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Abstract

Norine’s antipodal-colouring conjecture, in a form given by Feder and Subi,
asserts that whenever the edges of the discrete cube are 2-coloured there must exist
a path between two opposite vertices along which there is at most one colour change.
The best bound to date was that there must exist such a path with at most n/2
colour changes. Our aim in this note is to improve this upper bound to (38 + o(1))n.

Mathematics Subject Classifications: 05C35, 05C38

1 Introduction

The hypercube Qn has vertex set {0, 1}n, with two vertices joined by an edge if they differ
in a single coordinate. We call two vertices of Qn antipodal if their graph distance is n.
We call a pair of edges of Qn v1w1 and v2w2 antipodal if either v1 and v2 are antipodal
vertices and w1 and w2 are also antipodal vertices, or if v1 and w2 are antipodal vertices
and v2 and w1 are also antipodal vertices. A 2-colouring of the edges of Qn is called
antipodal if no pair of antipodal edges has the same colour. Norine [3] conjectured the
following.

Conjecture 1. In any antipodal 2-colouring of the edges of Qn, there exists a pair of
antipodal vertices which are joined by a monochromatic path.

Feder and Subi [1] later made the following conjecture.

Conjecture 2. In any 2-colouring of the edges of Qn, we can find a pair of antipodal
vertices and a path joining them with at most one colour change.
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If true, this implies the conjecture of Norine. Indeed, consider an antipodal 2-colouring
of the edges of Qn. By Conjecture 2, we can now find an antipodal path P1P2 such that
both paths P1 and P2 are monochromatic. If they have the same colour we are done; if
not the path PC

2 P1 will work, where PC
2 is the antipodal path to path P2.

Call a path in Qn a geodesic if no two of its edges have the same direction. Leader
and Long [2] proved the following result.

Theorem 3. In any 2-colouring of the edges of Qn, we can find a monochromatic geodesic
of length at least dn

2
e.

Leader and Long proposed a conjecture that strengthens that of Feder and Subi.

Conjecture 4. In any 2-colouring of the edges of Qn, we can find a pair of antipodal
vertices and a geodesic joining them with at most one colour change.

Theorem 3 implies that we can always find a pair of antipodal vertices and a geodesic
joining them with at most n

2
colour changes. Moreover, as Theorem 3 is sharp, there is no

hope of improving the result by finding longer monochromatic geodesic. In the present
note, we establish:

Theorem 5. In any 2-colouring of the edges of Qn, we can find a pair of antipodal vertices
and a geodesic joining them with at most (3

8
+ o(1))n colour changes.

To prove the theorem, we employ the strategy of dividing the Qn graph into small
pieces (Q3 graphs in fact) and finding a collection of geodesics with certain properties
within each piece. The conditions we impose on these local geodesics let us glue them
together into a collection of geodesics in Qn in such a way that on average these long
geodesics will have not too many colour changes. From that we in particular conclude
that at least one of the long geodesics must not have too many colour changes. In the
next section we collect together some simple facts about Q3 graphs, and then we use these
in the following section to prove Theorem 5.

2 Good and bad Q3 graphs

In this section we collect together some facts about 2-colourings of the 3-dimensional
cube.

From now on, we call a geodesic connecting two antipodal points simply an antipodal
geodesic.

We call a colouring of Q3 by two colours good if we can find 4 antipodal geodesics,
with each vertex being an endpoint of exactly one of these, such that these 4 geodesics
have in total at most two colour changes. If a colouring of Q3 is not good we call it bad.

The terms good and bad Q3 will be sometimes used instead of good and bad colouring
of Q3, and it is understood that we refer to a particular colouring.

When showing that Conjecture 4 holds for n = 5, Feder and Subi [1] proved the
following simple lemma which we will use too.
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Lemma 6. Assume in a 2-colouring of Q3, there are antipodal vertices v and v′ such that
all the geodesics connecting v and v′ have two colour changes. Then the other three pairs
of antipodal points are connected by geodesics without colour changes.

