
Bijections between Lukasiewicz walks
and generalized tandem walks

Frédéric Chyzak
INRIA

Palaiseau, France
frederic.chyzak@inria.fr

Karen Yeats
Combinatorics and Optimization

University of Waterloo
Waterloo, Canada

kayeats@uwaterloo.ca

Submitted: Oct 23, 2018; Accepted: Mar 10, 2020; Published: Apr 3, 2020
c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In this article, we study the enumeration by length of several walk models on the
square lattice. We obtain bijections between walks in the upper half-plane returning
to the x-axis and walks in the quarter plane. A recent work by Bostan, Chyzak, and
Mahboubi has given a bijection for models using small north, west, and south-east
steps. We adapt and generalize it to a bijection between half-plane walks using
those three steps in two colours and a quarter-plane model over the symmetrized
step set consisting of north, north-west, west, south, south-east, and east. We
then generalize our bijections to certain models with large steps: for given p > 1,
a bijection is given between the half-plane and quarter-plane models obtained by
keeping the small south-east step and replacing the two steps north and west of
length 1 by the p+ 1 steps of length p in directions between north and west. This
model is close to, but distinct from, the model of generalized tandem walks studied
by Bousquet-Mélou, Fusy, and Raschel.
Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

Tandem walks are walks on the square lattice Z2 that start at the origin and are confined
to the quarter plane, with all steps taken in the set

S1 = {(−1, 0), (0, 1), (1,−1)},

that is, the set consisting of the small steps west, north, and south-east. The name
originates from queuing theory: tandem walks indeed represent the behaviour of two
M/M/1 queues in tandem. See for example [10, Section 4.7]. Tandem walks are one
simple model in a larger family of models of walks on the quarter plane with a prescribed

the electronic journal of combinatorics 27(2) (2020), #P2.3 https://doi.org/10.37236/8261

https://doi.org/10.37236/8261

step set. In 2010, Bousquet-Mélou and Mishna [5] identified 79 essentially different models
of walks with step sets consisting of nontrivial steps in {−1, 0 + 1}2. These models have
since then received a vast amount of attention in the combinatorial literature. From the
79, another class of interest to the present work is obtained by symmetrizing the step set
with respect to the line x = y, leading to a generalization of tandem walks to walks over
the step set

S1,sym = S1 ∪ {(0,−1), (1, 0), (−1, 1)},

that is, the six small steps west, north, south-east, south, east, and north-west. Both
classes are known to have algebraic generating series when enumerated by length (the
number of steps). For the former, Gouyou-Beauchamps gave in 1989 an implicit bijection
in terms of Motzkin walks and standard Young tableaux [11]. For the latter, Bousquet-
Mélou and Mishna gave in 2010 an explicit algebraic calculation of the generating series,
by an averaging of a functional equation satisfied by the series [5]. In addition, the last
two authors remarked that the symmetric duplication of the step set used to define the
second class is likely to be mirrored, in a manner not yet explained at the time, by the
factor 2n that they observed in their enumeration. They asked for a bijective explanation
of the phenomenon.

While the bijection suggested by Gouyou-Beauchamps [11] proceeds by composing
several known bijections, more recent works by Eu and collaborators [8, 9] introduced a
more direct transformation that operates by searching for patterns on the walk viewed as
a word and successively rewriting their occurrences until none is found. The patterns used
are arbitrarily distant pairs of matching parentheses. Very recently, Bostan, Chyzak, and
Mahboubi revisited the problem to get bijections described by single-pass algorithms [3].1
They developed an approach inspired by the theory of automata: the algorithm for each of
the two converse bijections consists of a single unidirectional traversal of the input walk,
read step by step by a transducer that additionally maintains two nonnegative integer
counters2. The evolution of the counters follows very local rules. This more explicit
presentation of the bijection also allows for following information about the final position.

The present work adapts the use of automata in [3] to study two models that gen-
eralize tandem walks. On the one hand (Section 4), a suitable interlacing of two copies
of the bijection between Motzkin walks and tandem walks provides a bijection between
bicoloured Motzkin walks and 6-step walks in the quarter plane. This leads to a combina-
torial explanation to the 2n factor for the symmetric step-set model. On the other hand
(Section 3), proceeding beyond Motzkin walks and tandem walks, we introduce walks with
large nonnegative steps. Given a nonnegative integer p, we consider the class of walks of
the upper half plane that use the steps (1, i) for −1 6 i 6 p and return to the x-axis,
which we call p- Lukasiewicz walks. We also introduce the class of walks of the quarter
plane that use the small step (1,−1) and the large steps (−i, p− i) for 0 6 i 6 p, which
we call p-tandem walks. Our principal result is to obtain a bijection between these two

1In the absence of a written text yet, one can consult [7] for an earlier, related presentation.
2The original presentation in [3] uses automata with infinitely many states and no auxiliary memory,

but, in view of the generalization to come, we prefer an equivalent presentation with finitely many states
and counters that encode the numbering of the states considered in [3].

the electronic journal of combinatorics 27(2) (2020), #P2.3 2

classes (Theorem 6).
 Lukasiewicz walks have been studied for a long time in several forms. They were

initially introduced in logic by Lukasiewicz, see, e.g., the book by Rosenbloom [15], and
introduced to combinatorics seemingly for the first time by Raney [14]. Traditionally,
they are defined as words that correspond to walks confined to the upper half plane, with
the exception of their very last step, which has to be (1,−1) and passes below the axis.
Keeping the last SE step implicit makes a bijection to our class more direct, and our
p- Lukasiewicz walks have been studied for instance by Brak, Iliev, and Prellberg under
the name of “(0, p)-restricted Lukasiewicz paths” [6], as models of polymer adsorption.
The traditional form is better suited to studying their recursive, tree-like structure, and
applications to random sampling and random generation of trees are to be found for
instance in [2].

Although we claim a proximity of our work to automata theory, we will not use more
than its vocabulary in most of the present article. We will indeed describe the procedure
implementing our bijections in a more relaxed way, hiding their automatic content in a
presentation by “boxes” (see Sections 2–4). The interested reader will wait until Section 5
to see a formal comparison of our presentation to classical automata theory.

A combinatorial explanation of the factor 2n in the symmetric step-set model was
already given by Yeats [17]. Her approach shares similarities with the work by Eu, Fu,
Hou, and Hsu for the simpler tandem model. For comparison’s sake, we provide it here
as well, together with a generalization to p-tandem walks (Section 6).

Remarkably enough, similar bijective results were recently obtained by Bousquet-
Mélou, Fusy, and Raschel [4]. There, the authors use a recent bijection between the
class of all tandem walks for all p and the class of so-called marked bipolar-oriented
planar maps, by Kenyon, Miller, Sheffield, and Wilson [12]. Our bijections are different
from those based on maps, with no clearly studied potential connection so far. This is
discussed further in Section 7.1.

We see three main benefits to our bijections. First of all, they are described algo-
rithmically with only a single pass through the input word. This makes it clear they
have short, fast implementations. The single pass algorithmic description leads to nicer,
clearer proofs than the approach of [17], and also made the generalization to larger step
sets possible. Then, after the fact, the bijections for larger step sets could also be given
an alternate explanation in the spirit of [17]. This gives us two ways, each with different
benefits, to understand all of our bijections.

1.1 General setup. Notation

All of our bijections are described algorithmically and proceed in a similar fashion: to
compute the image of a given word w = w1 . . . wn, a counter c is introduced with values
associated to the prefixes of w, and an output word w̄ = w̄1 . . . w̄n is computed as the
image of w by computing (w̄i, ci) from (wi−1, ci−1) for successive values of i. The value of
(w̄i, ci) depends on (wi−1, ci−1) in a deterministic way, according to a piecewise definition
given by possible transitions. We describe such transitions by boxes in what follows.

the electronic journal of combinatorics 27(2) (2020), #P2.3 3

Steps in 2-dimensional step sets may be depicted by arrows, which then represent
vectors with integer coordinates. Step sets made of such steps are named using the
letter S. Step sets for 1-dimensional walks are subsets of Z. They are named using the
letter Σ. We will freely identify such a step set Σ with the set of vectors {1} × Σ. For
future reference, we summarize the use of these alphabets in the following list, together
with the specific classes of words that we will build on them. For this description, given an
alphabet A, A∗ denotes as usual the set of finite words on A, including the empty word ε,
and we write w′ 6 w when w′ is a prefix of w, and |w|a for the number of occurrences of
the letter a in w.

• Σ1 = {−1, 0,+1} ' { , , }. Motzkin words are those words on Σ1 whose
prefixes contain at least as many up steps as down steps:

M = {w ∈ Σ∗1 : |w| = |w| and ∀w′, w′ 6 w ⇒ |w′| > |w′| }.

• S1 = { , , }.
– Tandem words are classically those words on S1 giving rise to a walk in the

quarter plane. We will also call them quarter-plane 1-tandem words:

Q = {w ∈ S∗1 : ∀w′, w′ 6 w ⇒ |w′| > |w′| > |w′| }.

– By relaxing the quarter-plane constraint, but forcing the final height to be 0,
we obtain what we will call half-plane 1-tandem words:

H = {w ∈ S∗1 : |w| = |w| and ∀w′, w′ 6 w ⇒ |w′| > |w′| }.

The bijection M' H is obvious.
• {1, 2, 3}. We restrict the classical class of Yamanouchi words (using any letters

from N∗) to those words using only the first three integers:

Y3 = {w ∈ {1, 2, 3}∗ : ∀w′, w′ 6 w ⇒ |w′|1 > |w′|2 > |w′|3}.

The bijection Y3 ' Q is obvious.
• S1,sym = { , , , , , }. By augmenting the step set of classical tandem

walks by symmetry, we obtain a superset Qsym of Q:

Qsym = {w ∈ S∗1,sym : ∀w′, w′ 6 w ⇒
|w′| + |w′| > |w′| + |w′| and |w′| + |w′| > |w′| + |w′| }.

• Σ1,bicol = {−1,0,+1,−1, 0,+1} ' { , , , , , }. For a bicolouring of
Motzkin words, we use the two colours “solid” and “striped”:

Mbicol = {w ∈ Σ∗1,bicol : |w| + |w| = |w| + |w| and
∀w′, w′ 6 w ⇒ |w′| + |w′| > |w′| + |w′| }.

the electronic journal of combinatorics 27(2) (2020), #P2.3 4

• Σp = {−1, 0, 1, . . . , p}. Our p- Lukasiewicz words generalize Motzkin words by al-
lowing longer up steps:

Lp = {w ∈ Σ∗p : |w|1 + 2|w|2 + · · ·+ p|w|p = |w|−1

∀w′, w′ 6 w ⇒ |w′|1 + 2|w′|2 + · · ·+ p|w′|p > |w′|−1}.
In particular, L1 =M.
• Sp = { , . . . , , . . . , , }. Our quarter-plane p-tandem words generalize classi-

cal tandem words by allowing longer steps into the north-west quadrant:

Tp = {w ∈ S∗p : ∀w′, w′ 6 w ⇒∑p
j=0(p− j)|w′|(−j,p−j) > |w′|(1,−1) >

∑p
j=0 j|w′|(−j,p−j)}.

In particular, T1 = Q.
• Ap := {a`,m : 0 6 ` + m 6 p − 1}. We will use the class A∗p of unrestricted finite

words on Ap to represent generalized counters (stack contents).

1.2 Outline of the paper. Contributions

Section 2 discusses the case p = 1. It is bibliographical, along the lines of [3, 7]. (But
we prefer the present description in terms of counters over the equivalent description in
terms of infinite automata developed in [3].) There, we provide a bijectionH ' Q between
half-plane and quarter-plane words in the 1-tandem case. The bijection is essentially the
bijection M ' Y3 between Motzkin words and (restricted) Yamanouchi words, owing to
the trivial relations M ' H and Y3 ' Q. This description is given without proofs, as
it can be viewed as a special case of the case of general p. This new result is a bijection
Lp ' Tp for 1 6 p ∈ N. It is developed in full in Section 3. For the proofs, we introduce
parameters attached to the constructions, and we study their variations and invariants.
We then develop the 6-step model and the corresponding bijection Mbicol ' Qsym in a
more sketchy way in Section 4, providing just what has to be adapted to obtain complete
proofs. Alternate interpretations follow, via explicit automata in Section 5 and via raisings
of steps in Section 6.

Although we have developed the automata approach of the present article as a more
intuitive explanation of the phenomenon for some of us, other readers may prefer the
approach by raising followed in [17]. To save those readers from waiting until Section 6, we
work out in Section 1.3 an example of execution of the automata and raising algorithms to
transform an explicit quarter-plane walk to the corresponding Motzkin walk. We provide
this comparison without any formalism and any proof of the bijections. We thus propose
two reads of the article. Most readers will consider a linear read of it, possibly skipping
Section 1.3 and postponing its read until after reading Section 6. On the other hand,
readers already aware of the raising approach will probably prefer reading the worked
example in Section 1.3 before jumping directly to Section 6 and returning to Section 2
when inclined to do so.

The interested reader will find a Julia implementation of the algorithms described in
this article, both on Chyzak’s web page and as ancillary files to our arXiv preprint.

the electronic journal of combinatorics 27(2) (2020), #P2.3 5

1.3 Worked example

The difference between the traditional approach by raising and our new approach by
transducers is most striking in the divergence of their intermediate calculations when
converting an input walk in the quarter plane with steps from { , , } into a walk
in the upper half plane using the same steps and returning to the x-axis, or, equivalently,
into a Motzkin walk using steps from { , , }. Both approaches realize the map ψ
that we will define and describe using transducers in Section 3, and that we will describe
using raising in Section 6.1.

In order to transform a quarter-plane walk, like the one at the bottom of column (b),
the traditional approach is to read its steps from beginning to end, inducing the prefixes
that can be seen from top to bottom in that column, and to progressively generate the
corresponding Motzkin walks in column (a). To maintain the Motzkin property, this
induces the so-called raising of an earlier step when the added step would otherwise go
below the x-axis. Such raising instances are marked by round arrows and shift the rest
of the walk vertically by one. The global transformation returns the final Motzkin walk,
given at the bottom of column (a).

The approach introduced in the present work is to read the quarter-plane walk back-
wards, thus considering the suffixes that appear from bottom to top in column (c). This
family of walks has no obvious property with regard to a quarter plane or even a half
plane, and so we have not bothered to translate them in any way, so as to have the origin
as final vertex for example. The new transformation is depicted in column (d), which
shows suffixes of the final Motzkin walk. Observe that those suffixes are not altered after
they have been produced in any other way than prepending another step. In the end,
the completed Motzkin walks obtained by both algorithms and drawn at the bottom of
column (a) and top of column (d) are the same. If we insist on writing upper-half-plane
walks in terms of the same allowed steps as for the quarter-plane walks, we obtain in
column (e) the suffixes of an upper-half-plane walk returning to the x-axis. The fact
that the complete walk, at the top of column (e), returns to the origin is specific to the
example, in relation to the quarter-plane walk ending on the main diagonal.

2 Three-step model

We start with the three-step model, to obtain a bijection H ' Q, which we realize as two
converse bijective maps φ : H → Q and Q → H. This implicitly contains the bijection
M' Y3, which is the foundation of the case p = 1 in the literature.

