, this does not
necessarily hold for graphs embeddable on other surfaces. There exists non-complete edge-
maximal simple graphs embeddable on a given surface Σ, that do not have an embedding
that triangulates Σ [1, 3, 4, 5, 6, 12]. The first author and Pfender [1] proved that for
surfaces of Euler genus at most 2, there are exactly two such examples, being K7 − e on
the Klein bottle and K8 − E(C5) on the torus. In contrast to this they further showed
that for orientable surfaces of genus g > 2, there exist infinitely many such graphs that
are bg

2
c edges short of a triangulation.

McDiarmid and Wood [10] pointed out that there is a related, equally natural question:
By how many edges can an embedded graph in a surface of Euler genus g be short of a
triangulation? Where edge-maximal is now with respect to the embedding rather than
to being embeddable. Indeed if a graph is edge-maximal embeddable in a surface, then
every embedding is edge-maximal. They gave a first answer to both problems with the
upper bound of 84g.

In this paper we provide the best possible bound to McDiarmid and Wood’s question
and characterize the extremal graphs. It is perhaps worth noting that the number of edges
does not depend on the genus. It does not even depend on the genus being finite. Our
result also holds for graphs with multiple edges where “edge-maximal” means that we
cannot add an edge between non-neighbours. We prove that an edge-maximal embedding
of a n > 4 vertex graph G on a surface Σ has at least 3n− 6 edges, with equality if and
only if G has an embedding triangulating the sphere. Furthermore, when equality holds
and G is simple, then for each vertex v, the cyclic ordering of the edges around v on Σ
is the same as the clockwise or anti-clockwise orientation around v on the sphere. If G
contains no complete graph on 4 vertices, then the face-boundaries are the same in the
two embeddings. This can be seen as a generalization of the classical folklore result that
edge-maximal planar embeddings triangulate the plane. The extremal examples are all
planar, so with the exception of K4, they are not edge-maximal embeddable in surfaces
of Euler genus g > 0. As a consequence this also provides an upper bound of 3g − 1 to
Kainen’s question for each g > 0.

For simple graphs, the result follows from an earlier result by Skupień [14]: Every
connected, locally Hamiltonian simple graph on n > 4 vertices has at least 3n− 6 edges,
with equality if and only if the graph has an embedding that triangulates the sphere1. By
adapting Skupień’s proof, we prove a generalization for graphs with multiple edges.

It is an easy consequence of Kuratowski’s theorem that a 3-connected graph distinct
from K5 is planar if and only if it contains no subdivision of K3,3. The second author
[15] conjectured that a 4-connected simple graph with at least 3n − 6 edges is planar if
and only if it contains no subdivision of K5. This was motivated by, and would imply,
the conjecture of Dirac [2] that every simple graph with n vertices and more than 3n− 6
edges contains a subdivision of K5. Both of these conjectures were proved by Mader [8, 9].

1Skupień points out in [13] that the proof in [14] is incomplete and states the theorem as an open
problem. We point out that marginal additions to [14] complete the proof of the stated theorem.
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Combining Mader’s theorem with the theorem in the present paper we get the following:
If a 4-connected simple graph G has an edge-maximal embedding on some surface Σ, then
it contains a subdivision of K5, unless each face of G on Σ is bounded by a triangle, and
the replacement of each face by a disc results in the sphere triangulated by G.

2 Preliminaries

The notation is essentially that of [11]. A graph has no loops except in the last section,
but may have multiple edges. A vertex is simple if it is not incident with any multiple
edges. A graph is simple if all its vertices are simple. A surface is an arcwise connected
Hausdorff space which is locally homeomorphic to an open disc in the plane. We shall not
assume that Σ is compact. If G is an abstract graph, then an embedding of G on Σ is a
graph G∗ isomorphic to G such that each vertex of G∗ is a point in Σ and each edge in G∗

is a simple arc joining its two ends such that two edges may only intersect in a common
end. The edges leaving a vertex v have two cyclic orderings (one being the reverse of the
other). We choose one of these and call it the clockwise orientation around v in G∗, while
the other we call the anti-clockwise orientation.