In particular, note that we can deduce the following easy claim from the lemma above.

Claim 7. Assume we have a bad 2-colouring of Q3. Then at most one pair of antipodal
points in this Q3 is connected by a geodesic without a colour change.

Proof. Lemma 6 implies that in any bad 2-colouring of Q3, any pair of antipodal vertices
is connected by a geodesic with at most one colour change. So if we had two pairs of
antipodal vertices connected by a geodesic without a colour change, then we could find 4
antipodal geodesics, with each vertex being an endpoint of exactly one of these, such that
these 4 geodesics have in total at most two colour changes. But that would by definition
imply we have a good 2-colouring of Q3.

Our first lemma gives us an easy way to identify many Q3 graphs as good.

Lemma 8. Assume in a 2-colouring of Q3, all three edges at some vertex of Q3 have the
same colour. Then it is a good colouring.

Proof. Assume this colouring is bad. Without loss of generality take the vertex where all
edges have the same colour to be 000 and this colour to be blue. If all the edges with
neither of their endpoints being 000 or 111 are red, it is a good colouring, as the other
three pairs of antipodal vertices are connected by the antipodal geodesics with no colour
changes. So assume some edge with neither endpoint being 000 or 111 is blue. Without
loss of generality it is (100, 110).

From 001, we have the antipodal geodesic with no colour change (001, 000, 100, 110).
So if the colouring is bad, then we know by Claim 7 that for no other pair of antipodal
points can we have an antipodal geodesic with no colour change. So the edge (100, 101)
must be red by considering the geodesic (010, 000, 100, 101), the edge (001, 101) must be
red by considering the geodesic (010, 000, 001, 101) and the edge (001, 011) must be red
by considering the geodesic (100, 000, 001, 011).

But that gives the red antipodal geodesic with no colour change (100, 101, 001, 011),
thus a contradiction.

Next, note that one particular example of a bad Q3 graph occurs when we colour all
the edges in one direction by one colour, and all the edges in the other two directions
by the other colour. Lemma 9 that follows tells us that any bad colouring behaves very
much like this example in a sense we will need in our proof.

Lemma 9. Consider any bad colouring of Q3 and any vertex v. Then there exists an
antipodal geodesic from v to v′ with exactly one colour change, a red edge at v and a blue
edge at v′.
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Proof. Without loss of generality let v be 000. Assume no such antipodal geodesic exists.
By Lemma 8, we have at least one red edge from 000, without loss of generality to 100.
Also we have at least one blue edge from 111. If this edge went to 110 or 101, we would
be done immediately, so it must go to 011 and the other two edges from 111 must be red.
Furthermore, the other two edges from 000 must be blue, or else we would be done, so
assume they are blue.

As the colouring of Q3 we consider is bad, at most one pair of antipodal points can be
connected by an antipodal geodesic without a colour change. Whichever colour the edge
(001, 101) has, it creates an antipodal geodesic without a colour change, either between
010 and 101 or between 001 and 110. So 000 cannot be connected to 111 by an antipodal
geodesic without a colour change, forcing the edges (100, 110) and (100, 101) to be blue
and the edges (010, 011) and (001, 011) to be red.

But now we see that both 010 and 001 are connected to their antipodals by geodesics
without a colour change, contradiction.

Analogously, in any bad Q3, there exists such an antipodal geodesic with exactly one
colour change, a blue edge at v and a red edge at v′.

3 Proof of the main result

We will now prove the main result.

Theorem 5. In any 2-colouring of edges of Qn, we can find a pair of antipodal vertices
and a geodesic joining them with at most (3

8
+ o(1))n colour changes.