Following the strategy announced in the introduction, we introduce the transitions
that we use to define the forward map φ and the backward map ψ. This is done by the 6
boxes on the right of Figure 2 and the 5 boxes on the right of Figure 3. We describe the
meaning of the boxes using the notation introduced by the box (TR) on their left. There:

• a and ā stand for letters from the alphabet S1 := { , , };

• µ is the y-coordinate of the letter a, that is, the vertical displacement caused by a,

the electronic journal of combinatorics 27(2) (2020), #P2.3 6

(a) (b) (c) (d) (e)
Raising approach

(execution from top to bottom)
Transducer approach

(execution from bottom to top)
Alternative
encoding

Figure 1: Computing the Motzkin walk associated with a given quarter-plane walk:
comparison of the traditional raising approach and the new transducer approach. Raising
algorithm: input on the right (b), output on the left (a). These columns (a) and (b)
display the same data as Figure 16. This exemplifies the algorithm provided formally
as Figure 15 in Section 6.1, with the exception that the raisability marks are not shown
here. Transducer approach: input on the left (c), output on the right (d). This algorithm
is provided formally in Section 2 (map ψ) and generalized to long up steps in Section 3
(map Ψp). Column (e) provides the walks homologous to those of column (d) under the
trivial bijection that exchanges and , and and .

the electronic journal of combinatorics 27(2) (2020), #P2.3 7

a
µ

m
hL hR
vL vR

χ

ā
(TR)

+1

α α
β β+1

1

(U1)

0

α α+1
β+1 β

2

(L2)

0

α α
0 0
1

(L1)

−1

α+1 α
β β

3

(D3)

−1

0 0
β+1 β

2

(D2)

−1

0 –
0 –
err.

(DE)

Figure 2: Transitions used to define the forward map φ: the letter m is read from the
input Motzkin word w; the letter χ is written to the output Yamanouchi word w̄. At the
top, the rows a and µ present alternate encodings of m under obvious bijections. At
the bottom, the row ā presents an alternate encodings of χ. A transition named (Xχ)
reads a letter m indicated by X: respectively , , , if X stands for U(p), L(evel),
D(own). With the exception of (DE), all transitions (Xχ) output the letter χ.

with value µ in {−1, 0,+1};

• m stands for a letter from the alphabet Σ1 := { , , };

• (hL, vL) and (hR, vR) are pairs of counters, from N2 (henceforth, we will simply say
“counter” for short, instead of “pair of counters”);

• χ stands for an integer from {1, 2, 3}.

The forward map φ converts a walk of the 3-step model H in the upper half plane
to a walk of the 3-step model Q in the quarter plane. To ease its definition, the map
is defined as a partial function of any word from S∗1 . This is convenient because the
construction potentially leads to an error. The map is defined in terms of the 6 forward
transitions (U1) to (DE) listed in Figure 2. Any application of (U1) to (D2) consumes
a letter a of the 3-step model as well as a counter (hL, vL) ∈ N2, and produces a new
counter (hR, vR) together with a letter ā of the 3-step model. The values of the counters
(hL, vL) and (hR, vR) in the boxes are given as patterns, where α and β have to be
viewed as matching nonnegative integers. So, for example, if the input step is and
the counters are (hL, vL), then we use transition (L2) if vL > 0 and (L3) if vL = 0. The
special transition (DE) results in an error, instead of producing a new counter and a new
letter. The triples of consumed letters a and patterns for hL and vL over all 6 boxes of
Figure 2 cover all possible input cases from S1 × N2.

Given a word w = w1 . . . wn ∈ S∗1 of length n, the forward transform φ(w) is now
defined as follows. Set (hLR

0 , vLR
0) = (0, 0). For i from 1 to n, find the only forward

transition that can be applied to the letter wi and the counter (hLR
i−1, v

LR
i−1). If this is (DE),

then φ is not defined at w. Otherwise, apply the transition to set (hLR
i , v

LR
i) to the

returned counter and w̄i to the returned letter. If the loop terminates without using the
transition (DE), then φ(w) is defined as w̄1 . . . w̄n.

the electronic journal of combinatorics 27(2) (2020), #P2.3 8

a
µ

m
hL hR
vL vR

χ

ā
(TR)

0

α α
0 0
1

(1L)

+1

α α
β β+1

1

(1U)

−1

0 0
β+1 β

2

(2D)

0

α α+1
β+1 β

2

(2L)

−1

α+1 α
β β

3

(3D)

Figure 3: Transitions used to define the backward map ψ. Each transition named (χX) is
the reverse of the transition named (Xχ) in Figure 2. The letter χ is read from the input
Yamanouchi word w̄; the letter m is written to the output Motzkin word w. Alternate
representations are as described in that figure.

The backward map ψ is defined similarly using the backward transitions (1L) to (3E)
listed in Figure 3, with the added simplicity that no error can occur. Applications of back-
ward transitions consume a letter ā and a counter (hR, vR), and produce a counter (h, v)
together with a letter a . Again, the triples (ā , hR, vR) cover all possible input cases from
S1 × N2. (For other models in future sections, we will not list the backward transitions
separately since they are the same boxes interpreted in reverse.)

Given a word w̄ = w̄1 . . . w̄n ∈ S∗1 of length n, the backward transform ψ(w̄) is now
defined as follows. Set (hRL

n , v
RL
n) = (0, 0). For i from n down to 1, find the only backward

transition that can be applied to the letter w̄i and the counter (hRL
i , v

RL
i), so as to define

a letter wi and a counter (hRL
i−1, v

RL
i−1). Then ψ(w̄) is defined as w1 . . . wn.

One can prove that, after calculating some φ(w), the last counter (hLR
n , v

LR
n) is (0, 0)

if and only if w is a Motzkin word. Likewise, after calculating some ψ(w̄), the last
counter (hRL

0 , vRL
0) is (0, 0) if and only if w̄ is a quarter-plane word. Also, one can prove

that if some (hLR
i , v

LR
i , w̄i) is the result of applying the forward transition (U1), then the

only backward transition that can be applied to this result, in a right to left process
having this specific letter w̄i at position i, is (1U). Like properties hold for all other
natural pairs of forward and backward transitions. The proof that φ and ψ are inverse
bijections between Motzkin words of M and quarter-plane words of Q follows from this
local reversibility property. We do not exhibit those proofs here as they will be seen as
special cases of the case of a general p in Section 3.

Because of an interpretation specific to the case p = 1 and in view of the generalization
to larger p in Section 3, the input and output letters are also given in the boxes in different
alphabets. Three-step walks in the upper half plane are in bijection with Motzkin words,
by replacing each with a , each with a , and leaving all ’s unchanged. The
letter m corresponding to a is given in the boxes, together with its vertical displace-
ment µ. Here, the letters are those for Motzkin walks, implying −1 6 µ 6 1, but the
bijection in Section 3 will use −1 6 µ 6 p, so this notation will be preferred. On the other
hand, the constraint on a 3-step walk to remain in the quarter plane leads to each prefix
of such a 3-step walk having more ’s than ’s and more ’s than ’s. Replacing

, , and respectively with 1, 2, and 3 puts walks in the quarter plane in bijection

the electronic journal of combinatorics 27(2) (2020), #P2.3 9

w

tr
h
v

w̄

U1
0
0
1

D2
0
1
2

U1
0
0
1

U1
0
1
1

D2
0
2
2

D2
0
1
2

L1
0
0
1

L1
0
0
1

U1
0
0
1

U1
0
1
1

L2
0
2
2

U1
1
1
1

L2
1
2
2

D3
2
1
3

L2
1
1
2

D3
2
0
3

L1
1
0
1

U1
1
0
1

D3
1
1
3

D2
0
1
2

L1
0
0
1

U1
0
0
1

D2
0
1
2

L1
0
0
1

L1
0
0
1

0
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25i

Figure 4: An example of a Motzkin walk w (letters m) and of a Yamanouchi word w̄
(letters χ), both of length 25, associated with one another by the maps φ and ψ. The row
marked ‘tr’ indicates the transitions used by the LR process, computing w̄ from w. For
the computation of w from w̄ by the RL process, each transition is replaced by its reverse
form, according to Figure 2.

0
1

2
3
4

5
67

11
1213

15
17
25 0

1
2
3
4

5
6
7
8
9
10

11
12

13
1516

22
23
24
25

Figure 5: Motzkin walk of Figure 4 interpreted as an upper-half-plane walk (left) and
Yamanouchi word of Figure 4 interpreted as a quarter-plane walk (right).

with Yamanouchi words. The bijection for p = 1 is thus essentially a bijection between
Motzkin words and Yamanouchi words using only 1s, 2s, and 3s.

Example 1. Figure 4 is an example of the bijection, expressed as a relation between
a Motzkin walk and a Yamanouchi word. The letters wi = m (at the top) have been
glued into a walk w. The corresponding letters w̄i = χ are given at the bottom, below
the counters h and v. The index i on the final row mark the “time” in the algorithmic
transformations. Specifically, the value of h, respectively, of v, in the same column as
a value of i are the values of hLR

i or hRL
i , respectively, of vLR

i or vRL
i , in our previous

description. Pay attention to how a value χ = w̄i appears between times i− 1 and i.
Interpreted as a bijection between walks in the 3-step models, the bijection maps the

upper-half-plane walk on the left of Figure 5 to the quarter-plane walk on the right. To
help the reader understand the order of these tangled walks, we have put the time of first
reach close to each position. This corresponds to the value of i in Figure 4. Additionally,
for the upper-half-plane walk, 8, 20 and 23 coincide with 2, 9 with 3, 10 with 4, 14 with 11,
16, 19 and 22 with 1, 18 with 15, 21 and 24 with 0; for the quarter-plane walk, 14, 17
and 20 coincide with 11, 19 with 10, 18 and 21 with 12.

An interesting property is made apparent by this example. Focus on those positions
between times i and i + 1 for which m = in the Motzkin walk and for which χ = 1
in the Yamanouchi word. In other words, consider i ∈ {6, 7, 16, 20, 23, 24}, but not i ∈
{10, 12, 14}. Then, we observe that the suffix of the quarter-plane walk for the position
at that time i never goes back to a lower abscissa than that of its vertex marked i. (On

the electronic journal of combinatorics 27(2) (2020), #P2.3 10

the other hand, this is not true for 10, 12, 14.) See the first point of Proposition 7.

The reader in need of an early intuition about our bijections between models with long
steps can compare Figure 4 (three-step model, p = 1) and Figure 11 (p = 5).

3 p-Tandem Walks

In this section, we generalize the bijections of Section 2 to general p > 1.

3.1 Construction of maps between Σ∗
p and S∗

p

For the description of the bijection for general p, we proceed to introduce transitions akin
to those for the case p = 1, but with two kinds of generalizations needed.

• The letters , , and , used to encode Motzkin words for p = 1 and also
represented by their y-coordinates (that is, their vertical displacements), respectively
as +1, 0, −1, need to be generalized to a set of p+ 2 letters µ, named by numbers
from −1 to p.

• The letters , , and , used for the 3-step quarter-plane model, need to be
generalized to another set of p+2 letters ā: the p+1 vectors (−`, p−`) for 0 6 ` 6 p,
together with the vector (1,−1). In the boxes of Figure 6, the parameter µ̄ is the
y-coordinate of ā. It also varies from −1 to p and could be used as another encoding.

• The parameter h ∈ N of the case p = 1 needs to be generalized to a word H over the
alphabet Ap consisting of the p(p−1)/2 letters a`,m for 0 6 `+m 6 p−1. For p = 1,
this alphabet reduces to a single letter a0,0, so that the values of H for p = 1 are
in natural bijection with the possible values of h ∈ N. This explains why a mere
integer was sufficient in Section 2.

We could find no better way to name the transitions in Figure 6 than simply naming
them from (T1) to (T8). We describe their meaning using the notation introduced by the
box (TG). There:

• µ is the y-coordinate of a letter (1, µ) of a Lukasiewicz word, that is, the vertical
displacement caused by it, with value in Σp := {−1, 0, 1, . . . , p};

• (HL, vL) and (HR, vR) are generalized counters, from A∗p×N where Ap is the alphabet
{a`,m : 0 6 `+m 6 p− 1};

• ā stands for a letter from the alphabet Sp := { , . . . , , . . . , , };

• µ̄ also stands for a letter from the alphabet Σp.

As in the definition of the forward map φ in Section 2, those transitions are used in
a forward manner to produce a counter (HLR

i , vLR
i) and a letter w̄i from a given letter wi

and a counter (HLR
i−1, v

LR
i−1). The procedure, given in Figure 7, explains how transitions are

the electronic journal of combinatorics 27(2) (2020), #P2.3 11

µ
HL HR
vL vR

ā

µ̄

side condition
(TG)

p
Λ Λ
β β+p

(0, p)

p

(T1)

q
Λ Λ
0 q

(0, p)

p

0 6 q 6 p− 1
(T2)

−1
Λa`,m Λ

0 `

(−m−1, p−m−1)

p−m− 1
`+m 6 p− 1

(T3)

−1
Λa`,m Λ
β+1 β+`+1

(−m−1, p−m−1)

p−m− 1
`+m = p− 1

(T4)

q
Λ Λaq,0
β+1 β

−1
0 6 q 6 p− 1

(T5)

−1
Λa`,m Λa`,m+1
β+1 β

−1
`+m 6 p− 2

(T6)

−1
ε ε

β+1 β

−1

(T7)

−1
ε –
0 –

err.

(T8)

Figure 6: Transitions used for the bijections for general p. When p = 1, (T3) and (T6)
disappear, and (T1), (T2), (T4), (T5), (T7), (T8), respectively, become (U1), (L1), (D3),
(L2), (D2), (DE), respectively, in Figure 2.

selected unambiguously. We prove that, given an input (wi, HLR
i−1, v

LR
i−1) from Σp×A∗p×N,

this procedure returns an output (HLR
i , vLR

i , w̄i) from A∗p × N× Sp, unless it applies (T8).
By inspection:
• w̄i is either (0, p), or (1,−1), or, at steps (3)(b) and (4)(b)(i), (−m− 1, p−m− 1)

for 0 6 m 6 p− 1− `. In all cases, w̄i is in Σp.

• vLR
i is the sum of one or two nonnegative integers, except at steps (2)(b), (4)(a),

and (4)(b)(ii), where is it vLR
i−1 − 1, for positive vLR

i−1. In all cases, vLR
i is in N.

• HLR
i is always a prefix of HLR

i−1, possibly augmented by a letter b: at step (2)(b), by
b = awi,0 when 0 6 wi 6 p− 1; at step (4)(b)(ii), by b = a`,m+1 when 0 6 ` + m 6
p− 2. In all cases, HLR

i is in A∗p.

the electronic journal of combinatorics 27(2) (2020), #P2.3 12

Input: (wi, HLR
i−1, v

LR
i−1) ∈ Σp × A∗p × N, where wi is the letter input in the

context of counters equal to (HLR
i−1, v

LR
i−1)

Output: (HLR
i , vLR

i , w̄i) ∈ A∗p × N × Sp, where w̄i is the letter output while
changing the counters to the value (HLR

i , vLR
i)

1. if wi = p, apply (T1) to return (HLR
i , vLR

i) = (HLR
i−1, v

LR
i−1 + p) and w̄i =

(0, p),
2. if wi > 0, then

(a) if vLR
i−1 = 0, apply (T2) to return (HLR

i , vLR
i) = (HLR

i−1, wi) and w̄i =
(0, p),

(b) otherwise, apply (T5) to return (HLR
i , vLR

i) = (HLR
i−1awi,0, v

LR
i−1−1) and

w̄i = (1,−1),
3. if vLR

i−1 = 0, then
(a) if HLR

i−1 = ε, apply (T8) and quit on error,
(b) otherwise, write HLR

i−1 = H ′a`,m, then apply (T3) to return
(HLR

i , vLR
i) = (H ′, `) and w̄i = (−m− 1, p−m− 1),

4. otherwise,
(a) if HLR

i−1 = ε, apply (T7) to return (HLR
i , vLR

i) = (ε, vLR
i−1 − 1) and

w̄i = (1,−1),
(b) otherwise, write HLR

i−1 = H ′a`,m, then
i. if `+m = p− 1, apply (T4) to return (HLR

i , vLR
i) = (H ′, vLR

i−1 + `)
and w̄i = (−m− 1, p−m− 1),

ii. otherwise, apply (T6) to return (HLR
i , vLR

i) = (H ′a`,m+1, v
LR
i−1− 1)

and w̄i = (1,−1).