An embedding G∗ on a surface Σ is edge-maximal if, for any two non-adjacent vertices
x, y, it is not possible to add an edge xy. More precisely, Σ does not contain a simple arc
from x to y that does not contain any other point of G∗.

If G∗ is edge-maximal, it clearly satisfies the following.

• If vv1, vv2, . . . , vvd are the edges incident with v in clockwise order (where the indices
are expressed modulo d), then G∗ contains the edge vivi+1 whenever the vertices
vi, vi+1 are distinct.

For otherwise, we could add that edge close to the path vivvi+1.

Motivated by this we define a vertex v of a graph to be locally Hamiltonian if the edges
incident with v have a cyclic ordering (called a Hamiltonian ordering) vv1, vv2, . . . , vvd
so that G contains the edge vivi+1 whenever the vertices vi, vi+1 are distinct. A graph is
locally Hamiltonian if every connected component has at least 4 vertices and every vertex
is locally Hamiltonian2. The neighbours of a simple vertex v with degree at least 3 in a
locally Hamiltonian graph induce a Hamiltonian subgraph. Note that, if we replace an
edge in a locally Hamiltonian graph by a multiple edge, the resulting graph remains locally
Hamiltonian. However, the converse is not true as shown by the planar triangulations
with multiple edges defined below. Observe that if an embedding G∗ is edge-maximal,
then the graph G is locally Hamiltonian.

A planar triangulation or a triangulation of the sphere is a graph that can be embedded
in the plane or the sphere such that every face is bounded by a 3-cycle. Thus K3 is the
only planar triangulation on 3 vertices, and K4 and the graph consisting of a 2-cycle and

2The requirement that connected components have at least 4 vertices in the definition of locally
Hamiltonian is a technical one to ensure that simple graphs are locally Hamiltonian in the multigraph
sense if and only if they are in usual simple graph sense.
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two simple vertices of degree 2 joined to both vertices of the 2-cycle are the only planar
triangulations on 4 vertices.

We shall use a lemma on planar triangulations that may have multiple edges.

Lemma 1. Let T be a planar triangulation that contains a cycle C that either has length
2 or is a non-facial (that is, separating) 3-cycle. If all vertices in the interior of C
(respectively exterior) have degree at least 4, then there exist at least 2 vertices a, b in the
interior of C (respectively exterior), such that each is simple, has degree at most 5, has at
most two non-simple neighbours, and such that none is contained in a non-facial 3-cycle.

Proof. Assume without loss of generality that all vertices in the interior of C have degree
at least 4. As T is a triangulation, if C is a 2-cycle then it must be non-facial and
separating. Choose a separating cycle C∗ of length 2 or 3, whose vertices are contained in
C and its interior (possibly with C∗ = C) such that the interior of C∗ (together with C∗)
contains no cycle distinct from C∗ that is separating and of length 2 or 3. It is enough
to show that there exist vertices a and b in the interior of C∗ satisfying the conclusion of
Lemma 1.

Now the vertices in the interior are all simple as there are no 2-cycles in the interior
of C∗. Each vertex of C∗ is adjacent to at least one vertex in the interior of C∗ and
every vertex in the interior has degree at least 4. In particular there must be at least 2
vertices in the interior. By the choice of C∗, the cycle C∗ together with its interior does
not contain a separating 3-cycle. So every vertex in the interior of C∗ is adjacent to at
most 2 vertices of C∗ and so no vertex has more than 2 non-simple neighbours. Now by
Euler’s formula there exist at least 2 vertices in the interior of C∗ with degree at most 5.
So we may choose 2 of these to be a and b as required.

3 Locally Hamiltonian graphs

In this section we generalise Skupień’s theorem to graphs with multiple edges.

Theorem 2. Let G be a connected, locally Hamiltonian graph with n vertices and at most
3n− 6 edges. Then G has precisely 3n− 6 edges and is isomorphic to a triangulation of
the sphere.