Proof. As we have o(n) term included in our bound, clearly it suffices to prove the theorem
for n divisible by 3, so assume n = 3k. For the vertices v, w of distance 3, let G(v, w)
denote the subgraph of Qn spanned by the geodesics between v and w (so G(v, w) ∼= Q3).
Call two such subgraphs G1

∼= Q3 and G2
∼= Q3 of Qn neighbours if they share exactly

one vertex. If this vertex is v, call them v-neighbours. Consider a set A of all the ordered
pairs (v, w) of the vertices of Qn such that d(v, w) = 3. Assume f : A→ V (Qn) satisfies
the following three conditions for all the vertices v, w:

(i) d(v, f(v, w)) = 1

(ii) d(w, f(v, w)) = 2

(iii) d(f(w, v), f(v, w)) = 1

In other words, this is equivalent to (v, f(v, w), f(w, v), w) being an antipodal geodesic
in G(v, w).

Now, given the antipodal geodesic (v0, v1, v2, v3, v4, . . . , v3i, v3i+1, v3i+2, v3i+3, . . . , v3k),
we will modify it into the antipodal geodesic (v0, f(v0, v3), f(v3, v0), v3, f(v3, v6), . . . , v3i,
f(v3i, v3i+3), f(v3i+3, v3i), v3i+3, . . . , v3k).
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We will show that for every fixed colouring, we can define such f in a way that the
expected number of colour changes on a geodesic obtained by this modification from a
uniformly random antipodal geodesic is no more than (3

8
+o(1))n, where o(1) term depends

on n only, not on the colouring. More precisely, we will define f1 and f2 (depending on
the colouring) and show that at least one of these two must always work.

If G(v, w) is a good Q3, let f1(v, w), f1(w, v) be such that no other geodesic between
v and w has strictly less colour changes than (v, f1(v, w), f1(w, v), w), and set f2(v, w) =
f1(v, w), f2(w, v) = f1(w, v).

Call the vertex v of Qn even if its distance from 000 . . . 000 is even and call it odd
otherwise. Every geodesic of length 3 connects an odd and an even vertex. For G(v, w)
bad with v even and w odd, define f1(v, w) and f1(w, v) such that (v, f1(v, w), f1(w, v), w)
has exactly one colour change, (v, f1(v, w)) is blue and (f1(w, v), w) is red. Also define
f2(v, w) and f2(w, v) such that (v, f2(v, w), f2(w, v), w) has exactly one colour change,
(v, f2(v, w)) is red and (f2(w, v), w) is blue. By Lemma 9, there exist such functions.

Denote by p the proportion of good Q3 subgraphs of Qn in this colouring and the
proportion of bad ones is thus 1 − p. Picking two Q3 subgraphs that are neighbours
uniformly at random, denote the probability that both are good by a, the probability
that one is good and one is bad by b, and thus the probability that both are bad is
1− a− b. We clearly must have p = a+ b

2
.

How large can b be? Suppose at any vertex v, of all Q3 containing v, there are s good
ones and

(
n
3

)
−s bad ones. There are 1

2

(
n
3

)(
n−3
3

)
pairs of v-neighbours, and of them at most

s(
(
n
3

)
− s) 6 1

4

(
n
3

)2
are good-bad pairs. As this applies to every vertex and is independent

of s, we have b 6 1
2

(
n
3

)(
n−3
3

)−1
= 1

2
+ o(1).

Now, choose an antipodal geodesic uniformly at random and modify it as described.
Due to the symmetry, and the properties of good and bad Q3 graphs, for any j : 0 6
j 6 n − 1 and for either value of i, the expected number of colour changes inside the
geodesic (v3j, fi(v3j, v3j+3), fi(v3j+3, v3j), v3j+3) is at most 1

2
if we condition on the graph

G(v3j, v3j+3) being good, and at most 1 if we condition on the graph G(v3j, v3j+3) being
bad. Since the proportion of good Q3 subgraphs of Qn is p, we obtain that the expected
number of colour changes inside the geodesic (v3j, fi(v3j, v3j+3), fi(v3j+3, v3j), v3j+3) is at
most 1

2
p+ (1− p) = 1− p

2
.