Figure 7: One step of the LR process (ith step).

As in the case p = 1 of Section 2, we next define a (partial) map Φp from Σ∗p to S∗p .
Given an input word w = w1 . . . wn from Σ∗p, iterating the process above from the initial
counter (HLR

0 , vLR
0) = (ε, 0) results either in an error, or in a word w̄ = w̄1 . . . w̄n. In the

former case, Φp remains undefined at w, while in the latter case, Φp(w) is defined as w̄.
Likewise, as in the definition of the backward map ψ in Section 2, the transitions (T1)

to (T8) in Figure 6 are used in a backward manner to produce a counter (HRL
i−1, v

RL
i−1) and

a letter wi from a given letter w̄i and a counter (HRL
i , vRL

i). We provide the procedure in
Figure 8 to explain how transitions, meant to be applied backwards, are selected unam-
biguously. We prove that, given an input (HRL

i , vRL
i , w̄i) from A∗p×N×Sp, this procedure

returns an output (wi, HRL
i−1, v

RL
i−1) from Σp × A∗p × N. By inspection:

the electronic journal of combinatorics 27(2) (2020), #P2.3 13

Input: (HRL
i , vRL

i , w̄i) ∈ A∗p×N×Sp, where w̄i is the letter input in the context
of counters equal to (HLR

i , vLR
i)

Output: (wi, HRL
i−1, v

RL
i−1) ∈ Σp × A∗p × N, where wi is the letter output while

changing the counters to the value (HLR
i−1, v

LR
i−1)

1. if w̄i = (0, p), then
(a) if vRL

i 6 p − 1, apply (T2) to return (HRL
i−1, v

RL
i−1) = (HRL

i , 0) and
wi = vRL

i ,
(b) otherwise, apply (T1) to return (HRL

i−1, v
RL
i−1) = (HRL

i , vRL
i − p) and

wi = p,
2. if w̄i 6= (1,−1), write w̄i = (µ̄− p, µ̄) for µ̄ = p−m− 1, then

(a) if vRL
i =: ` 6 µ̄, apply (T3) to return (HRL

i−1, v
RL
i−1) = (HRL

i a`,m, 0) and
wi = −1,

(b) apply (T4) to return (HRL
i−1, v

RL
i−1) = (HRL

i aµ̄,m, v
RL
i − µ̄) and wi = −1,

3. if H = ε, apply (T7) to return (HRL
i−1, v

RL
i−1) = (ε, vRL

i + 1) and wi = −1,
4. otherwise, write HRL

i = H ′a`,m, then
(a) if m = 0, apply (T5) to return (HRL

i−1, v
RL
i−1) = (H ′, vRL

i +1) and wi = `,
(b) otherwise, apply (T6) to return (HRL

i−1, v
RL
i−1) = (H ′a`,m−1, v

RL
i + 1)

and wi = −1.

Figure 8: One step of the RL process ((n+ 1− i)th step).

• wi is either p or −1, or, at steps (1)(a) and (4)(a), an integer between 0 and p− 1.
In all cases, wi is in Σp.

• vRL
i−1 is either 0 or vRL

i + 1, or, at steps (1)(b) and (2)(b), of the form vRL
i − b in

situations where vRL
i > b. In all cases, vRL

i−1 is in N.

• HRL
i−1 is always a prefix of HRL

i , possibly augmented by a letter b: at step (2)(a),
by b = a`,m when 0 6 ` + m 6 µ̄ + m = p − 1; at step (2)(b), by b = aµ̄,m when
0 6 µ̄+m = p−1; at step (4)(b), by b = a`,m−1 when m > 1 and 1 6 `+m 6 p−1.
In all cases, HRL

i−1 is in A∗p.

As in the case p = 1 of Section 2, we next define a map Ψp from S∗p to Σ∗p as follows.
Given an input word w̄ = w̄1 . . . w̄n from S∗p , iterating the process above from the initial
counter (HRL

n , vRL
n) = (ε, 0) results in a word w = w1 . . . wn, and Ψp(w̄) is defined as w.

In Figure 9, we provide again, this time in usual set notation, the input and output sets
of the forward transitions (T1) to (T8) and of the corresponding backward transitions.
The careful reader will realize that the eight sets in the middle column form a partition of

the electronic journal of combinatorics 27(2) (2020), #P2.3 14

Input: (µ,HL, vL) Output: (HR, vR, µ̄)
from Σp ×A∗p × N from A∗p × N× Sp

(T1) {p} ×A∗p × N A∗p × (p+ N)× {(0, p)}
(T2) {0, . . . , p− 1} ×A∗p × {0} A∗p × {0, . . . , p− 1} × {(0, p)}
(T3) {−1} × (A∗p r {ε})× {0} A∗p ×

⋃p
j=1{0, . . . , p− j} × {(−j, p− j)}

(T4) {−1} ×
⋃
`+m=p−1A

∗
pa`,m × (1 + N) A∗p ×

⋃p
j=1(p− j + 1 + N)× {(−j, p− j)}

(T5) {0, . . . , p− 1} ×A∗p × (1 + N)
⋃p−1
`=0 A

∗
pa`,0 × N× {(1,−1)}

(T6) {−1} ×
⋃
`+m6p−2A

∗
pa`,m × (1 + N)

⋃p−2
`=0

⋃p−1−`
m=1 A∗pa`,m × N× {(1,−1)}

(T7) {−1} × {ε} × (1 + N) {ε} × N× {(1,−1)}
(T8) {−1} × {ε} × {0}

Figure 9: Partitioning the input and output sets of the forward and backward transitions.
For each column, the sets in the 8 rows partition the set given in the header.

0 5 10 15 20
0

5

10

w
0 5 10

0

5

10

w̄

Figure 10: An example of a Lukasiewicz walk w (left) and of the corresponding p-tandem
word w̄ (right), for p = 5 and length 21.

Σp×A∗p×N, while the seven sets in the right-hand column form a partition of A∗p×N×Sp.
Thus, the forward and backward procedures described above induce inverse bijections
between (Σp × A∗p × N) r {(−1, ε, 0)} and A∗p × N× Sp.

This local reversibility property and the constructions of Φp and Ψp immediately make
it possible to identify simple sets of words on which the restriction of Φp has a left inverse
given by Ψp, and on which the restriction of Ψp has a left inverse given by Φp. This is
made precise in the following proposition.

Proposition 2. If w ∈ Σ∗p is in the domain of definition of Φp, that is, if (T8) is
never used in the forward construction applied to w, and if additionally this construction
terminates with (HLR

n , vLR
n) = (ε, 0), thus defining some w̄ = Φp(w) ∈ S∗p , then Ψp is well

defined at w̄, with the property Ψp(w̄) = w, that is, Ψp(Φp(w)) = w.
Symmetrically, given w̄ ∈ S∗p , if the backward construction applied to w̄ terminates

with (HRL
0 , vRL

0) = (ε, 0), thus defining some w = Ψp(w̄) ∈ Σ∗p, then Φp is well defined
at w, with the property Φp(w) = w̄, that is, Φp(Ψp(w̄)) = w̄.

Example 3. Figure 10 provides an example for p = 5: on the left side, the 5- Lukasiewicz

the electronic journal of combinatorics 27(2) (2020), #P2.3 15

w 5 D D D 2 D D 1 D D 0 D 4 D D D 3 D D D D
tr T1 T7 T7 T7 T5 T6 T3 T5 T6 T3 T5 T3 T2 T7 T7 T7 T5 T3 T7 T7 T7
H ε ε ε ε ε a2,0a2,1 ε a1,0a1,1 ε a0,0 ε ε ε ε ε a3,0 ε ε ε ε

v 0 5 4 3 2 1 0 2 1 0 1 0 0 4 3 2 1 0 3 2 1 0
w̄ 5 D D D D D 3 D D 3 D 4 5 D D D D 4 D D D
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2
1433

191515444
202016161685555

21212117171717119966666V ε ε ε ε ε ε ε

Figure 11: Transduction corresponding to Figure 10 (top rows), augmented with the
stack to be used in Section 6.4 (bottom row). The letters µ in row w are the input to the
LR process as well as the output from the RL process. They give the Lukasiewicz walk w
as the succession of steps (1, µ), with D standing for −1. The letters µ̄ in row w̄ are the
output from the LR process, the input to the RL process. They give the p-tandem word w̄
as the succession of steps (µ̄−5, µ̄), or (1,−1) if µ̄ = D. The transitions used are indicated
by row tr. How they transform the generalized counters H and v is provided by two more
rows. Along this run, H remains either the empty word ε or is a word consisting of a
single letter a`,m. The last row provides the evolution of the stack V of the augmented
RL transducer process of Section 6.4, with pushes to the top of the depicted columns
(ε denoting the empty stack). Observe that the length of V constantly matches v.

walk

w = (5,−1,−1,−1, 2,−1,−1, 1,−1,−1, 0,−1, 4,−1,−1,−1, 3,−1,−1,−1,−1),

where each letter µ represents the step (1, µ); on the right side, the corresponding 5-
tandem walk, obtained by applying Φ5,

w̄ = (5,−1,−1,−1,−1,−1, 3,−1,−1, 3,−1, 4, 5,−1,−1,−1,−1, 4,−1,−1,−1),

where each letter µ̄ represents the step (µ̄ − 5, µ̄) if µ̄ > 0, and (1,−1) if µ̄ = −1.
Figure 11 provides the transitions used and the evolution of the counters H and v along
the construction of the 5-tandem walk from the 5- Lukasiewicz walk.

3.2 Parameters depending on the constructions, and their variations

The counters (H, v) of Section 3.1 (whether it be in LR or in RL form) are needed explicitly
for the constructions of Φp and Ψp. In Section 3.3, we will introduce further parameters
that could be computed, along with H and v, over the course of the constructions. Yet,
these parameters are only needed for proving properties of the constructions, which is why
they are not made part of the definition of the construction in the way that H and v are.
A notational difficulty in proofs is that we need to compare the counters, outputs, and

the electronic journal of combinatorics 27(2) (2020), #P2.3 16

parameters as computed by the left-to-right process Φp with those computed by the right-
to-left process Ψp, and in fact several sorts of variations in the parameters. We introduce
such variations in abstract in the present section, before defining specific parameters in
Section 3.3. (We will freely use the abbreviations LR and RL to refer to the two processes.)

We start with notation to distinguish the counters (H, v) and the words produced
by the two processes. Given a p- Lukasiewicz word w ∈ Σn

p , for any integer i satisfying
1 6 i 6 n we denote by H(w)

LR,i and v(w)
LR,i the values of H and v obtained by the LR process

after its ith step, that is, after using the letter wi from the input word w, and by w̄(w)
LR,i the

letter output at this step. Similarly, given a quarter-plane word w̄ ∈ Snp , for any integer i
satisfying 0 6 i 6 n− 1 we denote by H(w̄)

RL,i and v(w̄)
RL,i the values of H and v obtained by

the RL process after its (n− i)th step, that is, after using the letter w̄i+1 from the input
word w̄, and by w(w̄)

RL,i+1 the letter output at this step. To get total maps over 0 6 i 6 n, we
also set H(w)

LR,0 = H(w̄)
RL,n = ε and v(w)

LR,0 = v(w̄)
RL,n = 0. (Note that (H(w)

LR,i, v
(w)
LR,i) and (H(w̄)

RL,i, v
(w̄)
RL,i)

were respectively denoted (HLR
i , vLR

i) and (HRL
i , vRL

i) in Section 3.1.)
The parameters we are interested in depend on the words input to the constructing

processes, in Σ∗p for LR and in S∗p for RL, on the words output by the same processes,
in S∗p for LR and in Σ∗p for RL, as well as on the counter (H, v) at each step in the process.
So, we formally introduce a parameter q as a tuple (α, ᾱ, σ1, σ2) of monoid morphisms
with integer values. That is, we assume that the four maps satisfy formulas

α(w) =
i∑

j=1
α(wj), ᾱ(w̄) =

i∑
j=1

ᾱ(w̄j), σ1(H) =
i∑

j=1
σ1(ηi), σ2(v) = vσ2(1).

for all i ∈ N, w = w1 . . . wi ∈ Σi
p, w̄ = w̄1 . . . w̄i ∈ Sip, H = η1 . . . ηi ∈ Aip, and v ∈ N.

After fixing a length n for words, we associate two sequences to the parameter q, which
we name the values of q along the LR and RL processes, respectively:

• For a p- Lukasiewicz word w ∈ Σn
p and 0 6 i 6 n, the value q(w)

LR,i of q obtained after
i steps in the construction Φp is given, assuming no error occurs, as

q
(w)
LR,i = α(w1 . . . wi) + ᾱ(w̄(w)

LR,1 . . . w̄
(w)
LR,i) + σ1(H(w)

LR,i) + σ2(v(w)
LR,i).

• Similarly, for a quarter-plane word w̄ ∈ Snp and 0 6 i 6 n, the value q(w̄)
RL,i of q

obtained after n− i steps in the construction Ψp is given as

q
(w̄)
RL,i = α(w(w̄)

RL,i+1 . . . w
(w̄)
RL,n) + ᾱ(w̄i+1 . . . w̄n)− σ1(H(w̄)

RL,i)− σ2(v(w̄)
RL,i).

(Negative signs may look counter-intuitive. They relate to RL’s operating transi-
tions backwards.)

Observe that q(w)
LR,i may be undefined, as Φp may lead to error. It will be our goal to

relate q(w)
LR,i and q(w̄)

RL,i when w and w̄ are properly related by Φp and Ψp (and for suitable
parameters q).

Our plan is next to describe how parameters vary along the processes LR and RL, and
how (LR and RL) variations in parameters decompose into variations across transitions.
We first define two kinds of variation operators on parameters:

the electronic journal of combinatorics 27(2) (2020), #P2.3 17

• For a p- Lukasiewicz word w ∈ Σn
p and 0 6 i 6 j 6 n, the LR-variation in q is

defined as
∆(w)
i→jq = q

(w)
LR,j − q

(w)
LR,i,

which is equal to

α(wi+1 . . . wj) + ᾱ(w̄(w)
LR,i+1 . . . w̄

(w)
LR,j) + σ1(H(w)

LR,j)− σ1(H(w)
LR,i) + σ2(v(w)

LR,j − v
(w)
LR,i).

• Similarly, for a quarter-plane word w̄ ∈ Snp and 0 6 i 6 j 6 n, the RL-variation
in q is defined as

∆(w̄)
i←jq = q

(w̄)
RL,i − q

(w̄)
RL,j,

which is equal to

α(w(w̄)
RL,i+1 . . . w

(w̄)
RL,j) + ᾱ(w̄i+1 . . . w̄j) + σ1(H(w̄)

RL,j)− σ1(H(w̄)
RL,i) + σ2(v(w̄)

RL,j − v
(w̄)
RL,i).

An extreme case is obtained when i and j differ by 1, in which case

∆(w)
i−1→iq = α(wi) + ᾱ(w̄(w)

LR,i) + σ1(H(w)
LR,i)− σ1(H(w)

LR,i−1) + σ2(v(w)
LR,i − v

(w)
LR,i−1)

and

∆(w̄)
i−1←iq = α(w(w̄)

RL,i) + ᾱ(w̄i) + σ1(H(w̄)
RL,i)− σ1(H(w̄)

RL,i−1) + σ2(v(w̄)
RL,i − v

(w̄)
RL,i−1).