Proof. We adapt Skupień’s proof. The proof is by induction. If n = 4, then G is isomor-
phic to either K4 or the graph consisting of a 2-cycle and two simple vertices of degree 2
joined to both vertices of the 2-cycle. Both these graphs have embeddings that triangulate
the sphere, so assume n > 4. Note that G contains a vertex of degree at most 5 as the
number of edges is less than 3n.

By definition a locally Hamiltonian graph can have no isolated vertices. Addition-
ally there can be no vertex of degree 1, as otherwise its neighbour would not be locally
Hamiltonian. Hence G has minimum degree at least 2.

Assume now (reduction ad absurdum) that Theorem 2 is false. Let G be a counterex-
ample and let v be a vertex of degree d 6 5 such that;
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(i) n is smallest possible and, subject to (i),

(ii) if possible d 6 3 and subject to (i), (ii),

(iii) the number of edges which are incident with v and part of multiple edges is minimum,
and, subject to (i), (ii), (iii),

(iv) the number of edges joining non-consecutive vertices in a given Hamiltonian cyclic
ordering of N(v) is smallest possible and, subject to (i), (ii), (iii), (iv),

(v) the number of non-simple vertices in N(v) is minimum, and subject to (i), (ii), (iii),
(iv), (v),

(vi) the degree d of v is smallest possible.

Let vv1, vv2, . . . , vvd be the edges incident with v in cyclic order (where the indices
are expressed modulo d) such that G contains the edge vivi+1 for i = 1, 2, . . . , d whenever
vi, vi+1 are distinct.

Consider first the case d = 2. Vertices v1 and v2 are distinct, as otherwise G would
have only 2 vertices. As n > 3 and G is connected and contains the 3-cycle vv1v2v, one
of v1, v2, say v1, has degree at least 3. Let e1, respectively e2, be the edge preceding,
respectively succeeding, v1v in the cyclic ordering around v1 given by a Hamiltonian
ordering in G[N(v1)]. As v1 has degree at least 3, e1 and e2 are distinct. Then e1, e2 both
join v1 to some neighbour of v, and that neighbour must be v2. It is easy to see that
G − e1 − v is locally Hamiltonian. By the induction hypothesis, G − e1 − v triangulates
the sphere. It is easy to extend that triangulation by adding the edges e1, vv1, vv2 to give
an embedding of G triangulating the sphere.

Consider next the case d = 3. It is easy to see that G − v is locally Hamiltonian. If
v2 = v3, say, then the proof of the case d = 2 shows that G has at least two edges e1, e2
between v1 and v2. Repeating the proof of the case d = 2, we conclude that G− e1− v is
locally Hamiltonian. By the induction hypothesis, G has 3(n−1)−6+4 = 3n−5 > 3n−6
edges, a contradiction. So we may assume that v1, v2, v3 are distinct.

Now G − v is locally Hamiltonian, so by the minimality of G, the graph G − v has
an embedding (G− v)∗∗ triangulating the sphere. We claim that there is a facial 3-cycle
v1v2v3v1, since otherwise G − v1 − v2 − v3 would have three components with v1 being
adjacent to a vertex of each component, but then v1 wouldn’t be locally Hamiltonian. So
v1v2v3v1 is facial, and hence G is a triangulation.

We may now assume that G has minimum degree at least 4.
Consider next the case d = 4. If every two of N(v) are neighbours, then G − v is

locally Hamiltonian. But then G−v would have at most 3(n−1)−7 edges, contradicting
assumption (i). So we may assume that v1, v3 are distinct and non-adjacent. Hence
v1, v2, v3 are distinct, and v1, v4, v3 are distinct (but possibly v2 = v4). Now by removing
v from the Hamiltonian orderings of each of N(v1), N(v2), N(v3) and N(v4), we see that
H = G− v + v1v3 is locally Hamiltonian. Furthermore H has at most 3(n− 1)− 6 edges
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and hence H has precisely 3(n − 1) − 6 edges and has an embedding H∗∗ triangulating
the sphere.