What is the probability that, for some fixed j : 1 6 j 6 k−1, we have a colour change
between the edges (fi(v3j, v3j−3), v3j) and (v3j, fi(v3j, v3j+3)) (due to the symmetry this is
same for all such j)? With probability 1− a− b, both G(v3j, v3j−3) and G(v3j, v3j+3) are
bad, and then we do not have a colour change by definition of fi. If one is good and one
is bad, exactly one of f1 and f2 has a colour change between these two edges. So choose
as our f that fi for which the probability of a change in this case is at most 1

2
.

Finally, with probability a, both graphs are good. Consider any fixed vertex v. Choos-
ing a random subgraph Q3 containing v, by Lemma 8, the probability that it is good is
at least the probability that choosing 3 random distinct edges from v, they all have the
same colour. So we conclude there are at least (1

4
− o(1))

(
n
3

)
> 1

8

(
n
3

)
good subgraphs

containing v for n large enough. Suppose precisely t good subgraphs contain v. Clearly,
the number of pairs of neighbours of good subgraphs that have a colour change at v is at
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most 1
4
t2. Also for any good subgraph G1 containing v, the number of good subgraphs

that share v and at least one other vertex with G1 is less than 3n2. So the number of
pairs of two good graphs that are v-neighbours is at least 1

2
t(t− 3n2). So the probability

that a uniform random pair of good v-neighbours switches colour there is at most 1
2

t
t−3n2 .

This is a decreasing function of t for t > 3n2, so using t > 1
8

(
n
3

)
, and as this applies to

any vertex, we get that in this case, the probability of a colour switch is no more than
1
2

+ o(1).
Hence we get that for our chosen value of i, the probability that for any fixed j :

1 6 j 6 k − 1, we have a colour change between the edges (fi(v3j, v3j−3), v3j) and
(v3j, fi(v3j, v3j+3)) is at most b

2
+ (1

2
+ o(1))a. Putting this together with the fact that for

any j : 0 6 j 6 n−1 and for our chosen value of i, the expected number of colour changes
inside the geodesic (v3j, fi(v3j, v3j+3), fi(v3j+3, v3j), v3j+3) is at most 1− p

2
, we obtain that

on average our modified antipodal geodesic has at most (1− p
2
)n
3

+ ( b
2

+ (1
2

+ o(1))a)n
3

=
(1
3

+ b
12

+ o(1))n colour changes (using p = a+ b
2
). But b 6 1

2
+ o(1), giving the result.

Hope is that the similar ideas as the ones used in the proof could be used to obtain
the stronger bound of the order o(n). There are two particular parts of our strategy that
we believe could help with this.

Firstly, we introduce the idea of finding the antipodal geodesics in Qn with a few colour
changes by taking a uniformly random antipodal geodesic, fixing both of its endpoints
as well as some points on the geodesic and then modifying the geodesic suitably between
these points. This does seem to be a useful framework to think about the problem and
considering Qn divided into the bits of the size say Qlogn instead of the size Q3 may help
together with some new ideas. Indeed, by certain arguments of this sort, we can infer
various properties of the worst case colouring in the case that at least δn colour changes
are needed between the typical pair of antipodal points in the worst case colouring.

Further, if we try for the inductive proof, it seems very helpful to consider what
proportion of the pairs of the points (a, b) of certain distance d in Qn has the property
that we have two geodesics joining a and b, one with the red edge at a and the other with
the blue edge at a, and both these geodesics have same many colour changes and at most
as many colour changes as any other geodesic joining a and b has. If the proportion is
large, that helps us build longer geodesics with a few colour changes. If the proportion
is small, we obtain more information about our colouring, that we hope could be used to
bound the number of colour changes on optimal geodesics in different ways. Definition
of good and bad Q3 graphs in this note is motivated precisely by this idea, and it shows
that in this particular case, the trade-off can be formalized very nicely.
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