Given two (independent) words w and w̄ of same length n, it can happen that the ith
step of the LR process at w and the (n + 1 − i)th step of the RL process at w̄ use the
same transition (in reverse forms). That is, a possible situation is the existence of a tuple
τ = (µ,HL, vL, HR, vR, ā) satisfying

wi = w
(w̄)
RL,i = µ, H

(w)
LR,i−1 = H

(w̄)
RL,i−1 = HL, v

(w)
LR,i−1 = v

(w̄)
RL,i−1 = vL,

H
(w)
LR,i = H

(w̄)
RL,i = HR, v

(w)
LR,i = v

(w̄)
RL,i = vR, w̄

(w)
LR,i = w̄i = ā,

in which case ∆(w)
i−1→iq and ∆(w̄)

i−1←iq are equal. In such a situation, we call τ a transition
instance (or more specifically an instance of a named transition). We can then define the
variation in q across τ as the common value

∆τq = α(µ) + ᾱ(ā) + σ1(HR)− σ1(HL) + σ2(vR − vL).

Obviously, ∆τq depends on the 6-tuple τ , but neither on the location i of its use, nor
on the context of the entire p- Lukasiewicz walk or p-tandem quarter-plane walk being
processed. Furthermore, both ∆(w)

i→jq and ∆(w̄)
i←jq decompose as sums of ∆τq’s, for the

successive τ ’s set up by LR or RL.

the electronic journal of combinatorics 27(2) (2020), #P2.3 18

3.3 Specific parameters and some of their invariants

The specific parameters we are about to define are of two types: first, parameters on coun-
ters; second, parameters on input and output words. Our proofs will require parameters
that are linear combinations of the two types.

For the parameters on counters, we introduce three monoid morphisms from A∗p to N.
Namely, we define | · |, wt`, and wtm, by, respectively, |a`,m| = 1, wt`(a`,m) = ` + 1, and
wtm(a`,m) = m + 1 for each a`,m ∈ Ap. We obtain three parameters, named respectively
λ, ζ, and ξ, by setting α, ᾱ, and σ2 to the zero map, and defining σ1 by, respectively,

σ1(H) = |H|, σ1(H) = wt`(H), σ1(H) = wtm(H).

A fourth parameter depending on the counters, named v, is obtained by setting σ2 to the
identity and α, ᾱ, and σ1 to the zero map. We state the following proposition with no
reference to parameters, but it clearly expresses constraints for the first three parameters
above to cancel.

Proposition 4. For any H ∈ A∗p, the following four properties are equivalent: |H| = 0;
wt`(H) = 0; wtm(H) = 0; H = ε.

The simplest parameters depending on input and output words we use are given as
coordinates of the vertices of the walks. A first parameter, z, is obtained by setting
ᾱ = σ1 = σ2 = 0 and by defining α(µ) = µ for any letter µ ∈ Σp. Two parameters, x̄
and ȳ, respectively, are obtained by setting α = σ1 = σ2 = 0 and by defining ᾱ(ā) to be the
first coordinate ā1, respectively the second coordinate ā2 of any letter ā = (ā1, ā2) ∈ Sp.
In particular, for any p- Lukasiewicz word w ∈ Snp we have the formulas

(x̄(w)
LR,i, ȳ

(w)
LR,i) =

∑
16j6i

w̄
(w)
LR,j, z

(w)
LR,i =

∑
16j6i

wj,

so that the (i, z(w)
LR,i) form a walk that remains in the upper half plane, and the (x̄(w)

LR,i, ȳ
(w)
LR,i)

form a (free) p-tandem walk associated to w̄(w)
LR,1 . . . w̄

(w)
LR,n ∈ Σn

p . Another parameter,
named k̄, measures how far the p-tandem walk is from the main diagonal, and is obtained
by setting α = σ1 = σ2 = 0 and by defining ᾱ(ā) to be the difference ā2 − ā1, for any
letter ā = (ā1, ā2) ∈ Sp. Specifically,

k̄
(w)
LR,i = ȳ

(w)
LR,i − x̄

(w)
LR,i =

n∑
j=1

(
w̄

(w)
LR,j

)
2
−
(
w̄

(w)
LR,j

)
1
.

Note that, across one step in the LR process, the parameter k̄ either increases by p, if
the letter w̄(w)

LR,j is one of the (−j, p − j) for 0 6 j 6 p, or decreases by 2, if it is (1,−1).
We mimic this definition on the walk associated to w, by setting now ᾱ = σ1 = σ2 = 0
and by defining the monoid morphism α from Σ∗p to N defined by α(µ) = p if 0 6 µ 6 p
and α(−1) = −2. This defines a parameter, named k. Two additional parameters, which
we will need specifically for the analysis of the RL process, keep track of the cumulative

the electronic journal of combinatorics 27(2) (2020), #P2.3 19

amount by which the inequalities given below in (2) are strict. They can be understood
visually by noting that under most transitions, ȳ and v move in parallel, as do x̄ and ξ.
The parameters we want, named r̄ and s̄ below, are the shifts separating the two parallel
functions in each case. More precisely, define a parameter r̄ by setting

α(µ) = 0, ᾱ(ā) = ā1, σ1(H) = −wtm(H), σ2(v) = 0.

Similarly, define a parameter s̄ by setting

α(µ) = 0, ᾱ(ā) = ā2, σ1(H) = 0, σ2(v) = −v.

Thus, the following formulas hold for w̄ ∈ S∗p :

r̄
(w̄)
RL,i = x̄

(w̄)
RL,i − ξ

(w̄)
RL,i, s̄

(w̄)
RL,i = ȳ

(w̄)
RL,i − v

(w̄)
RL,i. (1)

It will prove convenient in what follows to write identities like the last one in a more
compact, while more general, form. To this end, remember that our parameters are de-
fined through morphisms to Z. Thus, the operations in Z of addition, subtract, and
multiplication by an integer, transpose in an obvious manner into operations on mor-
phisms, then into operations on parameters. For instance, we could have defined r̄ and s̄
as differences of parameters, via the formulas r̄ = x̄−ξ and s̄ = ȳ−v. These conveniently
suggest the identities (1), as well as similar identities for the RL process and for variations.

The variations along the walks in the parameters introduced so far depend only on the
transition instance τ = (µ,HL, vL, HR, vR, µ̄), so we can define and calculate ∆τ for each
of them. As it turns out, the variations actually do not depend on the specific transition
instance τ , but simply on the transition, one of (T1) to (T8). The results are given in the
table in Figure 12.
Proposition 5. For each τ and ∆ = ∆τ , the following inequalities and equalities hold:

∆x̄ > ∆ξ, ∆ȳ > ∆v, (2)
∆z = ∆ζ + ∆v, ∆k −∆k̄ = (p+ 2)∆λ, (3)

∆x̄ = ∆r̄ + ∆ξ, ∆ȳ = ∆s̄+ ∆v. (4)

Additionally, the inequalities (2) are strict in precisely the following circumstances:
• ∆τ x̄ > ∆τξ only if τ is an instance of (T7), implying HL = HR = ε;

• ∆τ ȳ > ∆τv only if τ is an instance of (T2) or (T3), implying vL = 0.
Proof. By inspection of the table. (The equalities of (4) are really just restatements of
the definitions of r̄ and s̄.)

Since these quantities depend only on the transitions, we also have that for given
w ∈ Σ∗p, w̄ ∈ S∗p , and 0 6 i 6 j 6 n, the variations ∆(w)

i→j and ∆(w̄)
i←j are sums of ∆τ ’s

operating on the letters of w and w̄. It follows by induction that the two equalities and
two inequalities in (2) and (3) still hold for ∆ = ∆(w)

i→j and ∆ = ∆(w̄)
i←j.

Observe that ∆r̄ and ∆s̄ are both nonnegative for all choices of ∆ as a ∆τ , a ∆(w)
i→j,

or a ∆(w̄)
i←j, provided i < j.

the electronic journal of combinatorics 27(2) (2020), #P2.3 20

τ inst. of (T1) (T2) (T3) (T4) (T5) (T6) (T7)
∆τ x̄ 0 0 −m− 1 −m− 1 1 1 1
∆τ ȳ p p p−m− 1 p−m− 1 −1 −1 −1
∆τz p q −1 −1 q −1 −1
∆τv p q ` ` −1 −1 −1
∆τλ 0 0 −1 −1 1 0 0
∆τζ 0 0 −`− 1 −`− 1 q + 1 0 0
∆τξ 0 0 −m− 1 −m− 1 1 1 0
∆τk p p −2 −2 p −2 −2
∆τ k̄ p p p p −2 −2 −2
∆τ r̄ 0 0 0 0 0 0 1
∆τ s̄ 0 p− q p−m− 1− ` 0 0 0 0

hypothesis p− 1 > q p−m− 1 = ` p−m− 2 > `
p−m− 1 > ` p− 1 > q

Figure 12: Variations in the parameters across the transitions defined in Figure 6 for the
bijections between p- Lukasiewicz and p-tandem walks.

3.4 Properties of the constructed walks

Theorem 6. The map Φp is a bijection between p- Lukasiewicz walks and p-tandem walks
that preserves the total number of steps, maps k to k̄, and maps the number of −1 steps
to the number of steps. The map Ψp is the inverse bijection.

Proof. We first prove that Φp maps prefixes of p- Lukasiewicz walks to quarter-plane walks
and that applying Φp to a p- Lukasiewicz walk in its entirety results in (v,H) = (0, ε) at
the end of the algorithm.

To this end, again take w ∈ Σn
p and w̄ = Φp(w), both of length n.

Note that we have the initial conditions x̄(w)
LR,0 = ȳ(w)

LR,0 = z(w)
LR,0 = v(w)

LR,0 = k(w)
LR,0 = k̄(w)

LR,0 =
λ(w)

LR,0 = 0. By (2) we have for all i that ∆(w)
i−1→ix̄ > ∆(w)

i−1→iξ. Summing this with the initial
conditions we get that for all i

x̄
(w)
LR,i > ξ

(w)
LR,i.

Arguing likewise from (2) and (3) we have

ȳ
(w)
LR,i > v

(w)
LR,i, z

(w)
LR,i = ζ

(w)
LR,i + v

(w)
LR,i, k

(w)
LR,i − k̄

(w)
LR,i = (p+ 2)λ(w)

LR,i.

A first consequence is that ȳ(w)
LR,i and x̄(w)

LR,i are nonnegative for all i, as they are both
bounded below by lengths, and so the p-tandem walk associated to w̄ remains in the
quarter plane. Second, z(w)

LR,i is the sum of two nonnegative integers, and more precisely
z(w)

LR,i = 0 if and only if (ζ(w)
LR,i, v

(w)
LR,i) = (0, 0). As a consequence, by Proposition 4, w is a p-

 Lukasiewicz word if and only if the construction of w̄ = Φp(w) ends with H = ε and v = 0.
Additionally, if w is a p- Lukasiewicz word, then w = Ψp(Φp(w)) by the remark at the end
of Section 3.1. Finally, also λ(w)

LR,n = 0, because H(w)
LR,n = ε, and so

k(w)
LR,n = k̄(w)

LR,n. (5)

the electronic journal of combinatorics 27(2) (2020), #P2.3 21

Next we will prove that Ψp maps quarter-plane walks in S∗p to suffixes of p- Lukasiewicz
walks and that we have (H, v) = (ε, 0) at the end of the algorithm. To this end, now take
w̄ ∈ S∗p and w = Ψp(w̄), both of length n.

By (3) we have for all i that

∆(w̄)
i←i+1z = ∆(w̄)

i←i+1ζ + ∆(w̄)
i←i+1v.

Next, summing we get that z(w̄)
RL,i is a sum of nonnegative terms and so is nonnegative for

all i. Thus every suffix of w remains in the upper half plane.
Next consider r̄(w̄)

RL,i and s̄(w̄)
RL,i. All the entries for r̄ and s̄ in the table are nonnegative

and so r̄(w̄)
RL,i > r̄(w̄)

RL,j for i 6 j, and likewise for s̄(w̄)
RL,i. In other words, r̄(w̄)

RL,i and s̄(w̄)
RL,i

are weakly decreasing as functions of i. Consequently r̄(w̄)
RL,0 is the maximum value of

{r̄(w̄)
RL,i : 0 6 i 6 n}. Let j be maximal such that r̄(w̄)

RL,j = r̄(w̄)
RL,0. As observed in the previous

section, r̄(w̄)
RL,i can only change under transition (T7) and the stack must be empty for this

transition. Thus the choice of j implies by Proposition 4 that ξ(w̄)
RL,j = 0. By definition

of r̄, for the remainder of the algorithm, from index j down to index 0, x̄(w̄)
RL,j′ and ξ(w̄)

RL,j′

move in parallel with a fixed shift of r̄(w̄)
RL,0.

At the end of the algorithm, Ψp has consumed all of w̄ from its end to its beginning,
and so we have x̄(w̄)

RL,0 = 0. Since w̄ is a quarter-plane walk, x̄(w̄)
RL,j > 0, and by the previous

paragraph x̄(w̄)
RL,j − ξ(w̄)

RL,j = r̄(w̄)
RL,0 = x̄(w̄)

RL,0 − ξ(w̄)
RL,0. We get that

ξ
(w̄)
RL,0 = x̄

(w̄)
RL,0 − x̄

(w̄)
RL,j + ξ

(w̄)
RL,j = −x̄(w̄)

RL,j 6 0.

However m-weight is always nonnegative and hence ξ(w̄)
RL,0 = 0 and so, by Proposition 4,

H is empty at the end of the process.
We can make an analogous argument with ȳ in place of x̄ and v in place of wtm(H).

Specifically, now let j be maximal such that s̄(w̄)
RL,j = s̄(w̄)

RL,0. Since s̄ can only change under
transitions (T2) and (T3), v(w̄)

RL,j = 0. For the remainder of the algorithm, from index j
down to index 0, ȳ(w̄)

RL,j′ and v(w̄)
RL,j′ move in parallel with a fixed shift of s̄(w̄)

RL,0. We have
ȳ(w̄)

RL,0 = 0, and, since w̄ is a quarter-plane walk, ȳ(w̄)
RL,j > 0. Additionally, by the definition

of j, ȳ(w̄)
RL,j − v(w̄)

RL,j = ȳ(w̄)
RL,0 − v(w̄)

RL,0 and so we get v(w̄)
RL,0 = −ȳ(w̄)

RL,j 6 0. However, v is always
nonnegative so v(w̄)

RL,0 = 0.
From all this we conclude that (H, v) = (ε, 0) after applying Ψp to w̄ and that z(w̄)

RL,0 = 0.
Thus w is a p- Lukasiewicz word and w̄ = Φp(Ψp(w̄)).

Therefore for each n, Φp and Ψp are mutually inverse bijections between p- Lukasiewicz
walks of length n and quarter-plane walks in Snp .

Finally, by (4), k(w̄)
RL,i − k̄(w̄)

RL,i = (p + 2)λ(w̄)
RL,i, and λ(w̄)

RL,0 = 0 and so k(w̄)
RL,0 = k̄(w̄)

RL,0. Re-
membering (5), this tells us that Φp and Ψp, convert k to k̄ and vice versa. Additionally,
since −1 (respectively) is the only step that decreases k (respectively k̄) and all the
other steps increase k (respectively k̄) by the same amount p+ 2, we also obtain that Φp

and Ψp take the number of −1 steps to the number steps in the walks and vice versa.

Many interesting consequences can be read off of the observations we have made so
far. We collect a few in the following proposition.

the electronic journal of combinatorics 27(2) (2020), #P2.3 22

Proposition 7.

• A lower bound on the minimum y-value of the suffixes of the quarter-plane walk is
obtained as follows: each time transition (T2) or transition (T3) with p−m−1 > `
is used, the lower bound on the minimum for the suffix from after this step to the
end is increased at least by p− q > 0 (for (T2)) or p−m− 1− ` > 0 (for (T3)).

• A lower bound on the minimum x-value of the suffixes of the quarter-plane walk
is obtained as follows: each time transition (T7) is used, the lower bound on the
minimum for the suffix from after this step to the end is increased at least by 1.

• If a p- Lukasiewicz walk w returns to the x-axis after i letters, thus factoring into
two p- Lukasiewicz walks, write w = w1w2 for a left factor of length i. Then Φp(w) is
the concatenation of Φp(w1) and Φp(w2).