Now if v1v3v2v1 and v1v3v4v1 are both facial in H∗∗, then it is straightforward to obtain
the triangular embedding of G. So we may assume that one is not facial and apply Lemma
1 to deduce by (iii), (iv) and (v) that v2 and v4 are distinct but not adjacent and without
loss of generality that v1 is simple. Every Hamiltonian cycle of NG(v1) must contain the
path v2vv4, so there is a Hamiltonian cycle of NH(v1) containing the path v2v3v4. But
then both v1v3v2v1 and v1v3v4v1 must be facial in H∗∗, a contradiction.

Finally consider the case d = 5. We add to N(v) say m edges so that any two vertices
in N(v) are adjacent and remove the vertex v to obtain a locally Hamiltonian graph H.
If m 6 1, then H has at most 3(n− 1)− 7 edges, a contradiction.

Suppose that m = 2, then H has at most 3(n − 1) − 6 edges and so there is an
embedding H∗∗ triangulating the sphere. This triangulation H∗∗ must be simple since
otherwise Lemma 1 gives a contradiction. If v is non-simple then as m = 2, we must have
that N(v) = {u1, u2, u3, u4} and we may assume that u1, u3 are non-adjacent in G, and
hence in H there is just a single edge between u1 and u3. Suppose that u1u3u2u1 and
u1u3u4u1 are both facial, then it is easy to obtain an embedding of G with one just two
non-triangular faces, a 2-face vuiv for some i ∈ {1, 2, 3, 4}, and a 4-face a1a2a3a4a1. We
may assume without loss of generality that a1 and a2 are simple (because H∗∗ is simple
and hence v and ui are the only non-simple vertices in G). The neighbourhood of a
simple vertex of a planar graph has at most one Hamiltonian ordering (up to rotation and
reflection), as the wheel graph has a unique planar embedding, and such a Hamiltonian
ordering is necessarily either the clockwise or anti-clockwise orientation around the vertex.
So as a1 and a2 are both locally Hamiltonian, it follows that a4 is adjacent to a2 and a1
is adjacent to a3. But then we may obtain a planar embedding of K5, a contradiction.
Hence one of these two 3-cycles is non-facial and we may apply Lemma 1, to contradict
(iii). So v must be simple in G. But then H contains a K5, contradicting the fact that H
is planar.

So m > 3 and as a consequence v must be simple. In particular G[N(v)] contains at
most two edges besides the 5-cycle v1v2v3v4v5v1. So we may choose the notation such that
G[N(v)] consists of the 5-cycle v1v2v3v4v5v1 and in addition either no additional edge or
the edge v2v4 or the two edges v2v4, v3v5 or the two edges v2v4, v2v5. In the latter case we
may assume by symmetry that some Hamiltonian cycle in G[N(v2)] does not contain the
path v3vv5.

Let Q be obtained by deleting v and adding the edges v1v3, v1v4. The resulting graph
is locally Hamiltonian and hence isomorphic to a triangulation Q∗∗ of the sphere. If the
3-cycles v1v2v3v1, v1v3v4v1 and v1v4v5v1 are all facial then Q∗∗ can easily be modified to
show that G is also a spherical triangulation. So we may assume that at least one is
not facial. Now v2 is not adjacent to v4, else we may apply Lemma 1 to contradict (iv).
Hence we may assume that the only edges of G[N(v)] are those of the 5-cycle v1v2v3v4v5v1.
Some vertex of N(v) must be simple, as otherwise there would be a 2-cycle in Q∗∗ whose
interior contains no vertex of N(v), allowing for a contradiction by Lemma 1 and (v).
So without loss of generality we may assume that v1 is simple. Now as v2vv5 is a path
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in every Hamiltonian cycle of NG(v1), there is a Hamiltonian cycle of NQ(v1) containing
the path v2v3v4v5. As v is simple, NQ(v1) has only one Hamiltonian cycle and therefore
v1v2v3v1, v1v3v4v1 and v1v4v5v1 are all facial, a contradiction.

4 Maximal embedded graphs with minimum number of edges

We are now ready to prove our main result on edge-maximal embeddings.