Note that in the case p = 1, transition (T3) does not exist and transition (T2) be-
comes (L1). Consequently, the first item of the proposition explains the observation at
the end of Example 1.

Yeats [17, Proposition 2.4] has given the result analogous to the second point in the
six-step model. The converse to the third point is also true, but this is easier to see from
the raising description and so the proof will be postponed to Section 6.

Proof. From Proposition 5, we have ∆ȳ = ∆s̄+ ∆v. Intuitively, this means that ȳ and v
move in parallel except when s̄ is nonzero. From the table in Figure 12 we see that s̄ is
nonzero precisely for transition (T2) and transition (T3) with p−m− 1 > `, and when s̄
is nonzero it is positive. Finally, by the Lukasiewicz property, v > 0, therefore s̄ gives a
lower bound as described in the first item of the statement.

Similarly, from Proposition 5, we have ∆x̄ = ∆r̄ + ∆ξ, so intuitively x̄ and ξ move in
parallel except with r̄ is nonzero. From the table in Figure 12 we see that r̄ is nonzero
precisely for transition (T7) where it has value 1. Finally, ξ is a weight on H and so is
always nonnegative, therefore r̄ gives a lower bound as described in the second item of
the statement.

For the third point, since w1 is a p- Lukasiewicz walk, then as in the proof of Theorem 6,
we have (v,H) = (0, ε) after i steps of the LR process for Φp. Consequently, when the
process moves beyond length i it cannot remember anything from the prefix, as the only
internal state is v and H, both of which have been returned to their initial situation.
Therefore the same steps are outputted when Φp acts on the steps of w2 as part of w as
when Φp acts on w2 as a p- Lukasiewicz walk in its own right. The second point follows.

4 Six-step model

Let us consider now the 6-step model, that is we return to the case p = 1 and consider
augmenting the step set with the steps’ flips through the line y = x.

Figure 13 provides the forward transitions with their flips for the 6-step model. They
include a first copy of the rules (U1) to (DE) of the model for p = 1 in the top row and

the electronic journal of combinatorics 27(2) (2020), #P2.3 23

µ

m
hL hR
vL vR

s̄
(TR)

+1

α α
β β+1

(U1)

0

α α+1
β+1 β

(L2)

0

α α
0 0

(L1)

−1

α+1 α
β β

(D3)

−1

0 0
β+1 β

(D2)

−1

0 –
0 –
err.
(DE)

+1

α α+1
β β

(U1′)

0

α+1 α
β β+1

(L2′)

0

0 0
β β

(L1′)

−1

α α
β+1 β

(D3′)

−1

α+1 α
0 0

(D2′)

−1

0 –
0 –
err.
(DE′)

Figure 13: Transitions used for the 6-step model. The first row is a copy of Figure 2 with
“solid” input letters. The second row is a copy of Figure 2 with “striped” input letters,
output letters flipped around the main diagonal, and roles of counters exchanged.

(U1) (U1′) (L2) (L2′) (L1) (L1′) (D3) (D3′) (D2) (D2′)
∆x̄ 0 1 1 −1 0 1 −1 0 1 −1
∆ȳ 1 0 −1 1 1 0 0 −1 −1 1
∆z 1 1 0 0 0 0 −1 −1 −1 −1
∆h 0 1 1 −1 0 0 −1 0 0 −1
∆v 1 0 −1 1 0 0 0 −1 −1 0
∆k 1 1 1 1 1 1 −2 −2 −2 −2
∆k̄ 1 −1 −2 2 1 −1 1 −1 −2 2
∆r̄ 0 0 0 0 0 1 0 0 1 0
∆s̄ 0 0 0 0 1 0 0 0 0 1

Figure 14: Variations in the parameters across the transitions defined in Figure 13 for
the 6-step model.

a second copy of the same rules with output letters flipped around the main diagonal
in the bottom row. To distinguish between the two sets, the input letters now come
in two colours. The interpretation of the notation used in the boxes is the following:
µ is from {−1,0,+1,−1, 0,+1}; m stands for a letter from the alphabet Σ1,bicol :=
{ , , , , , }; (hL, vL) and (hR, vR) are counters, again from N2; s̄ stands for
a letter from S1,sym = { , , , , , }. We will call the steps , , solid and
the steps , , striped, and the walks made of these steps we will call bicoloured.

Define Φ1,sym and Ψ1,sym by the following transitions as in Section 2 or Section 3.1.
Inspecting the transitions we see that the forwards and backwards input sets of the

transitions partition the forwards and backwards input spaces and the outputs and pa-
rameters lie in the correct sets. We can define the same parameters as in Section 3.3 and
capture how these parameters change in the table in Figure 14.

the electronic journal of combinatorics 27(2) (2020), #P2.3 24

Inspecting the table we see

∆z = ∆h+ ∆v, ∆x̄ = ∆h+ ∆r̄, ∆ȳ = ∆v + ∆s̄,
∆x̄ > ∆h and ∆x̄ > ∆h =⇒ h = 0,
∆ȳ > ∆v and ∆ȳ > ∆v =⇒ v = 0.

Then, using these equalities and inequalities, the proof that the maps give a bijection
between bicoloured Motzkin paths and quarter-plane walks in S1,sym proceeds as in the
unsymmetrized case.

This bijection answers a question of Bousquet-Mélou and Mishna (see [5, Section 7.1,
item 2]); this is encapsulated in the following theorem. The question was first answered
in a more complicated way in [17]. We will use the notation M(n) and Mbicol(n) for the
classes of Motzkin and bicoloured Motzkin paths with n steps, Q(n) for 1-tandem walks
with n steps, Qsym(n) for quarter-plane walks with n steps each in S1,sym and 2[n] for the
powerset of {1, 2, . . . , n}.
Theorem 8. The map Φ1,sym is a length-preserving bijection between bicoloured Motzkin
paths and quarter-plane walks with steps in S1,sym. The map Ψ1,sym is the inverse bijection.

With the notation as described above, the chain of bijections

Qsym(n) Ψ1,sym−−−→Mbicol(n) ∼=M(n)× 2[n] Φ1×id−−−→ Q(n)× 2[n]

explains combinatorially why |Qsym(n)| = 2n|Q(n)|.
To say the same thing in a slightly different way, if f is the map forgetting the

colouring then Φ1 ◦ f ◦ Ψ1,sym gives a combinatorially defined 2n-to-1 map from quarter-
plane walks with steps in S1,sym to quarter-plane walks with steps in S1 explaining
|Qsym(n)| = 2n|Q(n)|.

Our answer to the question of Bousquet-Mélou and Mishna, while now fully combi-
natorial, still goes through Motzkin paths as intermediate objects. We can nevertheless
understand some things about the composition directly without this intermediary. Fol-
lowing the definition of Ψ1,sym we see that steps , , and map to solid letters and

, , and map to striped letters. Carrying solid and striped as “colours” though Φ1
to obtain coloured quarter plane walks in S1, we see that output steps which came from
input steps in S1 have the solid colour while output steps which came from the reflection
of S1 have the striped colour. So the colours in the output remember which half of the
step set the input steps came from.

From the definition of the maps one can immediately observe that Ψ1,sym restricted to
those 6-step walks which happen to only use steps of S1 agrees with Ψ1 after colouring
the output of Ψ1 solid. Additionally, Ψ1,sym restricted to those 6-step walks which only
use steps not in S1 agrees with Ψ1 applied to the reflection of the walk after colouring
the output of Ψ1 striped. This was part of the initial motivation: we were looking for a
generalization that extended Ψ1 and that also extended Ψ1 applied to the reflection for
walks purely not using S1 steps. Returning to the context of the question of question of
Bousquet-Mélou and Mishna this implies that Φ1 ◦f ◦Ψ1,sym is the identity on those walks
with only steps in S1 and is reflection through y = x on those walks with no steps in S1.

the electronic journal of combinatorics 27(2) (2020), #P2.3 25

5 Alternate interpretation via automata

It was said in the introduction that the bijections we introduce in the present work take
their origin in automata theory. Yet, no explicit automaton is provided in Sections 2–4,
where we used a notation by “boxes”. In this section, we show that boxes are just a
rephrasing of the transitions in an automaton, the only essential difference being that a
single one of our boxes will usually pack a number of transitions of an automaton. We
refer the reader to [1, 13, 16] for a detailed introduction to automata theory, and we follow
the first of these references for the terminology. More accurately, our maps φ, ψ, Φp, Ψp,
Φ1,sym, Ψ1,sym turn out to be the transductions realized by pushdown transducers (see [1,
Section 5.4]), with the slight extension that our automata/transducers use two stacks (not
just one).

We now give an explicit description of the transducer to transform Motzkin walks to
tandem walks (case p = 1). We fix an input alphabet A = Σ1 = { , , }, an output
alphabet B = S1 = { , , }, a finite set of states Q = {q} (in fact a singleton),
a set of accepting states F = Q (that is, we want all states to be accepting), a stack
alphabet common to both stacks Z1 = Z2 = {o, ι}, an internal starting configuration
i = (q, o, o) ∈ Q × Z∗1 × Z∗2 (of the associated pushdown machine), and a set of internal
accepting configurations K = F × {ε} × {ε} ⊂ Q × Z∗1 × Z∗2 . We will also shortly fix
a finite set of transition rules γ ⊂ (A ∪ {ε}) × Q × Z1 × Z∗1 × Z2 × Z∗2 × Q × B∗, after
which collecting those sets into the tuple T = (A,Q,Z1, Z2, B, i,K, γ) will describe a
pushdown transducer over A. As is traditional, an automaton is pictorially described as
an oriented graph whose vertices are the elements of Q (states), with transition rules given
by a labeling of edges. This labeling takes the form “s; t1/T1, t2/T2; s′”, which really
denotes a 6-tuple (s, t1, T1, t2, T2, s

′) ∈ A×Z1×Z∗1 ×Z2×Z∗2 ×B. In our transducers, all
possible transitions are from state q to itself. A computation by the underlying pushdown
machine thus consists of a succession of transitions. Each transition operates in a well-
defined manner. If the machine inputs a letter s ∈ A when the internal configuration
has t1 as top letter of the first stack and t2 as top letter of the second stack, then it
replaces the top letter t1 by the word T1 and the top letter t2 by the word T2, before
outputting the letter s′ ∈ B. We will make sure that no stack will ever become empty
and that their contents encode natural integers in unary: some m ∈ N will correspond
to a stack consisting of an o (at the bottom), followed by m copies of ι (towards the
top). More precisely, the first, respectively second, stack will represent the counter h,
respectively the counter v. So the variations of counters will be be encoded in one of
three forms: ι/ε for a decrement by 1; o/o and ι/ι for no variation; o/oι and ι/ιι for an
increment by 1. This leads to a set γ containing the following 11 transition rules:
• ; o/oι, o/o; , ; o/oι, ι/ι; , ; ι/ιι, o/o; , ; ι/ιι, ι/ι; ,

• ; o/o, o/o; , ; o/o, ι/ι; , ; ι/ε, o/oι; , ; ι/ε, ι/ιι; ,

• ; ι/ε, o/o; , ; o/o, ι/ε; , ; ι/ι, ι/ε; .
Observe the absence of a transition rule of the form ; o/T1, o/T2; s′, which would
correspond to the box with an error in Section 2: not listing any such transition rule

the electronic journal of combinatorics 27(2) (2020), #P2.3 26

makes a computation on input and internal configuration (q, o, o) impossible by the
underlying pushdown machine. The reader will easily identify the transduction realized
by the machine just introduced as the map φ of Section 2.

For general p as well as for the reflected p = 1 case, we change some of the ingredients
defining the previous transducer T. In the first situation, the input alphabet, output
alphabet, and the alphabet for the first stack are

A = Σp = {−1, 0, 1, . . . , p}, B = Sp = { , . . . , , . . . , , },
Z1 = {o} ∪ Ap = {o} ∪ {a`,m : 0 6 `+m 6 p− 1}.

In the second situation, the input and output alphabets are

A = Σ1,bicol = { , , , , , }, B = S1,sym = { , , , , , },

and the alphabet for the first stack is unchanged. We will not go here into the details
of the corresponding redefinitions for the sets γ of transition rules. We only provide one
example, the encoding of the rule (T6): this single box gets expanded into the (p− 1)p/2
transition rules −1; a`,m/a`,m+1, ι/ε; −1, one for each pair (`,m) satisfying `+m 6 p−2.

6 Alternate interpretation via raising

So far, we have provided descriptions of algorithms by transducers that map several classes
of quarter-plane walks starting at the origin to related classes of walks in the upper half
plane returning to the x-axis. Those maps are described in terms of the alphabet and
notation given in Section 1.1, which we repeat here for convenience and to make the
present section more independent from the rest. Specifically:

• In Section 2, the map ψ (also denoted Ψ1) converts an input (classical) tandem
walk with steps from S1 = { , , } into a Motzkin walk using steps from
Σ1 = {−1, 0,+1} ' { , , }.

• In Section 3, the map Ψp converts an input (general) p-tandem walk with steps
from Sp = { , . . . , , . . . , , } into a p- Lukasiewicz walk using steps from Σp =
{−1, 0, 1, . . . , p}.

• In Section 4, the map Ψ1,sym converts an input walk with steps from the symmetrized
step set S1,sym = { , , , , , } into a bicoloured Motzkin walk using steps
from Σ1,bicol = {−1,0,+1,−1, 0,+1} ' { , , , , , }, with colours that
we name “solid” and “striped”.

There is another interpretation of our maps, ψ,Ψp,Ψ1,sym, from quarter-plane walks to
Motzkin, Lukasiewicz, and bicoloured Motzkin walks. This other interpretation builds
the output half-plane walk by, at each stage of the construction, adding a new step at
the end and sometimes raising a past step. In this interpretation, stopping the process
after dealing with a prefix of a quarter-plane walk results in exactly the action of the full

the electronic journal of combinatorics 27(2) (2020), #P2.3 27

process on that shorter-length walk. Thus the smaller words constructed along the way
will not be prefixes of the ultimately constructed half-plane walk, and the approach can
no longer be implemented in a single pass. However, it allows us to define the map ψ by
reading the quarter-plane walk from left to right instead of from right to left. Additionally
it has a prefix property that is reminiscent of the work by Bousquet-Mélou, Fusy, and
Raschel [4]: the process really constructs a sequence of half-plane walks that all return to
the x-axis, one for each length up to the total length of the input quarter-plane walk.

In the p = 1 case and the reflected p = 1 case, the same maps as those we constructed
in Sections 2 and 4 have been defined (albeit in a difficult-to-read way) using this raising
perspective in [17]. The extension of this raising idea to the p > 1 case is new and will
be presented in Section 6.4.

The decision of which past step to raise requires knowing whether past steps can be
raised. This cannot be determined simply by looking at past steps, as for instance for
p = 1 a past step 0 could have been raised from −1 in which case it is no longer available
to be raised or it may have been originally added to the word as a 0 in which case it has
not yet been raised and is available for raising. To keep track of this information, over the
course of the construction each Motzkin, Lukasiewicz, or bicoloured Motzkin step carries
the additional information of whether it can still be raised, and then this additional data
is discarded at the end of the construction. For the p = 1 and the flipped p = 1 cases, it
is not necessary to carry this extra information provided the algorithm is allowed to look
back at previous steps in the quarter-plane walk. This is discussed further below.

In the p > 1 case we additionally need to keep track of a pairing between certain steps.
Again this information is discarded at the end of the algorithm.

6.1 Raising in the 3-step model

To make the idea clear first in the simplest case, consider the 3-step model one more time.
It is clearer and easier to generalize to p > 1 if, for the duration of the algorithm, we
augment the output alphabet so as to include the raisability of the steps. Thus for the
duration of the algorithm we will have 5 possible letters in the output word. These will
be for a in the Motzkin path that is not raisable and for one that is raisable.
Similarly there will be for a in the Motzkin path that is not raisable and for
one that is raisable. The fifth letter in the alphabet will be since such steps are never
raisable. At the end of the algorithm we forget the extra information and so project onto
the smaller alphabet { , , } in order to get a Motzkin path.

Given a quarter-plane walk in S∗1 written as a sequence of steps ā1ā2 . . . ān, the pro-
cedure in Figure 15 computes a sequence of words, M0 to Mn, by successively obtaining
each Mi (of length i) from āi and Mi−1. The parsings of Mi−1 required in (2)b and (2)c
are always possible by the quarter-plane property. Note that steps added in case (2)c
cannot be raised and no step can be raised more than once.

In the language of [17] a step that is raisable is marked and a step that is not raisable is
unmarked. Alternately, we can determine whether a step can be raised without enlarging
the alphabet with • by looking at which āj created the step. This can be done in the

the electronic journal of combinatorics 27(2) (2020), #P2.3 28

Input: a quarter-plane walk written as a word ā1ā2 . . . ān in S∗1

Output: a Motzkin walk written as a word in Σ∗1

1. Set M0 := ε.
2. For i from 1 to n:

(a) If āi = , then Mi := Mi−1 .
(b) If āi = then write Mi−1 = w w′ where w′ is free of , and set

Mi := w w′ .
(c) If āi = then write Mi−1 = w w′ where w′ is free of and set

Mi := w w′ .
3. Remove all • from Mn and return the result.

Figure 15: Algorithm by raisings in the 3-step model [17].

following way: Let m(i)
j be the jth step in Mi (with no •), then

• if m(i)
j = and āj = then m(i)

j can still be raised while if m(i)
j = and āj =

then m
(i)
j has been raised and so can no longer be raised;

• if m(i)
j = and āj = then m(i)

j can still be raised while if m(i)
j = and āj =

then m
(i)
j can never be raised; and

• if m(i)
j = then āj = and m

(i)
j has been raised and so can no longer be raised.

It turns out that this procedure is an alternate realization of the map ψ from Section 2.
See Figure 16 and the related Figure 1 for an example.

It is useful to sketch a proof that the map defined above is ψ because this explains
how the idea of raising relates to the transitions that define ψ. To know what step will be
in location i in the final output, it suffices to know what step āi is and to know whether
or not the letter first output to this location i will have to be raised at some later stage.
Whether or not it will be raised is determined by which steps come later in the input,
when read forward. In particular every āj = must raise a step that came from some
āi = with i < j and every āj = must raise a step that came from some āi = with
i < j. In both cases they raise the most recent such steps. If we read the quarter-plane
walk in the reverse direction, that is, backwards, we already have the information about
whether mi will need to be raised or not when we get to it. Specifically, we only need to
count steps and steps (these cause raisings) and subtract these amounts from the
counts for and steps, respectively (these get raised). This is exactly what h and v
are doing in the original definition of ψ. The cases based on h and v give the raised and
unraised options for the different input steps.

the electronic journal of combinatorics 27(2) (2020), #P2.3 29

7→ 7→ 7→ 7→ 7→

7→ 7→ 7→

7→

Figure 16: An example of the raising process describing the map ψ on the 3-step model,
applied to the word w̄ = . Note that we could represent all the
Motzkin paths in a manner similar to Figure 22: in informal words, each Motzkin path
is ‘above’ all previous ones. Compare with columns (a) and (b) in Figure 1.

The proof in [17] that the map is bijective is both more complicated and more unpleas-
ant than the proofs of this paper, illustrating one of the benefits of our transition-based
single pass construction. None-the-less the raisings can be a helpful reformulation for
visualizing the map, and explains how to implement ψ while stepping forward through
the quarter-plane walk, rather than backward as with the RL transducer algorithm.

6.2 Freedom of pairing and comparison with Eu, Fu, Hou, and Hsu

Observe that knowing whether or not a step will be raised is sufficient to determine the
output word, but it is less information than what is given by the raising algorithm. The
raising algorithm additionally pairs each raised step with the step that raised it. The
left-hand side of Figure 18 shows the pairing obtained on the example worked out in
Figure 16. This leaves open the possibility that other algorithms could be described,
which give the same output but a different pairing. In fact, in [9], Eu, Fu, Hou, and Hsu
give a description of the bijection by an algorithm giving a different pairing. See also [8].

Their algorithm (Algorithm B of [9, Section 2.2]) from the quarter-plane walk takes
three passes each running right to left. This algorithm views the quarter-plane walk as
a word in S∗1 and modifies it in place to obtain a Motzkin path. Because of the in-place
modification, we need disjoint input and output alphabets, so we will write the Motzkin
paths as words in {−1, 0, 1}∗ for the purposes of describing this algorithm. This yields
the algorithm in Figure 17.

As in the raising description, steps become 0, which may or may not then be raised
to 1 by a later step, steps themselves become −1, which may or may not be raised
to 0 by a later step, and steps themselves always become −1. By making the three
separate passes Eu, Fu, Hou, and Hsu’s algorithm does not need to distinguish between
those 0 steps that have been raised and those that have not, as first all the unraised 0s

the electronic journal of combinatorics 27(2) (2020), #P2.3 30

Input: a quarter-plane walk written as a word in S∗1

Output: a Motzkin walk written as a word in {−1, 0, 1}∗

1. (First pass) Moving right to left convert each step to 0
2. (Second pass) Moving from right to left, for each find the closest

preceding 0 and convert the pair (0,) to (1,−1).
3. (Third pass) Moving from right to left, for each find the closest pre-

ceding −1 and convert the pair (−1,) to (0,−1).
4. Output the resulting word in {−1, 0, 1}∗.

Figure 17: Algorithm by Eu, Fu, Hou, and Hsu in the 3-step model [9].

are generated, then in the second pass some are raised, and finally in the last pass the
raised 0s are generated.

Their algorithm also builds the same map ψ because, similarly to the situation in the
raising algorithm, to know what step will be in position i in the output it suffices to know
what the input step in position i is and whether or not this step will get converted in the
second or third pass. To know whether or not a step will be converted, as we read from
right to left through the word, we only need to count steps and steps (these cause
conversions in the second and third passes) and subtract from the counts for each and

steps, respectively, that we meet (these get converted). This is again exactly what h
and v are doing in the original definition of ψ. However, the particular pairing given by
the three passes is different from the one given in the raising description.

To see the different pairing, consider the example of Figure 16. As a word the quarter-
plane walk is

, , , , , , , , .

After the first pass we have

0, 0, , 0, 0, , , , .

After the second pass we have

0, 1,−1, 0, 0,−1, , ,−1,

and after the third pass we have

0, 1, 0, 1, 1, 0,−1,−1,−1,

where the right-hand side of Figure 18 shows the pairings. Observe that the pairings are
different though the Motzkin path is the same.

the electronic journal of combinatorics 27(2) (2020), #P2.3 31

Figure 18: The example of Figure 16 showing the different pairings from the raising
algorithm (left) and Eu, Fu, Hou, and Hsu’s algorithm (right). Pairings indicated with
solid lines come from (2)b in the raising algorithm or the second pass of Eu, Fu, Hou, and
Hsu’s algorithm while pairings indicated with dashed lines come from (2)c or the third
pass.

The raising algorithm gives the pairing that is noncrossing when restricted to those
pairings from step (2)b and when restricted to those from (2)c. Eu, Fu, Hou, and Hsu’s
algorithm gives the pairing that takes the closest step from right to left and so is in some
sense maximally crossing in each pass.

6.3 Raising in the six-step model

Passing to the six-step model from the raising perspective is very much the same, see
[17] for details. Motzkin steps coming from and can never be raised, but Motzkin
steps coming from the other four quarter-plane steps can be raised. However they fall
into two classes (do they go away from the x-axis or do they go away from the y-axis).
Likewise all the steps except and must cause raisings of earlier steps. Again they
fall into two classes (do they go towards the x-axis or do they go towards the y-axis).
This corresponds to the fact that in the transition-based description of the bijection for
the six-step model we only need to keep track of two parameters rather than the four that
one might naively expect from doubling the number of parameters in the three-step case.
Additionally a step raises whichever step in the correct category was most recent with no
regard to which kind of step in that category it was. This means that steps and flipped
steps interact.

The algorithmic definition of the map has been given as [17, Definition 2.1]. We
reproduce it in Figure 19. Given a quarter-plane walk in S∗1,sym written as a sequence of
steps ā1ā2 . . . ān, the procedure in the figure computes a sequence of words, M0 to Mn, by
successively obtaining each Mi (of length i) from āi and Mi−1. Again, for the duration of
the algorithm, we need to augment our output alphabet by • to indicate raisability.

In [17] the bicolouring is given by red and black where solid here is red there and
striped here is black there. The proof that this defines the same map as in Section 4 is
analogous to that of the 3-step model.

the electronic journal of combinatorics 27(2) (2020), #P2.3 32

Input: a quarter-plane walk written as a word ā1ā2 . . . ān in S∗1,sym

Output: a bicoloured Motzkin walk written as a word in Σ∗1,bicol

1. Set M0 := ε.
2. For i from 1 to n:

(a) If āi = then Mi := Mi−1 .
(b) If āi = then Mi := Mi−1 .
(c) If āi = then either Mi−1 = w w′ or Mi−1 = w w′ with w′ free

of both and . Then set Mi := w w′ if Mi−1 = w w′ and
Mi := w w′ otherwise.

(d) If āi = then either Mi−1 = w w′ or Mi−1 = w w′ with w′ free
of both and . Then set Mi := w w′ if Mi−1 = w w′ and
Mi := w w′ otherwise.

(e) If āi = then either Mi−1 = w w′ or Mi−1 = w w′ with w′ free
of both and . Then set Mi := w w′ if Mi−1 = w w′ and
Mi := w w′ otherwise.

(f) If āi = then either Mi−1 = w w′ or Mi−1 = w w′ with w′ free
of both and . Then set Mi := w w′ if Mi−1 = w w′ and
Mi := w w′ otherwise.

3. Remove all • from Mn and return the result.

Figure 19: Algorithm by raisings in the 6-step model [17].

6.4 Raising for p > 1

For p > 1 we can move beyond [17] and still give a raising interpretation for Ψp. There are
additional complications compared to the p = 1 cases as steps may be raised more than
once, may be frozen from further raising by later steps, and may pass back their raising to
a previous step (that is, at a position to its left). A first, rough description of the process
follows, before we devote the rest of the section to formal details, culminating with the
result that a raising algorithm (given in Figure 20) and the RL transducer algorithm
compute the same object (Theorem 13). Reading forwards through the quarter-plane
walk, take a letter ā in the latter to the smallest Lukasiewicz letter µ that is possible
under some transition for that quarter-plane letter ā. Most of the time this will break the
 Lukasiewicz property. Then raise enough previous steps to re-obtain the property. The
steps to raise are recent ones that came from quarter-plane steps that went away from
whichever axis ā goes towards and that have not already been maximally raised.

the electronic journal of combinatorics 27(2) (2020), #P2.3 33

6.4.1 Raisability and modality of raising

As for the case p = 1, we will keep track of raisability by augmenting the alphabet used
during the run of our algorithm, and discarding the raisability information at the end
of it. Raisability is now an integer parameter j > 0, indicating how many times the
step can be raised (each time by 1, as we will see). However, we need to keep track of
more than just the raisability of a step, namely we need to keep track of which kind of
future steps it can be raised by and whether it can be raised itself or has to pass its
raising on to a previous “proxy” step. We will encode this modality of raising with a
second integer parameter t > −1. Depending on modality, steps separate into three sorts.
Steps with modality t = −1 can be raised themselves, but only by one of the p steps
of the form (−m, p − m) for m > 1 (those having some strict west component). Steps
with modality t = 0 can be raised themselves, but only by a step (1,−1). Steps with
modality t > 1 can only be raised by proxy, by a step (1,−1), and the value of t then
indicates the distance to the proxy step. (Observe that, conversely, a step (0, p) never
causes a raising.)

We arrive at an alphabet of letters that we denote
j,t

(µ). For example,
4,−1
(0) represents a

0 letter from the Lukasiewicz alphabet that can be raised 4 times, by a step with strict

west component and so has no proxy, while
1,3

(−1) is a letter −1 that can be raised once,
by a south-east step and has the letter three positions before it as its proxy. (Beware
that what we will soon define as a step getting raised is marked by the decrease of its
raisability j, and not necessarily by the increase of its nominal value µ.)

Given a quarter-plane walk in S∗p written as a sequence of steps ā1ā2 . . . ān, the pro-
cedure in Figure 20 computes a sequence of words, L0 to Ln, by successively obtaining
each Li (of length i) from āi and Li−1. Observe that the factorization in the second point
of (2)b is always possible because the only case yielding t > 0, case (2)c, also places

some
0,−1
(µ′) to its left, which then can only be altered into some

0,−1
(µ′′) for µ′′ > µ′. Also,

(2)c can be rephrased as follows: find the m most recent raisable letters with modality −1,
raise the mth oldest one, and remove the raisability of the m letters for the rest of the
process. Furthermore, the m − 1 more recent ones are permanently frozen as their rais-
ability is 0 and they cannot be the proxy steps for any future step. The mth most recent
of the letters that were found is different. Its raisability has also been set to 0 but it is a
proxy. To avoid ambiguities we will use the following language with respect to raising:
• In cases (2)c and (2)b we say that the step at position i causes a raising.

• In case (2)b, in both the t = 0 and t > 0 cases we say that the letter
j,t

(µ) gets raised,

becoming
j−1,t

(µ+ 1) and
j−1,t
(µ) respectively, and that the obtained letter was raised by

the step at position i. The t > 0 case is a raising that is passed on to a proxy step,

precisely
0,−1
(µ′), but it still counts as a raising for µ not for µ′.

• In case (2)c we say that the letter
j1,−1
(µ1) gets raised, becoming

0,−1
(µ1 + 1), and that the

the electronic journal of combinatorics 27(2) (2020), #P2.3 34

Input: a quarter-plane p-tandem walk written as a word ā1ā2 . . . ān in S∗p

Output: a p- Lukasiewicz walk written as a word in Σ∗p

1. Set L0 := ε.
2. For i from 1 to n:

(a) If āi = (0, p) then Li := Li−1
p,0
(0).

(b) If āi = (1,−1) then write Li−1 = w
j,t

(µ)w′ where j > 0 and t > 0 and
where w′ has no letters with raisability > 0 and modality > 0.

• If t = 0 then Li := w
j−1,0

(µ+ 1)w′
1,−1

(−1).

• If t > 0 then rewrite Li−1 = w′′
0,−1
(µ′)w′′′

j,t

(µ)w′ where w′′′ has length

t− 1. Then Li := w′′
0,−1

(µ′ + 1)w′′′
j−1,t
(µ)w′

1,−1
(−1).

(c) If āi = (−m, p−m) with p > m > 1 then write

Li−1 = w0
j1,−1
(µ1)w1

j2,−1
(µ2)w2 · · ·wm−1

jm,−1
(µm)wm

where, for each ` > 0, j` is > 0 and w` is free of steps with raisabil-
ity > 0 and modality −1. Then

Li := w0
0,−1

(µ1 + 1)w1
0,−1
(µ2)w2 · · ·wm−1

0,−1
(µm)wm

p−m,d
(−1)

where d = |wm|+ |wm−1|+ · · ·+ |w1|+m = i− 1− |w0|.
3. Remove the raisability and modality information from Ln, that is, map

each
j,t

(µ) to a plain µ, and return the result.

Figure 20: Algorithm by raisings for general p > 1.

obtained letter was raised by the step at position i. We say the
j`,−1
(µ`) for 1 6 ` 6 m

get frozen by the step at position i, and this also does not count as a raising.

Note that the raisability of a letter is never increased and only letters with positive
raisability can get raised.