Theorem 3. Let G be a graph with n > 4 vertices and at most 3n− 6 edges, and let G∗

be an embedding of G on a surface Σ. If G∗ is edge-maximal on Σ, then G is planar and
has precisely 3n− 6 edges. Moreover, there is an embedding G∗∗ on the sphere such that
G∗∗ is a triangulation.

If G is simple then, for every vertex v in G, the clockwise orientation around v in G∗

is either the clockwise or anti-clockwise orientation around v in G∗∗. If G is simple and
contains no K4, then G∗ is obtained from G∗∗ by replacing each face by a surface.

Proof. Since G∗ is edge-maximal on Σ, it follows that G is locally Hamiltonian. Further-
more G is connected as otherwise we could add an edge to the embedding G∗ between
two connected components. So by Theorem 2, G has at least 3n−6 edges, and if equality
holds, G has an embedding G∗∗ on the sphere such that G∗∗ is a triangulation.

If G is simple, the embedding of G∗∗ is unique except that we can interchange “clock-
wise” with “anti-clockwise” for every vertex. The clockwise orientation in G∗ is given by
some Hamiltonian cycle in G[N(v)]. But G∗∗[N(v)] has precisely one Hamiltonian cycle.
So, the clockwise orientation at v in G∗ equals the clockwise or anticlockwise orientation
at v in G∗∗.

Suppose now that G is simple, and contains no K4. Note that G has minimum degree
at least 3. Each edge of G appears on facial boundaries of G∗ exactly twice. Since G∗

is edge-maximal, each face boundary induces a complete graph. Since G∗ is simple and
contains no K4, it follows that each facial boundary in G∗ has exactly 3 vertices and
each component also has length 3. Consider now a vertex v of degree d > 3, say. In
G∗∗ there is a unique Hamiltonian cycle v1v2 . . . vdv1 in G[N(v)], defined by the clockwise
ordering in G∗∗ of the edges incident with v. As this is also the clockwise or anticlockwise
ordering in G∗ of the edges incident with v, all d components of facial boundaries in G∗

containing v are precisely the facial boundaries in G∗∗ containing v. So all components of
facial boundaries in G∗∗ are boundaries in G∗. Hence the components of facial boundaries
in G∗ are precisely the facial triangles in G∗∗. In G∗∗ a facial boundary has just one
connected component. So, there only remains the question of if a facial boundary in G∗

may have more than one connected component. But, this is impossible because every face
boundary is complete and therefore both components of a facial boundary would be the
same triangle, giving an embedding of a just a triangle on Σ. Hence G∗ is obtained from
G∗∗ by replacing each face by a surface.

Note that K4 has an embedding in the projective plane with three 4-faces, and so
this embedding can not be obtained by replacing faces of a spherical embedding by other
surfaces.
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5 Maximal embedded graphs with loops

In this section we allow loops. Remarkably, edge-maximal embeddings of simple graphs
and of graphs with multiple edges behave in much the same way. It is natural to ask
if graphs with loops could also behave similarly. However, the answer for edge-maximal
embeddings of graph with loops is rather different.

Let Ko
n denote the complete graph with a single additional loop on some vertex, we

call this vertex the loop vertex. We call the two graphs Ko
2 and Ko

3 petals. A graph G is a
flower if there exists a sequence of graphs G0, G1, . . . , Gn such that, G0 ∈ {K2, K3}, and
for each i ∈ {1, . . . , n}, Gi is obtained by identifying a vertex of Gi−1 with a loop vertex
of a petal and Gn = G. Notice that flowers are planar, however they may have faces with
arbitrarily many edges.

If a graph G (possibly with loops) on n > 2 vertices has an edge-maximal embedding
on a surface Σ, then G has at least 2n−3 edges, with equality if and only if G is a flower.
This can be argued inductively on the number of vertices of an edge-maximal embedding
G∗ by removing a suitable vertex and edges and then possibly adding an edge to the
embedding. We leave the proof as an exercise to the reader.
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