Example 9. We continue Example 3 by providing in Figures 21 and 22 an example of
execution of the raising algorithm on the same 5-tandem walk w̄. The forward process
exemplified in Figure 21, with input w̄ (at the top) and output w (at the bottom), should
be compared to the RL transducer process in Figure 11, with same input (at the bot-

the electronic journal of combinatorics 27(2) (2020), #P2.3 35

w̄ 5 D D D D D 3 D D 3 D 4 5 D D D D 4 D D D
a b1 b1 b1 b1 b1 c b2 b2 c b2 c a b1 b1 b1 b1 c b2 b2 b2

1
5,0
(0)

2
4,0
(1)

1,−1
(D)

3
3,0
(2)

1,−1
(D)

1,−1
(D)

4
2,0
(3)

1,−1
(D)

1,−1
(D)

1,−1
(D)

5
1,0
(4)

1,−1
(D)

1,−1
(D)

1,−1
(D)

1,−1
(D)

6
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

1,−1
(D)

1,−1
(D)

7
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(0)

0,−1
(D)

3,2
(D)

8
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(1)

0,−1
(D)

2,2
(D)

1,−1
(D)

9
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(2)

0,−1
(D)

1,2
(D)

1,−1
(D)

1,−1
(D)

10
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(2)

0,−1
(D)

1,2
(D)

0,−1
(0)

0,−1
(D)

3,2
(D)

11
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(2)

0,−1
(D)

1,2
(D)

0,−1
(1)

0,−1
(D)

2,2
(D)

1,−1
(D)

12
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(2)

0,−1
(D)

1,2
(D)

0,−1
(1)

0,−1
(D)

2,2
(D)

0,−1
(0)

4,1
(D)

13
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(2)

0,−1
(D)

1,2
(D)

0,−1
(1)

0,−1
(D)

2,2
(D)

0,−1
(0)

4,1
(D)

5,0
(0)

14
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(2)

0,−1
(D)

1,2
(D)

0,−1
(1)

0,−1
(D)

2,2
(D)

0,−1
(0)

4,1
(D)

4,0
(1)

1,−1
(D)

15
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(2)

0,−1
(D)

1,2
(D)

0,−1
(1)

0,−1
(D)

2,2
(D)

0,−1
(0)

4,1
(D)

3,0
(2)

1,−1
(D)

1,−1
(D)

16
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(2)

0,−1
(D)

1,2
(D)

0,−1
(1)

0,−1
(D)

2,2
(D)

0,−1
(0)

4,1
(D)

2,0
(3)

1,−1
(D)

1,−1
(D)

1,−1
(D)

17
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(2)

0,−1
(D)

1,2
(D)

0,−1
(1)

0,−1
(D)

2,2
(D)

0,−1
(0)

4,1
(D)

1,0
(4)

1,−1
(D)

1,−1
(D)

1,−1
(D)

1,−1
(D)

18
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(2)

0,−1
(D)

1,2
(D)

0,−1
(1)

0,−1
(D)

2,2
(D)

0,−1
(0)

4,1
(D)

1,0
(4)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(0)

4,1
(D)

19
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(2)

0,−1
(D)

1,2
(D)

0,−1
(1)

0,−1
(D)

2,2
(D)

0,−1
(0)

4,1
(D)

1,0
(4)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(1)

3,1
(D)

1,−1
(D)

20
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(2)

0,−1
(D)

1,2
(D)

0,−1
(1)

0,−1
(D)

2,2
(D)

0,−1
(0)

4,1
(D)

1,0
(4)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(2)

2,1
(D)

1,−1
(D)

1,−1
(D)

21
0,0
(5)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(2)

0,−1
(D)

1,2
(D)

0,−1
(1)

0,−1
(D)

2,2
(D)

0,−1
(0)

4,1
(D)

1,0
(4)

1,−1
(D)

1,−1
(D)

1,−1
(D)

0,−1
(3)

1,1
(D)

1,−1
(D)

1,−1
(D)

1,−1
(D)

w 5 D D D 2 D D 1 D D 0 D 4 D D D 3 D D D D

Figure 21: Example of execution of the raising algorithm on the 5-tandem walk w̄ of
Figure 10 (right). The letters µ̄ in row w̄ (input) give the p-tandem word w̄ as the
succession of steps (µ̄ − 5, µ̄), or (1,−1) if µ̄ = D. The letters µ in row w (output) give
the Lukasiewicz walk w as the succession of steps (1, µ), with D standing again for −1.
The second row indicates the case used in the algorithm: ‘a’ for case (2)a; ‘b1’ and ‘b2’
for the first and second item of case (2)b; ‘c’ for case (2)c. The rows numbered from 1
to 21 provide the successive Lukasiewicz words Li constructed by the algorithm.

0 5 10 15 20
0

5

Figure 22: Joint graphical representation of the successive Lukasiewicz words Li con-
structed by the raising algorithm in the run of Figure 21. Each walk Li is above all Lj
for j < i and the sequence ends with the Lukasiewicz walk w of Figure 10 (left).

the electronic journal of combinatorics 27(2) (2020), #P2.3 36

input step āj
small step west long step other long step

(1,−1) (−p, 0) with y > 0
variation in v +1 0 6 0, in {−y, . . . , 0}

transitions (T5), (T6), (T7)
(T3) or (T4), (T3) or (T4),

when m = p− 1 when m < p− 1

case (2)b (2)c with m = p
(2)a or

(2)c with m < p

output modality −1
> 0

> 0with raisability 0

role in (2)b cause one raising none
output may get raised

up to y times

Figure 23: Impact of the x-coordinate of input steps āj in the flow of the RL transducer
process and in the flow of the raising algorithm. Transitions have to be understood in
reverse form, and variation in v is signed according to the RL flow.

tom) and output (at the top). The Lukasiewicz words Li constructed are first shown in
there precise form with raisability and modality in Figure 21, and next as plain walks in
Figure 22.

To make the connection between the raising algorithm and the transducer algorithm
more precise in Theorem 13 we need a few lemmas. We gather simple properties in Figures
23 and 24, then give the more elaborate Lemmas 11 and 12. For the rest of the section,
let w̄ be a quarter-plane walk in S∗p with letters āj.

Immediate properties of the RL process and of the raising algorithm can be derived
from the two algorithm descriptions. They are expressed in terms of the nature of steps
in the input word w̄, by trichotomies according to their x-coordinate and y-coordinate,
respectively. These properties are gathered as tables in Figures 23 and 24 (only their last
rows are less immediate and will be proved in lemmas). The trichotomy with respect to y
matches exactly the case distinction in the raising algorithm (into (2)a, (2)b, (2)c); it
also matches a partitioning of the transitions. In contrast, the trichotomy with respect
to x does not directly match the computational case distinctions in our algorithms, but
further refinements of case (2)c and of (T3) and (T4) provide a suitable partitioning. (We
could have gathered the two tables by a partitioning into four columns, at the cost of
some repetition.)

6.4.2 Augmented RL transducer process: a more elaborate stack V

For the purposes of the first lemma, we will reinterpret the parameter v from the RL
transducer algorithm as the length of a new stack V added to the algorithm. The letters
allowed on V will be integers representing positions in the input word w̄. Thus it will
make sense to speak of which letter or transition instance put a particular element onto V

the electronic journal of combinatorics 27(2) (2020), #P2.3 37

input step āj
small step north long step other long step

(1,−1) (0, p) with x < 0

effect on H
a`,m′ 7→ a`,m′−1,

none push a`,|x|−1pop a`,0, or do nothing

transitions
(T6), (T5), or (T7)

(T1) or (T2) (T3) or (T4)respectively
case (2)b (2)a (2)c

output modality −1 0 > 0

role in (2)c
output gets frozen, raised

none
cause one raising and

or is never touched by (2)c potentially freezings

Figure 24: Impact of the y-coordinate of input steps āj in the flow of the RL transducer
process and in the flow of the raising algorithm. Transitions have to be understood in
reverse form, and alteration of H is according to the RL flow.

and which took it off, and the stack elements will keep track of these indices. Specifically,
for the rest of this section, we augment the RL process with the stack V and we modify
the reverses of the transitions (T1) to (T7). In the augmented RL process, the reverses
of (T5), (T6), and (T7) push i onto the stack V whenever those transitions are used at
stage n + 1 − i, that is, when dealing with the input letter āi. Moreover, the reverses
of (T1), (T2), (T3), and (T4) pop respectively p, q, `, and ` elements from the stack V .
(Those numbers are defined in the transition descriptions.)

Example 10. We consider again Example 3 and in particular the evolution of counters
along LR and RL transductions provided by Figure 11. As represented by the row for V ,
the augmented RL transducer process successively pushes 21, 20, and 19 to the stack V
by three instances of (T7), before an instance of (T3) pops all three integers, emptying
the stack. Four similar cycles of successive pushes before emptying the stack occur in the
rest of the run. Other examples involving (T2) would similarly empty the stack; on the
other hand, examples with longer runs of successive pushes could lead to the use of (T4)
or (T1), causing pops of several integers without fully emptying the stack.

6.4.3 Relation between steps with positive y-coordinates, the stack V , and
raisings

Lemma 11. Consider an index j in w̄ for which āj has positive y-coordinate. When
processing āj, the RL transducer algorithm either

• leaves the stack V unchanged, in which case the letter in position j is never raised
in the raising algorithm, or

• takes off at least one element from it, in which case the steps (with indices > j) that
put on those elements taken off by āj are precisely the steps that raise the letter in
position j in the raising algorithm.

the electronic journal of combinatorics 27(2) (2020), #P2.3 38

Proof. Consider the trichotomy of input steps given by the (1,−1) steps, the (−p, 0)
steps, and the steps with positive y-coordinate. We will now to describe, in relation to
this trichotomy, which transitions in the RL transducer algorithm and which cases in the
raising algorithm deal with the steps. We will also describe how the steps affect V in the
RL process and are involved in raisings of steps of modality > 0 in the raising algorithm.
The table in Figure 23 captures facts, all of which can be immediately derived from the
two algorithm descriptions, with the exception of the final row, which requires additional
explanation. This row is addressing how the input steps are involved in raisings of steps
with modality > 0, which can occur only in case (2)b (as a raising requires raisability
> 0). All (1,−1) steps are dealt with by case (2)b and vice versa; each time exactly one
raising of a step of modality > 0 is caused (this raising may or may not involve a proxy,
but that is of no concern for this lemma). The step (−p, 0) has no involvement with
raisings of steps of modality > 0 as the raisings it causes are on steps of modality −1 and
its output step is unraisable from its creation. The steps with positive y-coordinate have
output steps of modality > 0 with nonzero raisability: each such output step starts with
raisability equal to the y value of the input step and may get raised any number of times
between 0 and this value. Steps with positive y do cause raisings but only on steps of
modality −1 which are not of present concern.

Therefore the input steps that raise steps of nonnegative modality (that is, those
dealt with by case (2)b) and the steps that put an element on V (that is, those that
increase v) are the same, namely the (1,−1) steps. Furthermore the steps with positive
y-coordinate are the only ones which may take elements off V and are also the only ones
whose corresponding outputs may get raised by step (2)b.

It remains to show that the these classes of steps are associated to each other as
described in the statement of the lemma. This is a parenthesis matching problem. Let
each step with positive y-coordinate correspond to as many open parentheses as its y-
coordinate and each (1,−1) correspond to a close parenthesis. In this way the input word
is associated to a string of parentheses. Note that there may be more open parentheses
in this string than close parentheses. The final thing we need to prove is that the RL
process and the raising process both induce a natural matching of these parentheses,
both being in fact the same matching. By remembering what input letter has introduced
each parenthesis, this matching induces an association between input letters, each step
with positive y-coordinate being potentially linked to several (1,−1) more rightwards.
Specifically, this association will be the one described in the statement of the lemma.

Consider first the RL transducer process. Reading the string of parentheses from right
to left in parallel to the RL process, a close parenthesis corresponds to adding an element
to V , open parentheses to removing elements of V provided V is not empty yet. By
inspecting the transition rules, we see that in the RL process, when v decreases it always
decreases by as much as it can (namely by the minimum of its current value and the y-
coordinate of the input step). Consequently the parentheses are matched naturally from
right to left in a last in first out manner, with the additional rule that unmatchable opens
are skipped when they are met. The result of this is the parenthesis matching obtained
by forcing all extra opens to be as leftwards as possible while retaining the possibility

the electronic journal of combinatorics 27(2) (2020), #P2.3 39

to match all closes. Furthermore, the links between input letters naturally induced from
the parenthesis matching are such that any step āj with positive y-coordinate is linked
to exactly those input steps in the RL process that added elements of V that āj later
removes. The stack V remains unchanged precisely when the linking induced from the
parenthesis matching does not link āj to any other steps.

Now consider the raising process. The reader can check that the raisability of the
output letter at position j after dealing with the input letter āi is equal to the number
of unmatched open parentheses in the group originating from āj when we consider the
left-to-right last in first out parentheses-matching algorithm after all groups originating
from ā1, . . . , āi have been dealt with. This can be verified by a step-by-step comparison
or a straightforward induction. This gives the same parenthesis matching as the RL
transducer process. Furthermore, the links between input letters naturally induced from
the parenthesis matching are such that any step āj with positive y-coordinate is linked
to exactly those input steps which raised the step at position j. The step at position j is
never raised precisely when the linking induced from the parenthesis matching does not
link āj to any other steps.

The concluding sentences of the previous two paragraphs together prove the lemma.

6.4.4 Relation between steps with negative x-coordinates, the stack H, and
freezings of raisings

Letters with negative x-coordinates cause a push onto H in the RL transducer algorithm
and no other letters cause a push onto H. Let a`,m−1 be a letter that is pushed onto H.
Observe that the only way for a`,m−1 to be taken off the stack is by m− 1 (T6) transition
instances and then a (T5) transition instance (not necessarily consecutively). Note also
that in the raising algorithm the case that deals with letters with negative x-coordinate
is case (2)c. These simple observations are refined in the next lemma.

Lemma 12. Let j be an index in w̄ for which āj has negative x-coordinate, so that some
letter a`,m−1 is pushed on H at step j in the RL process. Then, the indices where the m−1
(T6) transition instances occur are precisely the indices of the letters that are permanently
frozen by case (2)c for āj, and the index where the (T5) instance occurs is the index of
the letter raised by āj.

Additionally, indices where (T7) transition instances occur correspond to indices where
the output step in the raising algorithm has modality −1 but is never raised or frozen.

Proof. The relevant trichotomy of input letters for this lemma is based on x-coordinate
rather than y-coordinate. A table again helps to collect the key information that can be
read off the definitions of the two algorithms, and is given in Figure 24. The final row
addresses how the input steps and their outputs are involved in raisings and freezings
of steps of modality −1. These raisings and freezings occur only in case (2)c. As we
will prove in what follows, the three possibilities in the bottom left entry of the table
correspond respectively with the three possibilities in each of the first and second left
entries of the table.

the electronic journal of combinatorics 27(2) (2020), #P2.3 40

Again we have a parenthesization problem. Associate every (1,−1) step in the input
to an open parenthesis. Associate every input step with x-coordinate x < 0 with |x| close
parentheses. The input word is again associated to a string of parentheses and again there
may be more open parentheses in this string than close parentheses. The RL process and
the raising process give natural matchings of these parentheses, and the final claim is that
they both give the same matching, and that specifically, the matching is as described in
the statement of the lemma.

Consider first the RL transducer process. Reading the string of parentheses from right
to left in parallel to the RL process, every time an element a`,|x|−1 is added to the stack H,
|x| close parentheses appear in the parenthesis string, and close parentheses can appear
in no other way. Every time the second coordinate of the top of H is decreased by 1 as
well as every time the top of H is popped, there is an open parenthesis that matches the
most recent unmatched close parenthesis; additionally, each instance of transition (T7),
which can only occur when H is empty, introduces one open parenthesis, which remains
unmatched.

We proceed to justify that such a matching is always possible. Recall that the m-
weight of a`,m′−1 is m′ (see Section 3.3). Thus, because the RL transducer process makes
no other kind of alteration to H, at any given point in the RL process, wtm(H) is the
number of unmatched close parentheses at the corresponding point in the parenthesis
string. In particular the matching is always possible. Also, the open parentheses from
(T7) steps only occur when H is empty, that is, when there are no unmatched close
parentheses.

Therefore, the RL transducer algorithm matches the parentheses from right to left in
a last in first out manner with the additional rule that unmatchable opens are skipped
when they are met. Furthermore, the links between input letters naturally induced from
the parenthesis matching are such that any step āj with negative x-coordinate is linked
to exactly those steps that modify (via (T6)) or pop (via (T5)) the element of H that āj
pushed.

Now consider the raising process. The reader can verify by a straightforward induction
that for a (1,−1) input step at some position j, the output letter from this step, after
dealing with the input letter āi for i > j, is raisable if and only if the open parenthesis
from the (1,−1) step is unmatched when we consider the left-to-right last in first out
parentheses-matching algorithm after all parentheses originating from ā1, . . . , āi have
been dealt with. Thus the raising algorithm matches the parentheses in a left to right,
last in first out manner. This gives the same parenthesis matching as the RL transducer
process. Observe that the unmatched open parentheses correspond to output letters
from (1,−1) input steps which are still raisable at the end of the algorithm. Since such
output steps are raisable at most once and freezing also sets the raisability to 0, these
are steps which were never frozen or raised. Furthermore, the links between input letters
naturally induced from the parenthesis matching are such that any step āj with negative
x-coordinate is linked to exactly those steps that were either frozen or raised by āj by
step (2)c.

the electronic journal of combinatorics 27(2) (2020), #P2.3 41

6.4.5 Equivalence between the raising and transducer processes

The concluding sentences of the previous two paragraphs prove the first statement of the
lemma. The characterization of the unmatched open parentheses in the two algorithms
implies the second statement of the lemma.

Theorem 13. The raising algorithm in Figure 20 and the RL transducer algorithm pro-
duce the same output.

Proof. We prove the result for the augmented RL transducer algorithm, which has the
same output as the unmodified RL transducer algorithm. The proof considers each posi-
tion j independently and goes by a case analysis on the input letter āj:

• Suppose āj is (0, p). Case (2)a stipulates that the first letter output by the raising
algorithm at position j is 0 and the second point of case (2)b stipulates that when
this step is raised its output letter increases by 1 for each raising. Thus the final
output by the raising algorithm at position j is the number of times the step in
position j is raised. On the other hand, in the RL transducer algorithm, transitions
(T1) and (T2) together make the output at j be the number of elements of V that
are removed at step j. Therefore Lemma 11 implies that the final output of both
algorithms at position j is the same.

• Suppose āj is (1,−1). We refine the case analysis according the the transition used
at that position j by the RL process:

– If āj triggers a (T6) instance, then the output letter in this position by the
RL process is −1, and by Lemma 12 the output letter in this position in the
raising process was frozen and so is also −1 (by steps (2)b and step (2)c, along
with the fact that Lemma 12 accounts for all transitions that affect H).

– If āj triggers a (T5) then Lemma 12 also implies that the output by the raising
algorithm at that position j is turned into a proxy step after dealing with some
position i > j. The step at position i is the step that originally put on the
stack letter that the (T5) instance removed. The output of this (T5) instance
is the value of the first index of this stack letter, but this is the number of
elements taken off of V by āi. Lemma 11 implies that this number is the same
as the number of steps that raised the output letter at position i. Hence by
the nature of proxy raising, this number is the final output value at position j.
Therefore both algorithms also agree in this case.

– If āj triggers a (T7) then the RL transducer algorithm outputs a −1; in the rais-
ing algorithm, the output step at position j first appears as a −1 by case (2)b,
while by Lemma 12 it is never raised, and so it is −1 in the final output.

• Suppose āj has a negative x-coordinate. All these cases yield −1 as output steps in
both algorithms.

the electronic journal of combinatorics 27(2) (2020), #P2.3 42

Therefore, the description of Ψp by raisings agrees with the transducer description.

Overall, the raising description is more complicated than the transition-based descrip-
tion of Ψp.

This is a good moment to return to Proposition 7. The (T2) and (T3) steps with
p −m − 1 > ` described in the first point of the proposition are the steps that could be
raised but do not get raised by the end of the raising algorithm. This gives an intuitive
explanation for why they correspond to an increased bound on the abscissa for the quarter-
plane walk: if the quarter-plane walk were extended to return to lower x-values, then
sufficiently many steps must be present in the p- Lukasiewicz walk that can still be raised
to correspond to these extension steps. The extra capacity for raising corresponds to the
bound on the abscissa, in the precise manner given by Proposition 7.

Additionally, the converse of the third item of Proposition 7 is also true. To see
this, suppose the quarter-plane walk w̄ is a concatenation of w̄1 and w̄2. By the raising
description of Ψp, once all the steps of w̄1 have been processed we have Ψp(w̄1). Since w̄2 is
also a quarter-plane walk, Ψp applied to w̄2 is well-defined. This implies that whenever
raising occurs while working through w̄2, the steps to be raised must remain within w̄2.
Therefore the same holds with Ψp applied to w̄2 as it occurs within w̄. Therefore Ψp(w̄) is
the concatenation of Ψp(w̄1) and Ψp(w̄2), each of which are p- Lukasiewicz walks. Hence
there is a return to the x-axis at the concatenation point, giving the converse to the second
point of Proposition 7.

7 Discussion

7.1 Comparison to the approach by oriented planar maps

The work by Bousquet-Mélou, Fusy, and Raschel [4] studies a larger class of generalized
tandem walks, with (infinite) step set

{ } ∪
⋃
p>1

Sp,

and it provides a length-preserving involution σ of this class that also preserves the number
of steps and, for each p, the total number of steps in Sp. More importantly, this
involution exchanges the differences a = xstart − xmin and d = yend − ymin and preserves
the differences b = ystart− ymin and c = xend−xmin (with obvious notation). By a suitable
restriction, namely, forcing the number of steps from the Sp to be 0 except for a single p
and considering walks with a = d = 0 on the one hand (half plane), and walks with
a = b = 0 on the other hand (quarter plane), this induces a bijection between Lp and Tp.
In particular, the involution σ maps each prefix of a given w̄ ∈ Tp to a word of Lp. This
makes it impossible for the sequence of images in Lp to be the prefixes of the image
of the full word w̄. Thus, σ breaks the principal requirement of our construction, and
our bijections Φp and Ψp are no restrictions of the involution σ. Further, our bijection
preserves yend − xend, which has no clear behaviour under σ.

the electronic journal of combinatorics 27(2) (2020), #P2.3 43

It remains of interest to determine if σ could be implemented by an automaton similar
to those we introduced. In this regard, it is interesting to note that the quantities ex-
changed by the involution σ involve the records xmin and ymin, which cannot be modeled
without extending the notion of parameters that we introduced in Section 3.2: one needs
to augment the “arithmetic” of parameters to allow comparisons.

7.2 Symmetrization beyond p = 1

The generalization from the p = 1 case to the symmetrized p = 1 case is surprisingly nice;
we keep track of the very same counters and simply slot in the extra transitions. One
might have expected a need for four counters, doubling counters as well as steps, but two
suffices. Having made this generalization the obvious next step would be to generalize
p > 1 to some sort of symmetrized situation. Unfortunately, we do not know how to do
this.

Take Sp,sym to be the union of Sp and the reflection of Sp in the line y = x. The first
question is what sets of walks ought be in bijection. We would expect the generalized
Ψp,sym to have quarter-plane walks in S∗p,sym as its domain. The most obvious answers
for the image of Ψp,sym would be either bicoloured Lukasiewicz walks or half-plane walks
ending on the x-axis in S∗p,sym. The latter suggestion is in view of the bijection between
 Lukasiewicz walks and half-plane walks ending on the x-axis in S∗p . However, direct
counting of small walks in these sets show that neither of these are equinumerous with
quarter-plane walks in S∗p,sym.

Leaving this problem aside for the moment, we could try to generalize the transitions
in the hopes that the image itself will become clear in due time. Analogously to the
relationship between the p = 1 transitions and the symmetrized p = 1 transitions, we
would expect that restricting to only the flipped steps as input should give us something
equivalent to the original map but with differently coloured output steps and with the
parameters swapped. Thus we expect that transitions for a Ψp,sym map would have two
stacks as parameters and would specialize to Ψp in two ways. Unfortunately, neither
considering the symmetries of the transitions nor working through many small examples
have shown how this could be done.

Consequently, we are left without a clear idea of how to generalize our maps to a
symmetrized p > 1 situation.

7.3 Standard Young tableaux of bounded height

In their work [9], Eu, Fu, Hou, and Hsu gave an algorithm for the bijection when p = 1
that is similar in spirit to the algorithm by raising. See our comments in Section 6.2.
This bijection, between (usual) Motzkin walks and Yamanouchi words as we described it
in Section 2, really is a bijection between Motzkin walks and standard Young tableaux
of height at most 3. But the true contribution of [9] was to generalize it to a bijection
between standard Young tableaux of height at most d and a class of coloured Motzkin
walks that they introduced. Their “d-Motzkin walks” are Motzkin walks whose up and
down steps may appear in d-colours, with an additional constraint between the occurrences

the electronic journal of combinatorics 27(2) (2020), #P2.3 44

of the colours that they describe by inequalities. The bijection works by treating and
removing the colours one after the other. This makes it very tempting to try and apply the
transducer approach to d-Motzkin walks. Our attempts have failed so far. If one conceives
the transducer approach applied to (usual) Motzkin walks as a means to reschedule the
raising transformations so that they can be applied as soon as a raised step is considered,
instead of postponing to when the process needs it to restore a Motzkin property, then
a transducer algorithm for bounded height would develop such a rescheduling for each
colour, and the d transducers thus obtained would then have to be merged into a single
one, leading to further rescheduling. It would be great to see such an algorithm.

Acknowledgments

The authors thank the anonymous referee for a very thorough reviewing work and for
their numerous constructive suggestions.

References

[1] Jean-Michel Autebert, Jean Berstel, and Luc Boasson. Context-free languages
and pushdown automata. In Grzegorz Rozenberg and Arto Salomaa, editors,
Handbook of formal languages, Vol. 1, pages 111–174. Springer, Berlin, 1997.
https://doi.org/10.1007/978-3-642-59136-5.

[2] Olivier Bodini, Julien David, and Philippe Marchal. Random-bit opti-
mal uniform sampling for rooted planar trees with given sequence of de-
grees and applications. In Algorithms and discrete applied mathematics, vol-
ume 9602 of Lecture Notes in Comput. Sci., pages 97–114. Springer, 2016.
https://doi.org/10.1007/978-3-319-29221-2_9

[3] Alin Bostan, Frédéric Chyzak, and Assia Mahboubi. A bijection between classes of
North/West/South-East walks. In preparation.

[4] Mireille Bousquet-Mélou, Éric Fusy, and Kilian Raschel. Plane bipolar orientations
and quadrant walks. 61 pages, arXiv:1905.04256, 2019.

[5] Mireille Bousquet-Mélou and Marni Mishna. Walks with small steps in
the quarter plane. In Algorithmic probability and combinatorics, volume 520
of Contemp. Math., pages 1–39. Amer. Math. Soc., Providence, RI, 2010.
https://doi.org/10.1090/conm/520/10252.

[6] R. Brak, G. K. Iliev, and T. Prellberg. An infinite family of adsorption mod-
els and restricted Lukasiewicz paths. J. Stat. Phys., 145(3):669–685, 2011.
https://doi.org/10.1007/s10955-011-0306-8.

[7] Frédéric Chyzak. Un algorithme en ligne pour une bijection entre des classes
de marches Nord – Ouest – Sud-Est. Slides for a talk at “Journées Combina-
toires Franco-Vancouvéroises” (Vancouver), July 2016. https://specfun.inria.
fr/chyzak/Talks/jcfv1.pdf.

the electronic journal of combinatorics 27(2) (2020), #P2.3 45

https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/978-3-319-29221-2_9
https://arxiv.org/abs/1905.04256
https://doi.org/10.1090/conm/520/10252
https://doi.org/10.1007/s10955-011-0306-8
https://specfun.inria.fr/chyzak/Talks/jcfv1.pdf
https://specfun.inria.fr/chyzak/Talks/jcfv1.pdf

[8] Sen-Peng Eu. Skew-standard tableaux with three rows. Adv. in Appl. Math.,
45(4):463–469, 2010. https://doi.org/10.1016/j.aam.2010.03.004.

[9] Sen-Peng Eu, Tung-Shan Fu, Justin T. Hou, and Te-Wei Hsu. Standard Young
tableaux and colored Motzkin paths. J. Combin. Theory Ser. A, 120(7):1786–1803,
2013. https://doi.org/10.1016/j.jcta.2013.06.007.

[10] Guy Fayolle, Roudolf Iasnogorodski, and Vadim Malyshev. Random walks in the
quarter-plane, volume 40 of Applications of Mathematics (New York). Springer-
Verlag, Berlin, 1999. https://doi.org/10.1007/978-3-642-60001-2.

[11] Dominique Gouyou-Beauchamps. Standard young tableaux of
height 4 and 5. European J. Combin., 10(1):69–82, 1989.
https://doi.org/10.1016/S0195-6698(89)80034-4.

[12] Richard Kenyon, Jason Miller, Scott Sheffield, and David B. Wilson. Bipolar ori-
entations on planar maps and SLE12. The Annals of Probability, 47(3):1240–1269,
2019. https://doi.org/10.1214/18-aop1282.

[13] M. Lothaire, editor. Combinatorics on words. Cambridge University Press, 1997.
https://doi.org/10.1017/cbo9780511566097.

[14] George N. Raney. Functional composition patterns and power series reversion. Trans.
Amer. Math. Soc., 94:441–451, 1960. https://doi.org/10.2307/1993433.

[15] Paul C. Rosenbloom. The Elements of Mathematical Logic. Dover Publications, Inc.,
New York, N. Y., 1950.

[16] Jacques Sakarovitch. Elements of automata theory. Cambridge University Press,
2009. https://doi.org/10.1017/cbo9781139195218.

[17] Karen Yeats. A bijection between certain quarter plane walks and Motzkin paths.
9 pages, arXiv:1412.1504, 2014.

the electronic journal of combinatorics 27(2) (2020), #P2.3 46

https://doi.org/10.1016/j.aam.2010.03.004
https://doi.org/10.1016/j.jcta.2013.06.007
https://doi.org/10.1007/978-3-642-60001-2
https://doi.org/10.1016/S0195-6698(89)80034-4
https://doi.org/10.1214/18-aop1282
https://doi.org/10.1017/cbo9780511566097
https://doi.org/10.2307/1993433
https://doi.org/10.1017/cbo9781139195218
https://arxiv.org/abs/1412.1504

	Introduction
	General setup. Notation
	Outline of the paper. Contributions
	Worked example

	Three-step model
	p-Tandem Walks
	Construction of maps between p and Sp
	Parameters depending on the constructions, and their variations
	Specific parameters and some of their invariants
	Properties of the constructed walks

	Six-step model
	Alternate interpretation via automata
	Alternate interpretation via raising
	Raising in the 3-step model
	Freedom of pairing and comparison with Eu, Fu, Hou, and Hsu
	Raising in the six-step model
	Raising for p>1
	Raisability and modality of raising
	Augmented RL transducer process: a more elaborate stack V
	Relation between steps with positive y-coordinates, the stack V, and raisings
	Relation between steps with negative x-coordinates, the stack H, and freezings of raisings
	Equivalence between the raising and transducer processes

	Discussion
	Comparison to the approach by oriented planar maps
	Symmetrization beyond p=1
	Standard Young tableaux of bounded height

